On the robustness of the controllability of linear systems with respect to the introduction of age structuring

Marius Tucsnak
General framework (I)

Many systems describing evolution of particles or living organisms (cells, bacteria, animals, ...) are described (within a linear approximation), by equations of the form

\[\dot{p}(t) = Ap(t) + Bu(t), \quad p(0) = p_0, \]

where \(X \) the state space) is Hilbert, \(A : \mathcal{D}(A) \to X \) generates a \(C^0 \) semigroup, denoted \(\mathbb{T} \), in \(X \). \(U \) (the control space) is also Hilbert space and \(B \in \mathcal{L}(U, X_{-1}) \) is the control operator.

In many cases (namely for biological systems) the *age* of the considered particles (individuals) plays an important role. In particular, they can disappear (die) or get born.
General framework (II)

Grafting an age structure on a generic control system means assuming that p depends on the age $a \in [0, a_\dagger]$ and that individuals can die (with a certain probability μ) at any age or be born at a certain fertility rate β. The original system becomes

$$\dot{p}(t, a) + \frac{\partial p}{\partial a}(t, a) = Ap(t, a) - \mu(a)p(t, a) + \chi(a)Bu(t, a),$$

$$p(t, 0) = \int_0^{a_\dagger} \beta(a)p(t, a) \, da,$$

where χ is the characteristic function of an interval contained in $[0; a_\dagger)$.

- Does wellposedness of the original problem imply the wellposedness of the age structured one?

- Does controllability (in some sense) of the original problem imply the controllability of the age structured one?
Typical mortality and fertility rates
Example 1: the classical Lotka-McKendrick system

Take \(X = \mathbb{R}^n \) and \(U = \mathbb{R}^m \) with \(m \leq n \), with \(A \) a real \(n \times n \) matrix, \(B \) a real \(n \times m \) matrix, such that

\[
\text{rank} [B, AB, \ldots A^{n-1}B] = n. \tag{1}
\]

In particular, for \(X = U = \mathbb{C} \), \(A = 0 \) and \(B = 1 \) we obtain the age structured Lotka-McKendrick system:

\[
\begin{align*}
\frac{\partial p}{\partial t} + \frac{\partial p}{\partial a} &= -\mu p + \chi_{(0,a_0)} u \quad (a \in (0,a_\dagger), \ t > 0), \\
p(0,a) &= p_0(a) \quad (a \in (0,a_\dagger)), \\
p(t,0) &= \int_0^{a_\dagger} \beta(a) p(a,t) da \quad (t > 0).
\end{align*}
\]

- \(p(t,a) \): distribution density of the population of age \(a \) at time \(t \);
- \(a^* \): maximal life expectancy;
- \(\mu(a), \beta(a) \): mortality and fertility rates.
Example 2 : transport of an age structured population

Let $\Omega = (0, L)$ and $\nu > 0$. We consider the following control problem

\[
\begin{aligned}
\frac{\partial p}{\partial t} + \frac{\partial p}{\partial a} + \nu \frac{\partial p}{\partial x} + \mu(a)p &= 0, \\
(t, a, x) &\in (0, \tau) \times (0, a^+) \times \Omega, \\
p(t, a, 0) &= \chi_{(a_1, a_2)} u(t, a), \\
(t, a) &\in (0, \tau) \times (0, a^+), \\
p(t, 0, x) &= \int_0^{a^+} \beta(a) p(t, a, x) \, da, \\
(t, x) &\in (0, \tau) \times \Omega, \\
p(0, a, x) &= p_0(a, x) \\
(a, x) &\in \times (0, a^+) \times \Omega.
\end{aligned}
\]

We take $X = L^2(\Omega)$ and $U = \mathbb{R}$. The operator A is defined by

\[\mathcal{D}(A) = \{ \varphi \in H^1(0, L) \mid \varphi(0) = 0 \}, \quad A\varphi = -\nu \frac{\partial \varphi}{\partial x}.\]

The control operator B is defined by $Bu = \delta_0$, where δ_0 is the Dirac mass at 0.
Example 3: Lotka-McKendrick system with diffusion

\[
\frac{\partial p}{\partial t} + \frac{\partial p}{\partial a} + \mu(a, x)p - k \Delta p = u \chi(a_1, a_2) \times \omega, \quad a \in (0, a^*), \ x \in \Omega, \ t > 0,
\]

\[
p = 0 \ \text{or} \ \frac{\partial p}{\partial \nu} = 0, \quad a \in (0, a^*), \ x \in \partial \Omega, \ t > 0,
\]

\[
p(a, x, 0) = p_0(a, x), \quad a \in (0, a^*), \ x \in \Omega,
\]

\[
p(0, x, t) = \int_0^{a^*} \beta(a, x)p(a, t, x)da, \quad x \in \Omega, \ t > 0.
\]

