Boundary controls as the limit of internal controls: the parabolic case

F.W. Chaves-Silva

Federal University of Paraíba - Brazil

Joint work with M. C. Santos and J.-P. Puel
Internal controllability problem

For every $y_0 \in L^2(\Omega)$, any $T > 0$ and any non-empty subset $\omega \subset \Omega$, there exists

$$(y, f) \in C([0, T]; L^2(\Omega)) \times L^2(\omega \times (0, T))$$

which solves the distributed null controllability problem:

$$\begin{align*}
\frac{\partial y}{\partial t} - \Delta y &= f 1_\omega & \text{in } \Omega \times (0, T), \\
y &= 0 & \text{on } \partial \Omega \times (0, T), \\
y(x, 0) &= y_0(x), \quad y(x, T) = 0 & \text{in } \Omega.
\end{align*}$$

(D-C)

Boundary controls as the limit of internal controls
January 17th, Paris 2 / 32
Boundary controllability problem

For every $y_0 \in L^2(\Omega)$, any $T > 0$ and any non-empty subset $\Gamma_0 \subset \partial \Omega$, there is also

$$(y, g) \in C([0, T]; H^{-1}(\Omega)) \times L^2(\Gamma_0 \times (0, T)),$$

which solves the following boundary null controllability problem:

$$\begin{align*}
 y_t - \Delta y &= 0 & \text{in} & \Omega \times (0, T), \\
 y &= g1_{\Gamma_0} & \text{on} & \partial \Omega \times (0, T), \\
 y(x, 0) &= y_0(x), y(x, T) &= 0 & \text{in} & \Omega.
\end{align*}$$

(B-C)
Let $\epsilon > 0$ and let ω_ϵ be an ϵ-neighborhood of Γ_0 which shrinks to Γ_0 as $\epsilon \to 0^+$. Can we find a sequence (y_ϵ, f_ϵ), with $\text{supp } f_\epsilon \subset \omega_\epsilon$, such that the distributed null control problem (D-C) converges, in some sense, to the boundary null control problem (B-C) as $\epsilon \to 0^+$?
Question

Let $\epsilon > 0$ and let ω_{ϵ} be an ϵ-neighborhood of Γ_0 which shrinks to Γ_0 as $\epsilon \to 0^+$. Can we find a sequence $(y_{\epsilon}, f_{\epsilon})$, with $\text{supp } f_{\epsilon} \subset \omega_{\epsilon}$, such that the distributed null control problem (D-C) converges, in some sense, to the boundary null control problem (B-C) as $\epsilon \to 0^+$?
In other words...

Is it true, in some sense, that

\[y_t - \Delta y = f 1_{\omega_\epsilon} \quad \text{\(\Omega \times (0, T),\)} \]
\[y = 0 \quad \text{\(\partial \Omega \times (0, T),\)} \]
\[y(0) = y_0, \ y(T) = 0 \quad \Omega \]

\[\Downarrow_{\epsilon \to 0^+} \]

\[\hat{y}_t - \Delta \hat{y} = 0 \quad \text{\(\Omega \times (0, T),\)} \]
\[\hat{y} = g 1_{\Gamma_0} \quad \text{\(\partial \Omega \times (0, T),\)} \]
\[\hat{y}(0) = y_0, \ \hat{y}(T) = 0 \quad \Omega, \]

where \(\omega_\epsilon\) shrinks to \(\Gamma_0\)?

Warning

The limiting problem has different boundary conditions!!!!!
In other words...

Is it true, in some sense, that

\[y_t - \Delta y = f1_{\omega_\epsilon} \quad \Omega \times (0, T), \]
\[y = 0 \quad \partial\Omega \times (0, T), \]
\[y(0) = y_0, \; y(T) = 0 \quad \Omega, \]

\[\downarrow_{\epsilon \to 0^+} \]

\[\hat{y}_t - \Delta \hat{y} = 0 \quad \Omega \times (0, T), \]
\[\hat{y} = g1_{\Gamma_0} \quad \partial\Omega \times (0, T), \]
\[\hat{y}(0) = y_0, \; \hat{y}(T) = 0 \quad \Omega, \]

where \(\omega_\epsilon \) shrinks to \(\Gamma_0 \)?

