ON THE REGULARITY OF THE VALUE FUNCTION FOR OPTIMAL CONTROL PROBLEMS

Oana Silvia Serea1 and Lionel Thibault2

1University of Perpignan, France
2University of Montpellier, France

We consider the control system

\[
\begin{cases}
 x'(s) = f(x(s), u(s)) \text{ for almost all } s \geq t \\
 x(t) = x \\
 u(\cdot) : [0, \infty) \rightarrow U \text{ is a measurable function}
\end{cases}
\]

(1)

Here and $f : \mathbb{R}^N \times U \rightarrow \mathbb{R}^N$ is continuous and there exists $L_0 > 0$ such that for all $x, y \in \mathbb{R}^N$ and for all $u \in U$

\[
|f(x, u) - f(y, u)| \leq L_0 |x - y|
\]

or

\[
F(x) \subseteq F(y) + L_0 |x - y| B
\]

\begin{itemize}
 \item \textbf{(H\textsubscript{1})} $F(x)$ is convex for all $x \in \mathbb{R}^N$
 \item \textbf{(H\textsubscript{2})} $f : \mathbb{R}^N \times U \rightarrow \mathbb{R}^N$ is continuous and there exists $L_0 > 0$ such that for all $x, y \in \mathbb{R}^N$ and for all $u \in U$
 \item \textbf{(H\textsubscript{3})} $f(\cdot, u)$ is differentiable for all $u \in U$ and there exists $L_1 > 0$ such that for all $x, y \in \mathbb{R}^N$ and for all $u \in U$
\end{itemize}

\[
|D_x f(x, u) - D_x f(y, u)| \leq L_1 |x - y|
\]

where $D_x f$ is the Jacobian matrix of f with respect to x.
Let $g : \mathbb{R}^N \to \mathbb{R}$ be a function. The value functions associated to the control system (1) and to g are given by

$$V_1(t, x) = \sup_{u(\cdot) \in U(t)} g(x(T; t, x, u(\cdot))) \text{ for all } (t, x)$$

(2)

$$V_2(t, x) = \inf_{u(\cdot) \in U(t)} g(x(T; t, x, u(\cdot))) \text{ for all } (t, x)$$

(3)

where $x(\cdot; t, x, u(\cdot))$, denotes the solution of (1) starting from (t, x).

We are interested to study the regularity of the value function. Under appropriate hypotheses on the dynamics, we prove that the value V_2 is primal-lower-nice (p.l.n.) (or V_1 is -p.l.n.) when the cost function g is supposed to have the same regularity.

We recall the definition of p.l.n. regularity.

We recall that a lower semi-continuous (l.s.c.) function $h : \mathbb{R}^N \to \overline{\mathbb{R}}$ is primal-lower-nice (p.l.n.) at \bar{x}, a point where h is finite, if there exist $R > 0$, $c > 0$, and $\varepsilon > 0$ with the property that

$$h(x') > h(\bar{x}) + \langle v, x' - \bar{x} \rangle - \frac{r}{2} |x' - x|^2$$

whenever $r > R$, $|v| < cr$, $v \in \partial h(\bar{x})$, $|x' - \bar{x}| < \varepsilon$ and $|x - \bar{x}| < \varepsilon$ with $x' \neq x$.

A function $h : \mathbb{R}^N \to \overline{\mathbb{R}}$ is - primal-lower-nice (- p.l.n.) at \bar{x}, if $-h$ is p.l.n. at \bar{x}.

Here the mapping $\partial h : \mathbb{R}^N \hookrightarrow \mathbb{R}^N$ and for all $x \in \mathbb{R}^N$, $\partial h(x)$ denotes the set of limiting proximal subgradients of h at x.

Bibliographie