- \(p(t, a, x)\): distribution density of the population of age \(a\) at spatial position \(x\) at time \(t\);
- \(a^*\): maximal life expectancy;
- \(k\): diffusion coefficient;
- \(\mu(a, x), \beta(a, x)\): mortality and fertility rates.
Other examples

- Population dynamics models with degenerate or fractional diffusion

- Schrödinger equation with age structure

\[A = -i\Delta, \quad D(A) = H^2(\Omega) \cap H^1_0(\Omega), \quad B = \chi_0 \]
Some References on Analysis and Control for Population Dynamics (with Age Structuring)

• Semigroup properties: Chan and Guo, Di Blasio, Li et al., Langlais, Marinoschi, Walker, Webb, ...

• Optimal Control: Yong et al, Anita, ...

• Controllability problems: Ainseba, Anita, Barbu-Iannelli, Langlais, Traoré, Kavian

• Inverse problems: Traoré, Rundell, Filin, Perasso, Picart,…

• Numerical aspects: Lopez, Trigiante, Douglas, Milner, Huyer, Guo, Gerardo-Giorda, …
Outline

- Semigroup formulation
- L^2 null controllability
- Controllability with positivity constraints
- Conclusions and remarks
Semigroup Formulation
Spaces and operators

\[\mathcal{X} = L^2(0, a_\dagger; X) \] is the extended state space,

\[\mathcal{U} = L^2(0, a_\dagger; U) \] is the extended input space,

\[\mathcal{D}(A) = \left\{ \varphi \in C([0, a_\dagger]; X) \mid \varphi(0) = \int_0^{a_\dagger} \beta(a) \varphi(a) \, da, -\frac{\partial \varphi}{\partial a} + A \varphi - \mu \varphi \in \mathcal{X} \right\}, \]

\[A \varphi = -\frac{\partial \varphi}{\partial a} + A \varphi - \mu \varphi. \]

The control operator \(\mathcal{B} \in \mathcal{L}(\mathcal{U}, \mathcal{X}_{-1}) \) is defined by

\[\mathcal{B}u = \chi_{(a_1, a_2)} Bu \quad (u \in \mathcal{U}), \]

where

\[\mathcal{X}_{-1} = L^2(0, a_\dagger; X_{-1}) \]
Wellposedness

Theorem. (Maity, M.T, Zuazua, 2019)

Assume that A generates a C^0 semigroup on X. Then A generates a C^0 semigroup on X. Moreover, assume that B is an admissible control operator for the semigroup S generated by A. Then B is an admissible control operator for the semigroup T generated by A.

Main steps of the proof:

- “Guess” that $T_t \varphi = \left\{ \begin{array}{ll} \frac{\pi(a)}{\pi(a-t)} S_t \varphi(a-t), & t < a, \\ \pi(a) S_a b_\varphi(t-a) & t \geq a, \end{array} \right.$ where $\pi(a) = e^{-\int_0^a \mu(s) ds}$ and

 \[b_\varphi(t) = \int_0^t \beta(a) \pi(a) S_a b_\varphi(t-a) + S_t \int_0^{a+t} \beta(a+t) \frac{\pi(a+t)}{\pi(a)} \varphi(a) \, da. \]

- Prove that A is the generator of T.
The dual system

Proposition. The operator $\mathcal{A}_0 : \mathcal{D}(\mathcal{A}_0) \to \mathcal{X}$ defined by

$$\mathcal{D}(\mathcal{A}_0) = \left\{ \psi \in \mathcal{X} \mid q(t, a^+) = 0, \quad \frac{\partial \psi}{\partial a} - \mu \psi + A^* \psi \in \mathcal{X} \right\}, \quad \mathcal{A}_0 \psi = \frac{\partial \psi}{\partial a} - \mu \psi + A^* \psi,$$

generates the C^0-semigroup \mathbb{T}^0 on \mathcal{X} given by

$$\mathbb{T}^0_t \varphi = \begin{cases} \frac{\pi(a)}{\pi(a+t)} S^*_t \varphi(a + t), & t < a^+ - a, \\ 0 & t \geq a^+ - a. \end{cases}$$

Proposition.