Warning

The limiting problem has different boundary conditions!!!!!
What is known?

Nothing for the heat equation...
What is known?

Nothing for the heat equation...
The hyperbolic case

For the wave equation, Caroline Fabre in 1992 gave a positive answer to the previous question (under GCC!).

The key point is Caroline’s proof is the following observability inequality

Observability inequality

There exists \(C > 0 \), independent of \(\epsilon \), such that

\[
\| \phi_0 \|_{H^1_0(\Omega)}^2 + \| \phi_1 \|_{L^2(\Omega)}^2 \leq C \epsilon^{-3} \int_0^T \int_{\omega_\epsilon} |\varphi|^2 \, dx \, dt,
\]

for every solution of

\[
\begin{align*}
\varphi_{tt} - \Delta \varphi &= 0 & \text{in} & \Omega \times (0, T), \\
\varphi &= 0 & \text{on} & \partial \Omega \times (0, T), \\
\varphi(x, 0) &= \phi_0(x), \quad \varphi_t(x, 0) = \phi_1(x) & \text{in} & \Omega.
\end{align*}
\]
The hyperbolic case

For the wave equation, Caroline Fabre in 1992 gave a positive answer to the previous question (under GCC!). The key point is Caroline’s proof is the following observability inequality

Observability inequality

There exists $C > 0$, independent of ϵ, such that

$$\|\phi_0\|_{H^1_0(\Omega)}^2 + \|\phi_1\|_{L^2(\Omega)}^2 \leq C\epsilon^{-3} \int_0^T \int_{\omega_{\epsilon}} |\varphi|^2 \, dx \, dt,$$

for every solution of

$$\begin{aligned}
\varphi_{tt} - \Delta \varphi &= 0 & \text{in } \Omega \times (0, T), \\
\varphi &= 0 & \text{on } \partial \Omega \times (0, T), \\
\varphi(x, 0) &= \phi_0(x), \quad \varphi_t(x, 0) = \phi_1(x) & \text{in } \Omega.
\end{aligned}$$

(1)
We can also cite the following two papers:

A similar result for the heat equation in 1d

C. Letrouit, *From internal to pointwise control for the 1D heat equation and minimal control time*, Systems and Control Letters, 2019.

Given $T > 0$ and $x_0 \in (0, 1)$:

\[
\begin{align*}
 y_t - y_{xx} &= f_1(x_0 - \epsilon, x_0 + \epsilon) & (0, 1) \times (0, T), \\
 y(0, t) &= y(1, t) = 0 & (0, 1) \times (0, T), \\
 y(0, x) &= y_0(x), y(T) = 0 & (0, 1) \\
\end{align*}
\]

$\downarrow_{\epsilon \to 0^+}$

\[
\begin{align*}
 y_t - y_{xx} &= f(t) \delta x_0 & (0, 1) \times (0, T), \\
 y(0, t) &= y(1, t) = 0 & (0, T), \\
 y(0, x) &= y_0(x), y(T) = 0 & (0, 1). \\
\end{align*}
\]

Remark

Depending on how well x_0 is approximated by rational numbers, the heat equation may or may not be observable at x_0 in time T.
A similar result for the heat equation in 1d

C. Letrouit, *From internal to pointwise control for the 1D heat equation and minimal control time*, Systems and Control Letters, 2019.

Given $T > 0$ and $x_0 \in (0, 1)$:

$$
\begin{align*}
\dot{y}_t - y_{xx} &= f 1_{(x_0 - \epsilon, x_0 + \epsilon)}(0, 1) \times (0, T), \\
y(0, t) &= y(1, t) = 0 (0, 1) \times (0, T), \\
y(0, x) &= y_0(x), y(T) = 0 (0, 1)
\end{align*}
$$

\[\downarrow_{\epsilon \to 0^+} \text{???}\]

$$
\begin{align*}
\dot{y}_t - y_{xx} &= f(t) \delta x_0 (0, 1) \times (0, T), \\
y(0, t) &= y(1, t) = 0 (0, T), \\
y(0, x) &= y_0(x), y(T) = 0 (0, 1).
\end{align*}
$$

Remark

Depending on how well x_0 is approximated by rational numbers, the heat equation may or may not be observable at x_0 in time T.
A similar result for the heat equation in 1d

C. Letrouit, *From internal to pointwise control for the 1D heat equation and minimal control time*, Systems and Control Letters, 2019.

