Here we present some results related to the project.

- [58]
**YangQin Fang**-Annali Scuola Normale Superiore Vol. XVI, issue 3, 817-844 (2016).*Existence of minimizers for the Reifenberg Plateau problem*

- [57]
**Guy David, Joseph Feneuil, Svitlana Mayboroda**-C. R. Acad. Sci. Paris, Ser. I, Vol 355, N 4, 406--410, Avril 2017*Harmonic measure on sets of codimension larger than one*

- [56]
**Guy David, Joseph Feneuil, Svitlana Mayboroda**-115p. Soumis. arXiv:1702.05503.*Elliptic theory for sets with higher co-dimensional boundaries*

- [55]
**Guy David, Joseph Feneuil, Svitlana Mayboroda**-76p.*Dahlberg's theorem in higher co-dimension.*

- [54]
**Guy David, Max Engelstein, Tatiana Toro**-70p. Soumis. arXiv:1702.06580.*Free Boundary regularity for almost minimizers*

- [53]
**Doug Arnold, Guy David, Marcel Filoche, David Jerison, Svitlana Mayboroda**-Phys. Rev. Lett. 116, 056602 ? Published 5 February 2016.*The effective confining potential of quantum states in disordered media*

- [52]
**L. Moonens and T.H. Picon**-soumis (arXiv:1701.02889).*Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields*

- [51]
**L. Moonens and T.H. Picon**-à paraître dans Proc. Edinburgh. Math. Soc.*Solving div v = F in C0(R^n,R^n)*

- [50]
**L. Moonens, E. Russ and H. Tuominen**-à paraître dans Indiana Univ. Math. J.*Removable singularities for div v=f in weighted Lebesgue spaces*

- [49]
**E. D'Aniello and L. Moonens**-Ann. Acad. Sci. Fenn. Math. 42 (2017), 119-133.*Averaging on n-dimensional rectangles*

- [48]
**L. Moonens**-New York J. Math. 22 (2016) 933?942.*Differentiating along rectangles, in lacunary directions*

- [47]
**L. Brasco and F. Santambrogio**-Accepted Paper : Commun. Contemp. Math. Lien*A sharp estimate à la Calderón-Zygmund for the p?Laplacian*

- [46]
**F. Santambrogio**-Published Paper : J. Functional Analysis (Volume 271, Issue 2, 15 July 2016, Pages 418-436) Lien*Dealing with moment measures via entropy and optimal transport*

- [45]
**A. Monteil and F. Santambrogio**-Published Paper : Mathematical Methods in the Applied Sciences (online first) Lien*Metric methods for heteroclinic connections*

- [44]
**Q. R. Li, F. Santambrogio and X. J. Wang**-Submitted Paper Lien*Continuity for the Monge mass transfer problem in two dimensions*

- [43]
**P. Pegon, D. Piazzoli and F. Santambrogio**-Published Paper : Discr. Cont. Dyn. Syst. - A (Volume 35, Issue 12, 2015 Pages 6113-6132)Lien*Full characterization of optimal transport plans for concave costs*

- [42]
**M. Bonnivard, A. Lemenant and V. Millot**-, preprint 2017, Lien*On a phase field approximation of the planar Steiner problem: Existence, regularity, and asymptotic of minimizers*

- [41]
**A. Lemenant**-, Confluentes Mathematici, 8 no. 2 (2016), p. 23-38, Lien*Rectifiability of non Euclidean planar self-contracted curves*

- [40]
**T. De Pauw and R. Züst**-, preprint 2016, Lien*Partial regularity of almost minimizing rectifiable G chains in Hilbert space*

- [39]
**L. Brasco and F. Santambrogio**-published in GPPEPDEs 2015: Geometric Properties for Parabolic and Elliptic PDE's pp 49-63 Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 176), Lien*A note on some Poincaré inequalities on convex sets by Optimal Transport methods,*

- [38]
**R. Züst**-*A solution of Gromov's Hölder equivalence problem for the Heisenberg group,*preprint 2015, Lien

- [37]
**E. Le Donne and S. Rigot**-*Besicovitch Covering Property on graded groups and application to measure differentiation,*J. reine angew. Math., to appear Lien

- [36]
**E. Le Donne and S. Rigot**-*Remarks about the Besicovitch Covering Property in Carnot groups of step 3 and higher,*Proc. Amer. Math. Soc. (2015), Lien

- [35]
**A. Chambolle, J. Lamboley, A. Lemenant and E. Stepanov**-*Regularity for the optimal compliance problem with length penalization,*preprint 2015, Lien

- [34]
**P. Dondl, A. Lemenant and S. Wojtowytsch**-*Phase field models for thin elastic structures with topological constraint,*Arch. Ration. Mech. Anal. (To appear) Lien

- [33]
**A. Lemenant**-*A selective review on Mumford-Shah minimizers,*to appear in BUMI 2016, Lien

- [32]
**M. Goldman and B. Merlet**-*Phase segregation for binary mixtures of Bose-Einstein Condensates,*preprint 2015, Lien

- [31]
**L. Brasco, S. Mosconi and M. Squassina**-Calc. Var. Partial Differential Equations, 2015, Lien*Optimal decay of extremals for the fractional Sobolev inequality,*