$$\mathcal{D}(\mathcal{A}^*) = \mathcal{D}(\mathcal{A}_0), \quad \mathcal{A}^* \psi = \frac{\partial \psi}{\partial a} - \mu \psi + A^* \psi + \beta(a) \psi(0).$$

Moreover, $\mathcal{B}^* \in \mathcal{L}(L^2(0, a^+; \mathcal{D}(\mathcal{A}^*)); \mathcal{U})$ is given by

$$\mathcal{B}^* \psi = \chi(a_1, a_2) B^* \psi.$$
L^2 null controllability
Main result

Theorem. (Maity, M.T. and Zuazua, 2019)
Assume that $\beta(a) = 0$ for $a \in (0, a_b)$, for some $a_b \in (0, a_{\dagger})$ and that $a_1 < a_b$. Let Assume that the pair (A^*, B^*) is final state observable in time $\tau > \tau_0$, with

$$0 \leq \tau_0 < \bar{\tau}, \quad \bar{\tau} = \min\{a_2 - a_1, a_b - a_1\}.$$

Then the pair (A^*, B^*) is final-state observable for every $\tau > a_1 + a_{\dagger} - a_2 + \tau_0$. In other words, for every $\tau > a_1 + a_{\dagger} - a_2 + \tau_0$ there exists $k_{\tau} > 0$ such that

$$\|T^*_\tau q_0\|_{\mathcal{X}}^2 \leq k_{\tau}^2 \int_0^\tau \|B^* T^*_\tau q_0\|_{\mathcal{U}}^2 \, dt, \quad (q_0 \in \mathcal{D}(A^*)). \quad (1)$$

Corollary. Under the above assumptions, the pair (A, B) is null controllable in any time $\tau > a_1 + a_{\dagger} - a_2 + \tau_0$.
Main steps of the proof

1) Note that, integrating along the characteristic lines,

\[T_t^* q_0 = \begin{cases} \frac{\pi(a)}{\pi(a+t)} T_0^0 q_0(a+t) + \int_0^t \frac{\pi(a)}{\pi(a+t-s)} T_0^0 \beta(a+t-s)V(s) \, ds & t \leq a_\uparrow - a, \\ \int_t^{t+a-a_\uparrow} \frac{\pi(a)}{\pi(a+t-s)} T_0^0 \beta(a+t-s)V(s) \, ds & t > a_\uparrow - a, \end{cases} \]

where \(\pi(a) = e^{-\int_0^a \mu(r) \, dr} \) et \(V(t, a) := q(t, 0) \).

2) Prove that \(\| T_\tau^* q_0 \|^2 \ll \int_\eta^\tau \| T_t^* q_0(t, 0) \|^2 \, dt \) for some \(\eta > a_1 \). Obvious if \(\tau > a_\uparrow \), but quite tricky otherwise.

3) Prove that \(\int_0^\tau \int_\eta^\tau \| T_t^* q_0(t, 0) \|^2 \, dt \ll \int_0^\tau \int_{a_1}^{a_2} \| B T_t^* q_0 \|^2(t, a,) \, da \, dt \).
Some Hints on Step 3 (I)

Use the fact that along the backward characteristic from \((t,0)\); i.e.

\[
\gamma(s) = (t - s, s) \quad (s \leq t \leq \tau),
\]

\(q\) is essentially the solution of the original equation. Then use the stanrd final state observability estimate for the heat equation (Lebeau-Robbiano, Fursikov-Imanuvilov, 1995).
Some Hints on Step 3 (II)

For $t \in (a, \tau)$, we set $\tilde{q}(t, a) = q(t, a) e^{-\int_0^a \mu(r) \, dr}$. Since $\beta(a) = 0$ for all $a \in (0, a_b)$, \tilde{q} satisfies

$$\frac{\partial \tilde{q}}{\partial t} - \frac{\partial \tilde{q}}{\partial a} - A \tilde{q} = 0 \quad \text{for } t \geq 0, \quad a \in (0, a_b).$$

Set $w(s) = \tilde{q}(s, t - s)$ for $s \in (t - a_b, t)$. Then

$$\begin{cases}
\frac{\partial w}{\partial s} - Aw = 0 & (s \in (t - a_b, t)), \\
w(t - a_b) = q(t - a_b, a_b).
\end{cases}$$

From final state observability $\|w(t)\|^2 \leq c_1 e^{-\frac{c_2}{a_b - a_1}} \int_{t - a_b}^{t - a_1} \|B^* w(s)\|(s) \, ds,$

thus $\|\tilde{q}(t, 0)\|^2 \leq c_1 e^{-\frac{c_2}{a_b - a_1}} \int_{a_1}^{a_b} \|B^* \tilde{q}(t - s, s)\|^2 \, ds$.
Controllability with positivity constraints
Steady states

