SOME RESULTS ON σ-CORES AND \mathcal{G}-CORES OF EXACT GAMES FOR LOCALLY COMPACT σ-COMPACT TOPOLOGICAL SPACES

Alain Chateauneuf, Caroline Ventura

1CES, CERMSEM-Université de Paris I, 106-112 boulevard de l’Hôpital, 75647 Paris Cedex 13, France. E-mail address : chateauneuf@univ-paris1.fr, caroline.ventura@malix.univ-paris1.fr.

In a seminal paper Schmeidler (1972) [11] made an intensive study of the σ-core $C^\sigma(v)$ of exact games i.e. of the existence of σ-additive measures in the core of exact games. The aim of the present paper is to investigate the \mathcal{G}-cores of exact games defined on the set \mathcal{B} of Borel sets of a locally compact and σ-compact topological space Ω, so we deal with the existence of \mathcal{G}-continuous measures in the core of an exact game. Recall that a measure P is said to be \mathcal{G}-continuous at $A \in \mathcal{B}$ if $\forall \{O_n\}_n \subset \mathcal{G}, O_n \uparrow \Omega :\liminf P(A \cap O_n) = P(A)$, and $\forall \{F_n\}_n \subset \mathcal{F}, F_n \downarrow \emptyset :\liminf P(A \cup F_n) = P(A)$ with \mathcal{F} and \mathcal{G} respectively the set of closed and open subsets of Ω and a measure P is said to be \mathcal{G}-continuous 1 if it is \mathcal{G}-continuous at any set $A \in \mathcal{B}$.

Building on results of Y. Rébillé [10] which give natural decomposition à la Yosida-Hewitt of a finitely additive measure into a \mathcal{G}-continuous and a purely non \mathcal{G}-continuous part and with the help of the Vitali-Hahn-Saks theorem for charges (which can be found in Rao and Rao [9]), we show that the non-emptiness of the \mathcal{G}-core of v noted $C^\mathcal{G}(v)$ is characterized by the simple property of v being continuous from above at the empty set for closed sets. As a consequence the second conjecture of Schmeidler which asserts that "an exact game continuous at \emptyset has a countably additive set function in its core" proves to be true on $(\mathcal{N}, \mathcal{P}(\mathcal{N}))$. We also obtain that every element in the core of v is \mathcal{G}-continuous if and only if v is continuous at Ω for open sets.

Then using techniques similar to Parker [8], we show that if moreover Ω is metrizable, then a finitely additive probability measure P on \mathcal{B} is σ-additive if and only

1-σ-continuity requires that convergence should hold for any monotone sequence $\{O_n\}_n, \{F_n\}_n$ in \mathcal{B} and not solely in \mathcal{G}, \mathcal{F}, thus \mathcal{G}-continuity is a weaker property.
if P is continuous at Ω for closed sets. We therefore deduce for such a topological space, by building upon Schmeidler (Theorem 3.2 [11]) that $C^s(v) = C(v)$ if and only if v is continuous at Ω for closed sets.

Bibliographie