Given $T > 0$ and $x_0 \in (0, 1)$:

\[
\begin{align*}
 y_t - y_{xx} &= f_1(x_0 - \epsilon, x_0 + \epsilon) & (0, 1) \times (0, T), \\
 y(0, t) &= y(1, t) = 0 & (0, 1) \times (0, T), \\
 y(0, x) &= y_0(x), y(T) = 0 & (0, 1)
\end{align*}
\]

$\downarrow_{\epsilon \to 0^+}$

\[
\begin{align*}
 y_t - y_{xx} &= f(t) \delta x_0 & (0, 1) \times (0, T), \\
 y(0, t) &= y(1, t) = 0 & (0, T), \\
 y(0, x) &= y_0(x), y(T) = 0 & (0, 1).
\end{align*}
\]

Remark

Depending on how well x_0 is approximated by rational numbers, the heat equation may or may not be observable at x_0 in time T.
Our main result

Theorem (C.-S., Santos, Puel)

Let $y_0 \in L^2(\Omega)$, $T > 0$ and, for $\epsilon > 0$, let ω_ϵ be a non-empty open neighborhood of Γ_0, which converges to Γ_0 as $\epsilon \to 0^+$.

There exists a sequence $(y_\epsilon, f_\epsilon) \in C([0, T]; L^2(\Omega)) \times L^2(\omega_\epsilon \times (0, T))$ such that the problem

\[y_\epsilon t - \Delta y_\epsilon = f_\epsilon 1_{\omega_\epsilon} \quad \text{in} \quad \Omega \times (0, T), \]
\[y_\epsilon = 0 \quad \text{on} \quad \partial\Omega \times (0, T), \]
\[y_\epsilon(x, 0) = y_0(x), \quad y_\epsilon(x, T) = 0 \quad \text{in} \quad \Omega, \]

“converges” to the boundary problem

\[y_t - \Delta y = 0 \quad \text{in} \quad \Omega \times (0, T), \]
\[y = g 1_{\Gamma_0} \quad \text{on} \quad \partial\Omega \times (0, T), \]
\[y(x, 0) = y_0(x), \quad y(x, T) = 0 \quad \text{in} \quad \Omega, \]

where $(y, g) \in C([0, T]; H^{-1}(\Omega)) \times L^2(\Gamma_0 \times (0, T))$.
Let us give some ideas on the proof.
The meaning of the convergence

If z is a solution of

\[
\begin{cases}
-z_t + \Delta z = h & \text{in } \Omega \times (0, T), \\
z = 0 & \text{in } \partial \Omega \times (0, T), \\
z(x, T) = z^T & \text{in } \Omega,
\end{cases}
\]

(2)

then, a weak solution of (D-C) must satisfy

\[
\int \int_Q y_\epsilon h \, dx \, dt - \int \Omega y_0 z(0) \, dx = \int \int_{\omega_\epsilon \times (0, T)} f_\epsilon z \, dx \, dt.
\]

(3)

We say that (D-C) converges to (B-C), if

\[
\int \int_Q y_\epsilon h \, dx \, dt \to \int \int_Q y h \, dx \, dt \quad \text{and} \quad \int \int_{\omega_\epsilon \times (0, T)} f_\epsilon z \, dx \, dt \to \int_0^T \int_{\Gamma_0} g \frac{\partial z}{\partial \nu} \, dx \, dt.
\]

In fact, from (3), we get

\[
\int \int_Q y h \, dx \, dt - \int \Omega y_0 z(0) \, dx = \int_0^T \int_{\Gamma_0} g \frac{\partial z}{\partial \nu} \, dx \, dt,
\]

(4)

which is exactly the weak formulation for the (BC) problem.
The meaning of the convergence

