A sub-Riemannian modular approach for
diffeomorphic deformations.

Barbara Gris

Advisors: Alain Trouvé (CMLA) and Stanley Durrleman (ICM)

June 10, 2016
1 Introduction

2 Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on O
 - Study shape variability

3 Example: rigid and non-linear deformations

4 Conclusion
Sommaire

1 Introduction

2 Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on O
 - Study shape variability

3 Example : rigid and non-linear deformations

4 Conclusion
Introduction
Computational anatomy

Examples of data
Introduction
Shape space

Definition (S. Arguillère)

\[O \] is a \(C^k \)-shape space of order \(\ell \) on \(\mathbb{R}^d \) \((d, \ell, k \in \mathbb{N}^*)\) if:
1. it is a manifold of finite dimension
2. \(\text{Diff}^\ell_0(\mathbb{R}^d) \subset \text{Id} + C^\ell_0(\mathbb{R}^d) \) continuously acts on \(O \)
3. For all \(o \in O \), \(\phi \in \text{Diff}^\ell_0(\mathbb{R}^d) \), \(\phi \cdot o \) is differentiable at \(\text{Id}_{\mathbb{R}^d} \), giving the infinitesimal action \(\xi : O \times C^\ell_0(\mathbb{R}^d) \to T_o O \).

Example of landmarks:
\[O = \{ (x_1, \cdots, x_N) \in (\mathbb{R}^d)^N \mid i \neq j \Rightarrow x_i \neq x_j \} \]
Definition (S. Arguillère)

O is a C^k-shape space of order ℓ on \mathbb{R}^d ($d, \ell, k \in \mathbb{N}^*$) if:

1. it is a manifold of finite dimension
2. $\text{Diff}^{\ell,0}(\mathbb{R}^d) \subset Id + C^{\ell,0}(\mathbb{R}^d)$ continuously acts on O
3. $\forall o \in O, \phi \in \text{Diff}^{\ell,0}(\mathbb{R}^d) \mapsto \phi \cdot o$ is differentiable at $Id_{\mathbb{R}^d}$, giving the infinitesimal action ξ:

$O \times C^{\ell,0}(\mathbb{R}^d) \mapsto T_o O$.

Example of landmarks: $O = \{(x_1, \ldots, x_N) \in (\mathbb{R}^d)^N | i \neq j = \Rightarrow x_i \neq x_j\}$

$\xi_o(v) = (v(x_1), \ldots, v(x_N))$
Definition (S. Arguillère)

\mathcal{O} is a C^k-shape space of order ℓ on \mathbb{R}^d ($d, \ell, k \in \mathbb{N}^*$) if:

1. it is a manifold of finite dimension
Definition (S. Arguillère)

\(\mathcal{O} \) is a \(\mathcal{C}^k \)-shape space of order \(\ell \) on \(\mathbb{R}^d \) (\(d, \ell, k \in \mathbb{N}^* \)) if:

1. it is a manifold of finite dimension
2. \(\text{Diff}^\ell_0(\mathbb{R}^d) \subset Id + \mathcal{C}^{\ell+k}_0(\mathbb{R}^d) \) continuously acts on \(\mathcal{O} \)
Definition (S. Arguillère)

\mathcal{O} is a C^k-shape space of order ℓ on \mathbb{R}^d ($d, \ell, k \in \mathbb{N}^*$) if:

1. it is a manifold of finite dimension
2. $\text{Diff}^\ell_0(\mathbb{R}^d) \subset \text{Id} + C_0^{\ell+k}(\mathbb{R}^d)$ continuously acts on \mathcal{O}
3. $\forall o \in \mathcal{O}, \phi \in \text{Diff}^\ell_0(\mathbb{R}^d) \mapsto \phi \cdot o$ is differentiable at $\text{Id}_{\mathbb{R}^d}$, giving the infinitesimal action $\xi: \mathcal{O} \times C_0^\ell(\mathbb{R}^d) \mapsto T_o \mathcal{O}$.
Shape space

Definition (S. Arguillère)

\mathcal{O} is a C^k-shape space of order ℓ on \mathbb{R}^d ($d, \ell, k \in \mathbb{N}^*$) if:

1. it is a manifold of finite dimension
2. $\text{Diff}^\ell_0(\mathbb{R}^d) \subset Id + C^\ell_0(\mathbb{R}^d)$ continuously acts on \mathcal{O}
3. $\forall o \in \mathcal{O}, \phi \in \text{Diff}^\ell_0(\mathbb{R}^d) \mapsto \phi \cdot o$ is differentiable at $Id_{\mathbb{R}^d}$, giving the infinitesimal action $\xi : \mathcal{O} \times C^\ell_0(\mathbb{R}^d) \mapsto T_o \mathcal{O}$.

Example of landmarks:

$\mathcal{O} = \{(x_1, \cdots, x_N) \in (\mathbb{R}^d)^N \mid i \neq j \implies x_i \neq x_j\}$
Introduction

Shape space

Definition (S. Arguillère)

\(\mathcal{O} \) is a **\(C^k \)-shape space of order \(\ell \)** on \(\mathbb{R}^d \) \((d, \ell, k \in \mathbb{N}^*)\) if :

1. it is a manifold of finite dimension
2. \(\text{Diff}_0^\ell(\mathbb{R}^d) \subset \text{Id} + \mathcal{C}_0^{\ell+k}(\mathbb{R}^d) \) continuously acts on \(\mathcal{O} \)
3. \(\forall o \in \mathcal{O}, \ \phi \in \text{Diff}_0^\ell(\mathbb{R}^d) \mapsto \phi \cdot o \) is differentiable at \(\text{Id}_{\mathbb{R}^d} \), giving the **infinitesimal action** \(\xi : \mathcal{O} \times \mathcal{C}_0^\ell(\mathbb{R}^d) \mapsto T_o \mathcal{O} \).

Example of landmarks :

\[\mathcal{O} = \{(x_1, \cdots, x_N) \in (\mathbb{R}^d)^N \mid i \neq j \implies x_i \neq x_j\} \]

\[\text{if } o = (x_1, \cdots, x_N) \in \mathcal{O}, \ \xi_o(v) = \left(v(x_1), \cdots, v(x_N)\right) \]
Introduction
Diffeomorphic differences

D’Arcy Thompson (On Growth and Form, 1917)
For $v \in L^1([0,1], C^1_0(\mathbb{R}^d))$, we set φ^v the flow of v:

\[
\begin{align*}
\dot{\varphi}^v(t) &= v(t) \circ \varphi^v(t) \\
\varphi^v(0) &= \text{Id}
\end{align*}
\]
For $v \in L^1([0, 1], C^1_0(\mathbb{R}^d))$, we set φ^v the flow of v:

\[
\begin{align*}
\dot{\varphi}^v(t) &= v(t) \circ \varphi^v(t) \\
\varphi^v(0) &= \text{Id}
\end{align*}
\]

Proposition (S. Arguillère)

Let $v \in L^1([0, 1], C^0_0(\mathbb{R}^d))$, $a \in \mathcal{O}$. Then $o : t \in [0, 1] \mapsto o(t) = \varphi^v(t) \cdot a$
For $v \in L^1([0, 1], C^1_0(\mathbb{R}^d))$, we set φ^v the flow of v:

\[
\begin{align*}
\dot{\varphi}^v(t) &= v(t) \circ \varphi^v(t) \\
\varphi^v(0) &= \text{Id}
\end{align*}
\]

Proposition (S. Arguillère)

Let $v \in L^1([0, 1], C^1_0(\mathbb{R}^d))$, $a \in \mathcal{O}$. Then $o : t \in [0, 1] \mapsto o(t) = \varphi^v(t) \cdot a$ satisfies $\dot{o} = \xi_o(v)$ a.e..
Figure: Source: *Diffeomorphometry and geodesic positioning systems for human anatomy*, Miller et al, Technology 2014.