Let $v_s \in L^\infty((0, a^\dagger) \times \Omega)$, $v_s \geq 0$ A non-negative function $p_s \in L^\infty((0, a^\dagger) \times \Omega)$ satisfying

\[
\begin{aligned}
\frac{\partial p_s}{\partial a} - L p_s + \mu(a) p_s &= m v_s & (a, x) \in (0, a^\dagger) \times \Omega, \\
\frac{\partial p_s}{\partial v_L} &= 0 & (a, x) \in (0, a^\dagger) \times \partial \Omega, \\
p_s(0, x) &= \int_0^{a^\dagger} \beta(a) p_s(a, x) \, da, & x \in \Omega,
\end{aligned}
\]

is said to be a non-negative steady state. Positive steady states are those non negative steady states such that there exist $a_* \in (0, a^\dagger)$ and $\delta > 0$ with

\[
p_{s, I}(a, x), p_{s, F}(a, x) \geq \delta \text{ a.e. on } [0, a_*] \times \overline{\Omega}.
\]

Such steady states exist at least if

\[
1 = R := \int_0^{a^\dagger} \beta(a) e^{-\int_0^{a} \mu(r) \, dr} \, da.
\]
Main result states

Assume that $p_{s,I}$ and $p_{s,F}$ are two positive steady states, thus there exist $a_\ast \in (0, a_\dagger)$ and $\delta > 0$ such that

$$p_{s,I}(a, x), p_{s,F}(a, x) \geq \delta \text{ a.e. on } [0, a_\ast] \times \overline{\Omega}.$$

Then there exist $\tau > 0$ and $\nu \in L^\infty((0, \tau) \times (0, a_\dagger) \times \Omega)$ such that the controlled system with

$$p_0(a, x) = p_{s,I}(a, x)$$

admits a unique solution p satisfying

$$p(\tau, a, x) = p_{s,F}(a, x) \text{ for all } (a, x) \in (0, a_\dagger) \times \Omega.$$

Moreover, $p(\tau, a, x) \geq 0 \text{ for a.e. } (t, a, x) \in (0, \tau) \times (0, a_\dagger) \times \Omega.$
Proposition.

For every $\tau > 0$ there exists a constant $C_\tau > 0$ such that

$$
\|p\|_{L^\infty(\{0,\tau\} \times (0,a_\uparrow) \times \Omega)} \leq C \left(\|p_0\|_{L^\infty(\{0,a_\uparrow\} \times \Omega)} + \|u\|_{L^\infty(\{0,\tau\} \times (0,a_\uparrow) \times \Omega)} \right),
$$

Proof. Combine existing estimates on the heat kernel with characteristics method.

Proposition.

For every $\tau > a_1 + \max\{a_1, a_\uparrow - a_2\}$, there exists $k_\tau > 0$ such that the solution q of the adjoint problem satisfies

$$
\int_0^{a_\uparrow} \left(\int_0^{a_2} \int_\Omega q^2(\tau, a, x) \, dx \right)^{\frac{1}{2}} \, da \leq k_\tau \int_0^\tau \int_{a_1}^{a_2} \int_\omega |q(t, a, x)| \, dx \, da \, dt \quad (q_0 \in X).
$$
Proof of Proposition 2

Let $p_{s,I}$ and $p_{s,F}$ be two non negative steady states and let $v_{s,I}$ and $v_{s,F}$ be the corresponding steady controls. We set

$$p_{s,r} = \left(1 - \frac{r}{N}\right)p_{s,I} + \frac{r}{N}p_{s,F}, \quad v_{r,k} = \left(1 - \frac{r}{N}\right)v_{s,I} + \frac{r}{N}v_{s,F} \quad (r = 0, 1, \ldots, N)$$

where $N \in \mathbb{N}$ is large enough. Using the L^∞ estimates, we can steer $p_{s,r-1}$ to $p_{s,r}$, while preserving the positivity. Note that, like in the case of parabolic problems, the controllability time depends on the distance from $p_{s,I}$ to $p_{s,F}$.
Conclusions and remarks

• We obtained controllability results for the linear Lotka-McKendrick system with diffusion and age structuring, in sharp time and without excluding low ages.

• We obtained controllability with positivity constraints, provided that the time is large enough.

• What about nonlinear models (mortality and/or fertility depending on the total population)?

• What about models involving competing populations?

• Feedback control?