If z is a solution of

\[
\begin{cases}
-z_t + \Delta z = h & \text{in } \Omega \times (0, T), \\
z = 0 & \text{in } \partial \Omega \times (0, T), \\
z(x, T) = z^T & \text{in } \Omega,
\end{cases}
\]

then, a weak solution of (D-C) must satisfy

\[
\iint_Q y_\epsilon h \, dx \, dt - \int_\Omega y_0 z(0) \, dx = \iint_{\omega_\epsilon \times (0, T)} f_\epsilon z \, dx \, dt.
\]

We say that (D-C) converges to (B-C), if

\[
\iint_Q y_\epsilon h \, dx \, dt \to \iint_Q y h \, dx \, dt \quad \text{and} \quad \iint_{\omega_\epsilon \times (0, T)} f_\epsilon z \, dx \, dt \to \int_0^T \int_{\Gamma_0} g \frac{\partial z}{\partial \nu} \, dx \, dt.
\]

In fact, from (3), we get

\[
\iint_Q y h \, dx \, dt - \int_\Omega y_0 z(0) \, dx = \int_0^T \int_{\Gamma_0} g \frac{\partial z}{\partial \nu} \, dx \, dt,
\]

which is exactly the weak formulation for the (BC) problem.
Main steps of the proof

- A sharp Carleman inequality for the adjoint system: optimal cost with respect to ϵ.
- Construction, in the sense of Fursikov-Imanuvilov, of an optimal pair (y_ϵ, f_ϵ) state-control.
- Obtainment of good estimates for (y_ϵ, f_ϵ) in the correct spaces.
- Proof of the convergence of one problem to the other one.
Step 1: Optimal Carleman inequality

Let

\[
\begin{align*}
\varphi_t - \Delta \varphi &= F \quad \text{in} \quad \Omega \times (0, T), \\
\varphi &= 0 \quad \text{on} \quad \partial \Omega \times (0, T), \\
\varphi(x, 0) &= \phi_0(x), \quad \text{in} \quad \Omega.
\end{align*}
\]

It is well-known that both problems (B-C) and (D-C) are solvable iff

\[
\| \varphi(0) \|^2_{L^2(\Omega)} \leq C \left(\iint_{\Gamma_0 \times (0, T)} |\frac{\partial \varphi}{\partial \nu}(x, t)|^2 \, d\sigma \, dt + \iint_{Q} |F|^2 \, dx \, dt \right)
\]

(5)

and

\[
\| \varphi(0) \|^2_{L^2(\Omega)} \leq C \left(C(\epsilon) \iint_{\omega_\epsilon \times (0, T)} |\varphi|^2 \, dx \, dt + \iint_{Q} |F|^2 \, dx \, dt \right),
\]

(6)

respectively.
Remark

As in the hyperbolic case, we must know how $C(\epsilon)$ depends on ϵ. This is the key point of the whole proof!
The observability constant

Lemma

The observability constant for the internal observability inequality has the form

$$C(\epsilon) = C\epsilon^{-3},$$

where C does not depend on ϵ.
Carleman estimates

On what follows, we consider a weight function \(\psi \in C^2(\bar{\Omega}) \) verifying

\[
|\nabla \psi(x)| \neq 0, \quad \forall x \in \bar{\Omega},
\]

\[
\frac{\partial \psi}{\partial \nu}(x) \leq 0, \quad \forall x \in \partial \Omega \setminus \Gamma_0
\]

and for a positive real number \(\lambda \):

\[
\phi(x, t) = \frac{e^{\lambda \psi(x)}}{t(T - t)}; \quad \alpha(x, t) = \frac{e^{\lambda \psi(x)} - e^{2\lambda \|\psi\|_{\infty}}}{t(T - t)}
\]
Carleman estimate

\[I(s; \varphi) := s^3 \int\int_Q e^{2s\alpha} \varphi^3 |\varphi|^2 \, dx\, dt + s \int\int_Q e^{2s\alpha} |\nabla\varphi|^2 \, dx\, dt \]

\[+ s^{-1} \int\int_Q e^{2s\alpha} \varphi^{-1}(|\varphi_t|^2 + |\Delta \varphi|^2) \, dx\, dt. \quad (7) \]