- **LDDMM** [M. I. Miller, L. Younes, and A. Trouvé. Diffeomorphometry and geodesic positioning systems for human anatomy, 2014]

- **Higher-order momentum** [S. Sommer M. Nielsen, F. Lauze, and X. Pennec. Higher-order momentum distributions and locally affine lddmm registration. SIAM Journal on Imaging Sciences, 2013]

Parametric models to model non linear patterns:

- **Poly-affine** [C. Seiler, X. Pennec, and M. Reyes. Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Medical image analysis, 2012]
Sommaire

1 Introduction

2 Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on \mathcal{O}
 - Study shape variability

3 Example : rigid and non-linear deformations

4 Conclusion
A deformation module can generate vector fields:
A deformation module can generate vector fields:
- Of a particular type
A deformation module can generate vector fields:

- Of a particular type
- Parametrized by a geometrical component and a control variable
Introduction

2 Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on \(\mathcal{O} \)
 - Study shape variability

3 Example: rigid and non-linear deformations

4 Conclusion
Deformation modules
Definition and first examples

\[M = (O, H, \zeta, \xi, c) \]
Deformation modules
Definition and first examples

\[M = (\mathcal{O}, H, \zeta, \xi, c) \]
Deformation modules
Definition and first examples

\[M = (\mathcal{O}, H, \zeta, \xi, c) \]
Deformation modules
Definition and first examples

\[M = (\mathcal{O}, H, \zeta, \xi, c) \]

Diagram:
- Controls: \(H \)
- Geometrical descriptors: \(\mathcal{O} \)
- Infinitesimal action: \(\xi \)
- Cost: \(c \)
- Field generator: \(\zeta \)
- Space of smooth functions: \(C^\ell_0(\mathbb{R}^d) \)
Deformation modules
Definition and first examples

\[M = (\mathcal{O}, H, \zeta, \xi, c) \]
Deformation modules
Definition and first examples

\[M = (\mathcal{O}, H, \zeta, \xi, c) \]
Deformation modules
Definition and first examples

\[M = (\mathcal{O}, H, \zeta, \xi, c) \]
Deformation modules
Definition and first examples: local scaling of scale σ

Example of generated vector field
Deformation modules
Definition and first examples: local scaling of scale σ

Diagram:
- \mathbb{R} (Controls)
- \mathbb{R}^2 (Geometrical descriptors)
- $\nu(\partial)$ (Infinitesimal action)
- \mathbb{R} (Field generator)
- $C^\ell_0(\mathbb{R}^2)$
- h^2 (Cost)

Arrows indicate the flow of information or actions between these elements.
Deformation modules
Definition and first examples: local translation of scale σ

Example of generated vector field
Deformation modules
Definition and first examples: local translation of scale σ
Deformation modules

- Constraints on the deformation model
Deformation modules

- Constraints on the deformation model
- More complicated constraints?
Deformation modules

- Constraints on the deformation model
- More complicated constraints?
 → Combine deformation modules
Deformation modules

Combination

\[\mathbb{R}^+ \]

\[H_1 \]

\[O_1 \times H_1 \]

\[\xi^1 \text{ infinitesimal action} \]

\[T O_1 \]

\[\zeta^1 \text{ cost} \]

\[c_1 \]

\[C_0^\ell(\mathbb{R}^d) \]

\[\mathbb{R}^+ \]

\[H_2 \]

\[O_2 \times H_2 \]

\[\xi^2 \text{ infinitesimal action} \]

\[T O_2 \]

\[\zeta^2 \text{ cost} \]

\[c_2 \]

\[C_0^\ell(\mathbb{R}^d) \]

\[\mathbb{R}^+ \]

\[H_3 \]

\[O_3 \times H_3 \]

\[\xi^3 \text{ infinitesimal action} \]

\[T O_3 \]

\[\zeta^3 \text{ cost} \]

\[c_3 \]

\[C_0^\ell(\mathbb{R}^d) \]
Deformation modules

Combination

\[C(M^l, l = 1 \cdots L) \]

\[\mathbb{R}^+ \]

\[H_1 \times H_2 \times H_3 \]

\[O_1 \times O_2 \times O_3 \times H_1 \times H_2 \times H_3 \]

\[\xi_o(v) = (\xi_{o1}^1(v), \xi_{o2}^2(v), \xi_{o3}^3(v)) \]

\[T\mathcal{O}_1 \times T\mathcal{O}_2 \times T\mathcal{O}_3 \]

\[\zeta_o(h) = \sum_i \zeta_{oi}^i(h_i) \]
1. Introduction

2. Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on \mathcal{O}
 - Study shape variability