- [30]
**L. Brasco and B. Ruffini**-preprint 2015, Lien*Compact Sobolev embeddings and torsion functions,*

- [29]
**L. Brasco, E. Parini and M. Squassina**-Discrete Contin. Dyn. Syst. 2015, Lien*Stability of variational eigenvalues for the fractional p-Laplacian,*

- [28]
**A. Chambolle, M. Morini and M. Ponsiglione**-preprint 2015, Lien*Existence and uniqueness for a crystalline mean curvature flow,*

- [27]
**F. Santambrogio and X. J. Wang**-, published in Appl. Math. Lett. (Volume 58, August 2016, Pages 152-158) Lien*Convexity of the support of the displacement interpolation: counterexamples*

- [26]
**L. De Pascale, J. Louet and F. Santambrogio**-J. Mat. Pure. Appli. (2016)Lien*The Monge problem with vanishing gradient penalization: vortices and asymptotic profile,*

- [25]
**G. David**-Publ. Mat. 60 (2016), 335?450.Lien*A monotonicity formula for minimal sets with a sliding boundary condition*

- [24]
**V. Millot**-Mémoire HDR Lien*Contributions au calcul variationnel géométrique et applications*

- [23]
**B. Merlet**-In revision for ARMA Lien*A highly anisotropic nonlinear elasticity model for vesicles II. Derivation of the thin bilayer bending theory.*

- [22]
**B. Merlet**-In revision for ARMA Lien*A highly anisotropic nonlinear elasticity model for vesicles I. Eulerian formulation, rigidity estimates and vanishing energy limit.*

- [21]
**P. Bouafia and T. De Pauw**-Math. Ann., 363, 2015. 311-334. Lien*Integral geometric measure in a separable banach space.*

- [20]
**P. Bouafia, T. De Pauw and C.-Y. Wang**-Calc. Var. Partial Differential Equations, 54, 2015. 2167-2196. Lien*Multiple valued maps into a separable Hilbert space that almost minimize their p energy or are squeeze and squash stationary.*

- [19]
**T. De Pauw, R. Hardt and W.F. Pfeffer**-Memoir AMS (to appear) Lien*Homology of normal chains and cohomology of charges.*

- [18]
**T. De Pauw**-Publ. Mat. (To appear) Lien*An example pertaining to the failure of the Besicovitch-Federer structure Theorem in separable Hilbert space.*

- [17]
**T. De Pauw and R. Hardt**-J. Math. Anal. Appl. 418 (2014), 1047-1061.Lien*Some basic theorems on flat G chains*

- [16]
**E. Le Donne and S. Rigot**-J. Eur. Math. Soc. (JEMS) 19 (2017), no. 5, 1589?1617. Lien*Besicovitch Covering Property for homogeneous distances in the Heisenberg groups.*

- [15]
**G. David, Marcel Filoche, David Jerison and Svitlana Mayboroda**-Astérisque 337, Société Mathématique de France, 2017 Lien*A free boundary problem for the localization of eigenfunctions.*

- [14]
**J-F. Babadjian, A. Chambolle and A. Lemenant**-J. Ec. polytech. Math. 2 (2015) Lien*Energy release rate for non smooth cracks in planar elasticity.*

- [13]
**A. Lemenant**-J. Math. Pures Appl. (9) 103 (2015), no. 4 Lien*A rigidity result for global Mumford-Shah minimizers in dimension three.*

- [12]
**M. Bonnivard, A. Lemenant and F. Santambrogio**-SIAM J. Math. Anal. 47 (2015) Lien Hal*Approximation of length minimization problems among compact connected sets.*

- [11]
**D. Bucur and A. Giacomini**-preprint Lien*Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach.*

- [10]
**G. David**-preprint Lien*Local regularity properties of almost- and quasiminimal sets with a sliding boundary condition.*

- [9]
**T. De Pauw, A. Lemenant and V. Millot**-Adv. Math. (to appear) Lien*On sets minimizing their weighted length in uniformly convex separable Banach spaces.*

- [8]
**A. Lemenant and F. Santambrogio**-C. R. Math. Acad. Sci. Paris 352 (2014), no. 5, 451-454. Lien*A Modica-Mortola approximation for the Steiner Problem.*

- [7]
**G. David**-Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 1-20. Lien*Approximation of a Reifenberg-flat set by a smooth surface.*

- [6]
**P. Bouafia, T. De Pauw and J. Goblet**-To appear in Ann. Institut J. Fourier. Lien*Existence of p harmonic mutliple valued maps into a separable Hilbert space.*

- [5]
**T. De Pauw**-Journal for Analysis and its Applications, 33(2014)3, 311-334. Lien*Approximation by polyhedral G chains in Banach spaces.*

- [4]
**Elie Bretin, Simon Masnou and Edouard Oudet**-Preprint Lien ArXiv*Phase-field approximations of the Willmore functional and flow.*

- [3]
**L. Brasco**-Preprint Lien HAL*On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique.*

- [2]
**L. Brasco and M. Petrache**-*A continuous model of transportation revisited.*Preprint Lien HAL

- [1]
**A. Daniilidis, G. David, E. Durand-Cartagena and A. Lemenant**-To appear in Journal of Geometric Analysis Lien HAL*Rectifiability of Self-contracted curves in the euclidean space and applications.*