Theorem (Optimal Carleman inequality)

There exist positive constants \(C \) and \(\lambda_0 \) such that, for every \(\lambda \geq \lambda_0 \), there exists \(s_0 > 0 \) such that, for any \(s \geq s_0 \), the following estimate holds

\[I(s, \varphi) \leq C \left(\int\int_Q e^{2s\alpha} |F|^2 \, dx\, dt + \epsilon^{-3} s^6 \int\int_{\omega_\epsilon \times (0, T)} e^{2s\alpha} \varphi^6 |\varphi|^2 \, dx\, dt \right), \]

for every \(\varphi \) solution of

\[
\begin{align*}
\varphi_t - \Delta \varphi &= F \quad \text{in} \quad \Omega \times (0, T), \\
\varphi &= 0 \quad \text{on} \quad \partial\Omega \times (0, T), \\
\varphi(x, 0) &= \varphi^T(x) \quad \text{in} \quad \Omega.
\end{align*}
\]
Remark 1

If we try to find $C(\epsilon)$ by only following the original proof of Fursikov-Imanouvilov, we find that

$$C(\epsilon) = O(\epsilon^{-4})$$

Remark 2

The behavior $C(\epsilon) = O(\epsilon^{-3})$ is optimal. Indeed, taking $\varphi(x, t) = e^{-\pi^2 t} \sin(\pi x)$ we have

$$\int_0^1 |\sin(\pi x)|^2 \, dx = \frac{1}{2}$$

and

$$\int_0^T \int_0^\epsilon e^{-2\pi^2 t} |\sin(\pi x)|^2 \, dx \, dt = O(\epsilon^3).$$
Sketch of the proof

We start the proof with a boundary Carleman inequality.

Theorem

There exist positive constants C and λ_0 such that, for every $\lambda \geq \lambda_0$, there exists $s_0 > 0$ such that, for any $s \geq s_0$, the following estimate holds

$$I(s, \varphi) \leq C \left(\iint_Q e^{2s\alpha} |F|^2 \, dx \, dt + s \iint_{\Gamma_0 \times (0, T)} e^{2s\alpha} \phi \left| \frac{\partial \varphi}{\partial \nu} \right|^2 \, dt \right),$$

for every φ solution of

$$\begin{align*}
\varphi_t - \Delta \varphi &= F & \text{in} & \Omega \times (0, T), \\
\varphi &= 0 & \text{on} & \partial \Omega \times (0, T), \\
\varphi(x, 0) &= \varphi^T(x) & \text{in} & \Omega.
\end{align*}$$

Obviously, the constant C does not depend on ϵ.
Sketch of the proof

The idea now is to bound the boundary term in terms of a local term, using a suitable cutoff function. In fact, we show that

Estimate for the boundary term

\[
s \int_0^T \int_{\Gamma_0} e^{2s\alpha} \phi \left| \frac{\partial \varphi}{\partial \nu} \right|^2 \, dt \leq C \epsilon^{-3} s^5 \int_0^T \int_{\omega_{\epsilon} \times (0,T)} e^{2s\alpha} \phi^5 |\varphi|^2 \, dx \, dt + \delta I(s; \varphi),
\]

for any \(\delta > 0 \).

To prove this, we will assume that we are in 1D.
Sketch of the proof

We begin choosing a cut-off function

cut-off function

$\theta \in C^3(0, 1)$ such that $\theta = 1$ in $(0, \frac{\epsilon}{2})$ and $\theta(\epsilon) = 0$. The function θ has the property $\theta_x = O(\epsilon^{-1})$.

Figure: Cut off function
Sketch of the proof:

Multiply the equation of φ by $\theta_x e^{2s\alpha} \phi^3 \varphi$, integrating by parts several times, and performing a lot of estimates, we obtain

$$s^3 \int_0^T \int_0^\epsilon e^{2s\alpha} \phi^3 |\varphi_x(x, t)|^2 \theta_x \, dx \, dt$$

$$\leq C \left(\epsilon^{-3} s^6 \int_0^T \int_0^\epsilon e^{2s\alpha} \phi^6 |\varphi|^2 \, dx \, dt + \iint_Q e^{2s\alpha} |F|^2 \, dx \, dt \right). \quad (8)$$

and the proof is done.