3. Example: rigid and non-linear deformations

4. Conclusion
Definition

Let $M = (\mathcal{O}, H, \zeta, \xi, c)$ be a C^k-deformation module of order ℓ. We say that M satisfies the **Uniform Embedding Condition (UEC)** if there exists a Hilbert space of vector fields V continuously embedded in $C^{\ell+k}_0(\mathbb{R}^d)$ and a constant $C > 0$ such that for all $o \in \mathcal{O}$ and for all $h \in H$, $\zeta_o(h) \in V$ and

$$|\zeta_o(h)|_V^2 \leq Cc_o(h)$$
Modular large deformations
Uniform Embedding Condition

Definition

Let $M = (\mathcal{O}, H, \zeta, \xi, c)$ be a C^k-deformation module of order ℓ. We say that M satisfies the **Uniform Embedding Condition (UEC)** if there exists a Hilbert space of vector fields V continuously embedded in $C^{\ell+k}_0(\mathbb{R}^d)$ and a constant $C > 0$ such that for all $o \in \mathcal{O}$ and for all $h \in H$, $\zeta_o(h) \in V$ and

$$|\zeta_o(h)|_V^2 \leq Cc_o(h)$$

Proposition

If M^l, $l = 1 \cdots L$, are C^k-deformation modules of order ℓ that satisfy UEC, then $\mathcal{C}(M^l, l = 1 \cdots L)$ satisfies UEC.
Modular large deformations
A deformation module

\[M = (\mathcal{O}, H, \zeta, \xi, c) \]
Modular large deformations
From a deformation module to a deformation model

Definition (Finite energy controled paths on \mathcal{O})

We denote Ω the set of measurable curves $t \mapsto (o_t, h_t) \in \mathcal{O} \times H$ such that:

$$\text{Energy } E(o_t, h_t) = \int_0^1 c_{o_t}(h_t) \, dt < \infty$$

where $v_t = \gamma_{o_t}(h_t) \in \gamma_{o_t}(H)$.
Modular large deformations
From a deformation module to a deformation model

Definition (Finite energy controlled paths on \mathcal{O})

We denote Ω the set of measurable curves $t \mapsto (o_t, h_t) \in \mathcal{O} \times H$ such that:

- Energy $E(o, h) = \int_0^1 c_{o_t}(h_t) dt < \infty$
Definition (Finite energy controled paths on \mathcal{O})

We denote Ω the set of measurable curves $t \mapsto (o_t, h_t) \in \mathcal{O} \times H$ such that:

- Energy $E(o, h) = \int_0^1 c_{o_t}(h_t) dt < \infty$
- $\dot{o}_t = \xi_{o_t}(v_t)$ where $v_t = \zeta_{o_t}(h_t) \in \zeta_{o_t}(H)$
Modular large deformations
From a deformation module to a deformation model

Definition (Finite energy controlled paths on \mathcal{O})

We denote Ω the set of measurable curves $t \mapsto (o_t, h_t) \in \mathcal{O} \times H$ such that:
- Energy $E(o, h) = \int_0^1 c_{o_t}(h_t) dt < \infty$
- $\dot{o}_t = \xi_{o_t}(v_t)$ where $v_t = \zeta_{o_t}(h_t) \in \zeta_{o_t}(H)$

Proposition (Modular large deformations)

We suppose M satisfies UEC. If $(o, h) \in \Omega$ and $v = \zeta_o(h)$, then flow φ^v exists and $o_{t=1} = \varphi^v_{t=1} \cdot o_{t=0}$.
Modular large deformations
An Example
Modular large deformations
Diffeomorphic differences

D’Arcy Thompson (On Growth and Form, 1917)
Sommaire

1 Introduction

2 Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on \mathcal{O}
 - Study shape variability

3 Example : rigid and non-linear deformations

4 Conclusion
Sub-Riemannian structure on \mathcal{O}

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O}.
Sub-Riemannian structure on \mathcal{O}

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O} and

$$\text{Dist}(a, b)^2 = \inf \{ \int_0^1 c_o(h) \mid h \in L^2([0, 1], H), \dot{o} = \rho_o(h), \quad o_{t=0} = a, o_{t=1} = b \}$$
Sub-Riemannian structure on \mathcal{O}

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O} and

$$\text{Dist}(a, b)^2 = \inf \left\{ \int_0^1 c_o(h) \mid h \in L^2([0, 1], H), \dot{o} = \rho_o(h), o_{t=0} = a, o_{t=1} = b \right\}$$

Theorem

If $\text{Dist}(a, b) < \infty$ the energy E, there exists $(o, h) \in \Omega$ such that $o_{t=0} = a, o_{t=1} = b$ and $\text{Dist}(a, b) = \sqrt{\int_0^1 c_o(h)}$.
Sommaire

1 Introduction

2 Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on O
 - Study shape variability

3 Example : rigid and non-linear deformations

4 Conclusion
Study shape variability

Atlas problem

\[E(S, (v_k), (T_k)) = \sum_{k} \text{Dist}(S, \phi_{v_k t=1} \cdot S) + \frac{1}{\sigma^2} \mu_{(\phi_{v_k t=1} \cdot S, T_k)} \]
Study shape variability

Atlas problem
Study shape variability

Atlas problem

\[E(S, (v^k)_k, (T_k)_k) = \sum_k \text{Dist}(S, \varphi_{t=1}^v \cdot S)^2 + \frac{1}{\sigma^2} \mu(\varphi_{t=1}^v \cdot S, T_k) \]
Goal: Study $T_1, \cdots T_N \in \mathcal{O}$
Goal: Study $T_1, \ldots T_N \in O$

$$\text{Dist}(a, b)^2 = \inf \left\{ \int_0^1 c_o(h) \mid h \in L^2([0, 1], H), \
\dot{o} = \rho_o(h), o_{t=0} = a, o_{t=1} = b \right\}$$
Goal: Study $T_1, \cdots, T_N \in \mathcal{O}$

\[
\text{Dist}(a, b)^2 = \inf \left\{ \int_0^1 c_0(h) \mid h \in L^2([0, 1], H), \dot{o} = \rho_0(h), o_{t=0} = a, o_{t=1} = b \right\}
\]

Minimize:

\[
E(S, (h^k)_k, (T_k)_k) = \sum_k \int_0^1 c_{o^k}(h^k) + \frac{1}{\sigma^2} \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot S, T_k)
\]
Study shape variability
Atlas problem

Goal: Study $T_1, \cdots, T_N \in \mathcal{O}$

$$\text{Dist}(a, b)^2 = \inf \left\{ \int_0^1 c_\circ(h) \mid h \in L^2([0, 1], H), \dot{o} = \rho_o(h), o_{t=0} = a, o_{t=1} = b \right\}$$

Minimize:

$$E(S, (h^k)_k, (T_k)_k) = \sum_k \int_0^1 c_{\circ k}(h^k) + \frac{1}{\sigma^2} \mu(\varphi_{t=1}^{\zeta_{\circ k}(h^k)} \cdot S, T_k)$$

with $o_{t=0}^k = S$, $\dot{o}_t^k = \xi_{\circ k} \circ \zeta_{\circ k}(h^k)$.
Goal:
Goal:

- Study $T_1, \ldots, T_N \in \mathcal{F}$
Study shape variability
Atlas problem in practice

Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$
Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

We build:
Goal:
- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module
 $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:
- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = $ Silent deformation module induced by \mathcal{F}
Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module

 $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = \text{Silent deformation module induced by } \mathcal{F}: \zeta^2 = 0$
Study shape variability
Atlas problem in practice

Goal:

- Study $T_1, \cdots T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module
 $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = \text{Silent deformation module induced by} \mathcal{F}: \zeta^2 = 0, \xi^2 = \xi_\mathcal{F}$
Goal:

- Study $T_1, \cdots T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = \text{Silent deformation module induced by } \mathcal{F}: \zeta^2 = 0, \xi^2 = \xi_{\mathcal{F}}, c^2 = 0$
Study shape variability
Atlas problem in practice

Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = \text{Silent deformation module induced by } \mathcal{F}: \zeta^2 = 0, \xi^2 = \xi_\mathcal{F}, c^2 = 0$
- $M = C(M^1, M^2) = (O^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c) :$
Goal:

- Study \(T_1, \cdots, T_N \in \mathcal{F} \)
- Thanks to a user-defined deformation module
 \[M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1) \]

We build :

- \[M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = \text{Silent deformation module induced by} \]
 \(\mathcal{F} : \zeta^2 = 0, \xi^2 = \xi_\mathcal{F}, c^2 = 0 \)
- \[M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c) : \]
 \[\zeta_o(h) = \zeta^{1}_{h^1}(o^1) + \zeta^{2}_{h^2}(o^2) \]
Study shape variability
Atlas problem in practice

Goal:
- Study $T_1, \ldots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:
- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = \text{Silent deformation module induced by } \mathcal{F}$: $\zeta^2 = 0, \xi^2 = \xi_{\mathcal{F}}, c^2 = 0$
- $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:
 - $\zeta_o(h) = \zeta_{h^1}(o^1) + \zeta_{h^2}(o^2) = \zeta_{h^1}(o^1), \xi_o(v) = (\xi_{h^1}o_1(v), \xi_{h^2}f(v)),$
Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = $ Silent deformation module induced by \mathcal{F}: $\zeta^2 = 0$, $\xi^2 = \xi_F$, $c^2 = 0$
- $M = C(M^1, M^2) = (O^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:
 - $\zeta_o(h) = \zeta_{h^1}(o^1) + \zeta_{h^2}(o^2) = \zeta_{h^1}(o^1)$,
 - $\xi_o(v) = (\xi_{o^1}(v), \xi_{f^2}(v))$,
Study shape variability
Atlas problem in practice

Goal:
- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:
- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F}: $\zeta^2 = 0, \xi^2 = \xi_\mathcal{F}, c^2 = 0$
- $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:
 - $\zeta_\circ(h) = \zeta_{h^1}^1(\circ^1) + \zeta_{h^2}^2(\circ^2) = \zeta_{h^1}^1(\circ^1)$,
 - $\xi_\circ(v) = (\xi_{o1}^1(v), \xi_f^2(v))$,
 - $\rho_\circ(h) = \xi_\circ \circ \zeta_\circ(h) = (\xi_{o1}^1 \circ \zeta_{o1}^1(h^1), \xi_f^2 \circ \zeta_{o1}^1(h^1))$,

Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = $ Silent deformation module induced by \mathcal{F}: $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$
- $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c):$
 - $\zeta_o(h) = \zeta^1_{h^1}(o^1) + \zeta^2_{h^2}(o^2) = \zeta^1_{h^1}(o^1)$,
 - $\xi_o(v) = (\xi^1_{o^1}(v), \xi^2_{f}(v))$,
 - $\rho_o(h) = \xi_o \circ \zeta_o(h) = (\xi^1_{o^1} \circ \zeta^1_{o^1}(h^1), \xi^2_{f} \circ \zeta^1_{o^1}(h^1))$,
 - $c_o(h) = c^1_{h^1}(o^1) + c^2_{h^2}(o^2)$
Study shape variability
Atlas problem in practice

Goal:
- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:
- $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2) = \text{Silent deformation module induced by } \mathcal{F}: \zeta^2 = 0, \xi^2 = \xi_{\mathcal{F}}, c^2 = 0$
- $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:
 - $\zeta_0(h) = \zeta^1_{h^1}(o^1) + \zeta^2_{h^2}(o^2) = \zeta^1_{h^1}(o^1)$,
 - $\xi_0(v) = (\xi^1_{o^1}(v), \xi^2_{f}(v))$,
 - $\rho_0(h) = \xi_0 \circ \zeta_0(h) = (\xi^1_{o^1} \circ \zeta^1_{o^1}(h^1) , \xi^2_{f} \circ \zeta^1_{o^1}(h^1))$,
 - $c_0(h) = c^1_{h^1}(o^1) + c^2_{h^2}(o^2) = c^1_{h^1}(o^1)$.
Distance on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$:

$$D(a, b)^2 = \inf \{ \int_0^1 c_0(h) \mid \dot{o} = \xi_o \circ \zeta_0(h), o_{t=0} = a, o_{t=1} = b \}$$
Study shape variability
Atlas problem in practice