Remark

The proof in the 1d case is simpler. In the multi-dimensional case, one must work with a normal coordinate system and perform a lot of boring calculations....
Step 2-3: Fursikov-Imanuvilov strategy and bounds

For each $\epsilon > 0$, we construct a pair $(\hat{y}_\epsilon, \hat{f}_\epsilon)$ solution of (D-C).

Let $P_0 := \{ w \in C^2(\overline{Q}),\ w = 0 \text{ in } \partial \Omega \times (0, T) \}$ and the symmetric, positive definite bilinear form:

$$a_\epsilon(w_1, w_2) := \int\int_Q \rho_1^2(t) \mathcal{L}^* w_1 \mathcal{L}^* w_2 \, dx \, dt + \frac{1}{\epsilon^3} \int\int_{\omega_\epsilon \times (0, T)} \rho_2^2(t) w_1 w_2 \, dx \, dt,$$

where $\mathcal{L}^* := \partial_t + \Delta$, and ρ_i is an appropriate weight.

Let $P = P(\epsilon)$ the completion of P_0 with respect to the norm associated to $a_\epsilon(\cdot, \cdot)$.
By Lax-Milgram theorem, there exists a unique $\hat{\varphi}_\epsilon \in P$ such that

$$a_\epsilon(\hat{\varphi}_\epsilon, \varphi) = \int_\Omega y_0 \varphi(0) \, dx, \quad \forall \varphi \in P.$$

Next, we show that we can take $(\hat{y}_\epsilon, \hat{f}_\epsilon) = (\rho_1 \mathcal{L}^* \hat{\varphi}_\epsilon, -\frac{\rho_2}{\epsilon^3} \hat{\varphi}_\epsilon)$ as a solution to the problem (D-C). Moreover

$$\|\rho_1 \hat{f}_\epsilon\|^2_{L^2(\omega_\epsilon \times (0,T))} \leq C \epsilon^{-3} \|y_0\|^2_{L^2(\Omega)}, \quad (9)$$

and

$$\|\rho_2 \hat{y}_\epsilon\|^2_{L^2(Q)} \leq C \|y_0\|^2_{L^2(\Omega)}, \quad (10)$$

where C does not depend on ϵ.
We prove

Proposition

We have that $\rho_3 \hat{\phi}_\epsilon \in L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega))$ with

$$\|\rho_3 \hat{\phi}_\epsilon\|^2_{L^2((0, T); H^2(\Omega) \cap H^1_0(\Omega))} \leq \|\hat{\phi}_\epsilon\|^2_P \leq C\|y_0\|^2_2,$$

where C does not depend on ϵ and $\rho_3 = \rho(t)$.

Moreover, there exists a function φ such that $\rho_3 \hat{\phi}_\epsilon \rightharpoonup \rho_3 \varphi$ weakly in $L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega))$ and $\rho_3 \gamma^{-1} \frac{\partial \varphi}{\partial \nu} \in L^2(\Sigma_0)$.
This last result allow us to prove the following:

Lemma

Let

\[L_\varepsilon : L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega)) \to \mathbb{R} \]

\[\nu \to \frac{1}{\varepsilon^3} \int \int_{\omega_\varepsilon \times (0, T)} \rho_3(t) \hat{\varphi}_\varepsilon(x, t) \nu(x, t) \, dxdt. \]

Then, \(L_\varepsilon \) are bounded in \(L^2(0, T; (H^2(\Omega) \cap H^1_0(\Omega))') \) and converge (up to a subsequence) for the weak topology of this space to

\[L : L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega)) \to \mathbb{R} \]

\[\nu \to \frac{1}{3} \int \int_{\Gamma_0 \times (0, T)} \rho_3(t) \frac{\partial \varphi}{\partial \nu} (y, t) \frac{\partial \nu}{\partial \nu} (y, t) \, dydt. \]
This last result allows us to prove the following:

Lemma

Let

\[L_\epsilon : L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega)) \to \mathbb{R} \]

\[v \to \frac{1}{\epsilon^3} \iint_{\omega \times (0, T)} \rho_3(t) \hat{\varphi}_\epsilon(x, t)v(x, t) \, dx \, dt. \]

Then, \(L_\epsilon \) are bounded in \(L^2(0, T; (H^2(\Omega) \cap H^1_0(\Omega))') \) and converge (up to a subsequence) for the weak topology of this space to

\[L : L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega)) \to \mathbb{R} \]

\[v \to \frac{1}{3} \iiint_{\Gamma_0 \times (0, T)} \rho_3(t) \frac{\partial \varphi}{\partial \nu}(y, t) \frac{\partial v}{\partial \nu}(y, t) \, dy \, dt. \]
Step 4: Convergence of one problem to the other

Homework for the weekend!!!
Step 4: Convergence of one problem to the other

Homework for the weekend!!!
Ongoing works

- Systems of equations

\[
\begin{align*}
\begin{cases}
 y_1^t - \Delta y_1 &= ay^2 \\
 y_2^t - \Delta y_2 &= f_\epsilon 1_{\omega_\epsilon} \\
 y_1 &= y_2 = 0 \\
 y_1(0) &= y_1^0, \quad y_2(0) &= y_2^0
\end{cases}
&\quad\text{Q,} \\
\begin{cases}
 y_1^t - \Delta y_1 &= ay^2 \\
 y_2^t - \Delta y_2 &= 0 \\
 y_1 &= 0 \\
 y_2(0) &= g_1 \Gamma_0
\end{cases}
&\quad\text{Q,} \\
\begin{cases}
 y_1^t - \Delta y_1 &= ay^2 \\
 y_2^t - \Delta y_2 &= 0 \\
 y_1 &= 0, \quad y_2 = g_1 \Gamma_0 \\
 y_1(0) &= y_1^0, \quad y_2(0) &= y_2^0
\end{cases}
&\quad\text{Q,} \\
\begin{cases}
 y_1^t - \Delta y_1 &= ay^2 \\
 y_2^t - \Delta y_2 &= 0 \\
 y_1 &= 0, \quad y_2 = g_1 \Gamma_0 \\
 y_1(0) &= y_1^0, \quad y_2(0) &= y_2^0
\end{cases}
&\quad\text{Q,} \\
\begin{cases}
 y_1^t - \Delta y_1 &= ay^2 \\
 y_2^t - \Delta y_2 &= 0 \\
 y_1 &= 0, \quad y_2 = g_1 \Gamma_0 \\
 y_1(0) &= y_1^0, \quad y_2(0) &= y_2^0
\end{cases}
&\quad\text{Q,}
\end{align*}
\]

Minimal time of controllability?
Ongoing works

- Stokes equation

There exists \((y^\varepsilon, f_\varepsilon 1_{\omega_\varepsilon})\) and \((y, g 1_{\Gamma_0})\)

\[
\begin{align*}
\begin{cases}
y_t^\varepsilon - \Delta y^\varepsilon + \nabla \pi = f_\varepsilon 1_{\omega_\varepsilon} & \text{Q,} \\
y^\varepsilon = 0 & \text{\Sigma,} \\
y^\varepsilon(0) = y_0, y^\varepsilon(T) = 0 & \text{\Omega.}
\end{cases} \quad \Rightarrow \quad \begin{cases}
y_t - \Delta y + \nabla \tilde{\pi} = 0 & \text{Q,} \\
y = g 1_{\Gamma_0} & \text{\Sigma,} \\
y(0) = y_0, y(T) = 0 & \text{\Omega.}
\end{cases}
\end{align*}
\]

where \(\omega_\varepsilon\) shrinks to \(\Gamma_0\)?

Is it possible to eliminate controls?
Other type of equations

- KdV? Critical length?
- Kuramoto Sivashinsky? Dirichelet control and Neumann boundary controls?
Merci!!