- Distance on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$:

 $D(a, b)^2 = \inf\{\int_0^1 c_0(h) \mid \dot{o} = \xi_o \circ \zeta_o(h), o_{t=0} = a, o_{t=1} = b\}$

- $E\left(o_{\text{temp}}, (h^k)_k, (T_k)_k\right) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\xi_{o^k}(h^k)} \cdot S, T_k)$
Study shape variability
Atlas problem in practice

- Distance on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$:
 \[
 D(a, b)^2 = \inf \{ \int_0^1 c_o(h) \mid \dot{o} = \xi_o \circ \zeta_o(h), o_{t=0} = a, o_{t=1} = b \}
 \]

- \[
 E\left(o_{\text{temp}}, (h^k)_k, (T_k)_k \right) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot S, T_k)
 \]
 avec $o_{\text{temp}} = (o_{\text{temp}}^1, S)$
Study shape variability
Atlas problem in practice

- Distance on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$:
 \[
 D(a, b)^2 = \inf \{ \int_0^1 c_o(h) \mid \dot{o} = \xi_o \circ \zeta_o(h), o_{t=0} = a, o_{t=1} = b \}
 \]

- \[
 E\left(o_{\text{temp}}, (h^k)_k, (T_k)_k \right) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot S, T_k)
 \]

avec $o_{\text{temp}} = (o_{\text{temp}}^1, S) = o_{t=0}^k$
Study shape variability
Atlas problem in practice

- Distance on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$:
 \[
 D(a, b)^2 = \inf \{ \int_0^1 c_o(h) \mid \dot{o} = \xi_o \circ \zeta_o(h), o_{t=0} = a, o_{t=1} = b \}
 \]

- \[
 E\left(o_{temp}, (h_k)^k, (T_k)^k \right) = \sum_k \int_0^1 c_{o_k}(h_k) + \mu(\varphi_{t=1}^{\zeta_{o_k}}(h_k) \cdot S, T_k)
 \]

avec $o_{temp} = (o_{temp}^1, S) = o_{t=0}^k, \dot{o}_t^k = \xi_{o_k} \circ \zeta_{o_k}(h_k)$.
If \((h^k)_k \in L^1([0, 1], H)^N\) minimizes \((h^k)_k \mapsto E\left(o_{\text{temp}}, (h^k)_k, (T_k)_k\right)\),
If \((h^k)_k \in L^1([0, 1], H)^N\) minimizes \((h^k)_k \mapsto E\left(o_{\text{temp}}, (h^k)_k, (T_k)_k\right)\), there exists, for each \(k\), \(\eta^k : t \in [0, 1] \mapsto \eta_t \in T^*_p o^k_{r\O}\)
If \((h^k)_k \in L^1([0, 1], H)^N\) minimizes \((h^k)_k \mapsto E\left(o_{\text{temp}}, (h^k)_k, (T_k)_k\right)\), there exists, for each \(k\), \(\eta^k : t \in [0, 1] \mapsto \eta_t \in T_{o^k_t}^* O\) such that, with

\[
\mathcal{H} : (o, \eta, h) \in T^* O \times H \mapsto (\eta|\xi_o \circ \zeta_o(h)) - \frac{1}{2} c_o(h)
\]

the Hamiltonian of the system,
If \((h^k)_k \in L^1([0, 1], H)^N\) minimizes \((h^k)_k \mapsto E\left(o_{\text{temp}}, (h^k)_k, (T_k)_k\right)\), there exists, for each \(k\), \(\eta^k : t \in [0, 1] \mapsto \eta_t \in T_{o_t^k}^* \mathcal{O}\) such that, with

\[
\mathcal{H} : (o, \eta, h) \in T^* \mathcal{O} \times H \mapsto (\eta|_{\xi_o \circ \zeta_o(h)}) - \frac{1}{2} c_o(h)
\]

the Hamiltonian of the system, \(\eta^k_{t=1} = -\partial_o \mu(o^k_{t=1}, T_k)\) and

\[
\begin{cases}
\frac{d o^k}{dt} = \xi_{o^k} \circ \zeta_{o^k}(h^k) \\
\frac{d \eta^k}{dt} = -\frac{\partial \mathcal{H}}{\partial o}(o^k, \eta^k, h^k) \\
0 = \frac{\partial \mathcal{H}}{\partial h}(o^k, \eta^k, h^k)
\end{cases}
\]
Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$
Goal:

- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

$$E\left(o_{temp}, (\eta^k_{t=0})_k, (T_k)_k\right) = \sum_k c_{o^k} (h_{o^k, \eta^k}) + \mu (\varphi^k_{t=1} \cdot S, T_k)$$
Goal:
- Study $T_1, \cdots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

$$E\left(o_{\text{temp}}, (\eta_{t=0}^k)_{k}, (T_k)_{k}\right) = \sum_k c_o^k(h_{o}^k, \eta^k) + \mu(\varphi_{t=1}^o, \eta^k \cdot S, T_k)$$

where $o_{\text{temp}} = (o_{\text{temp}}^1, S), \eta_{t=0}^k = (\eta^{k,1}, \eta^{k,F})$
Goal:

- Study $T_1, \ldots, T_N \in \mathcal{F}$
- Thanks to a user-defined deformation module

 $M^1 = (O^1, H^1, \zeta^1, \xi^1, c^1)$

$$E\left(o_{\text{temp}}, (\eta^k_{t=0})_k, (T_k)_k\right) = \sum_k c_{o^k}(h^{o^k_k, \eta^k_k}) + \mu(\varphi^{o^k_k, \eta^k_k}_{t=1} \cdot S, T_k)$$

where $o_{\text{temp}} = (o^1_{\text{temp}}, S)$, $\eta^k_{t=0} = (\eta^{k, 1}, \eta^{k, F})$

- Gradient descent on $(o_{\text{temp}}, (\eta^k_{t=0})_k)$
1. Introduction

2. Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on \(\mathcal{O} \)
 - Study shape variability

3. Example: rigid and non-linear deformations

4. Conclusion
Example: rigid and non-linear deformations

Targets
Example: rigid and non-linear deformations

With previous rigid registration
Example: rigid and non-linear deformations
Before optimisation
Example: rigid and non-linear deformations

After optimisation
Example: rigid and non-linear deformations

Example of trajectory
Example: rigid and non-linear deformations

Example of trajectory
Sommaire

1 Introduction

2 Deformation modules
 - Definition
 - Modular large deformations
 - Sub-Riemannian structure on \mathcal{O}
 - Study shape variability

3 Example: rigid and non-linear deformations

4 Conclusion
We have presented a coherent mathematical framework to build modular large deformations. We showed how easily incorporating constraints in a deformation model and merging different constraints in a global one.
Conclusion

We have presented a coherent mathematical framework
We have presented a coherent mathematical framework to build modular large deformations.
Conclusion

We have presented a coherent mathematical framework to build modular large deformations. We showed how easily incorporating constraints in a deformation model
Conclusion

We have presented a coherent mathematical framework to build modular large deformations. We showed how easily incorporating constraints in a deformation model and merging different constraints in a global one.
We have presented a coherent mathematical framework to build modular large deformations. We showed how easily incorporating constraints in a deformation model and merging different constraints in a global one.

[B. Gris, S. Durrleman, A. Trouvé. A sub-Riemannian modular framework for diffeomorphism based analysis of shape ensembles, 2016]
Sub-space of "meaningful" η ?
Issues

- Sub-space of "meaningful" \(\eta \) ?
- Cancelling one module ?
Thank you for your attention!