QUADRATIC APPROXIMATION AND TIME-VARYING FEEDBACK LAWS∗

JEAN-MICHEL CORON† AND IVONNE RIVAS†

Abstract. We present a method to construct stabilizing time-varying feedback laws for a large class of systems. We apply our technique to several classical examples which do not satisfy the necessary Brockett condition or the Coron condition for stabilization by means of continuous stationary feedback laws.

Key words. stability, controllability, missing directions

AMS subject classifications. 93B52, 93C10, 93D15, 34D05

DOI. 10.1137/16M1063782

1. Introduction. In this paper we first study the stabilization of finite dimensional control systems of the following form:

\[ \dot{x} = Ax + Bu \quad \text{and} \quad \dot{y} = Ly + Q_1(x, x) + Q_2(x, u) + Q_3(u, u), \]

where \( n, m, \) and \( k \) are three positive integers, \( A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, L \in \mathbb{R}^{k \times k}, \) and \( Q_1 : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^k, Q_2 : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k, \) and \( Q_3 : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^k \) are bilinear maps.

For the control system (1.1), the state is \((x^r, y^r)^r \in \mathbb{R}^{n+k}\) with \( x \in \mathbb{R}^n \) and \( y \in \mathbb{R}^k, \) and the control is \( u \in \mathbb{R}^m. \)

There are very few physical control systems having the form given by (1.1). However, as will be shown later (in Theorem 1.4), the feedback laws, constructed to asymptotically stabilize the control system (1.1), will also asymptotically stabilize systems for which (1.1) is a “good approximation.” The construction of (1.1) such that it is a “good approximation” for a given system follows from the power series expansion method introduced in [8] (see also [6, Chapter 8]) to study the local controllability of a given control system \( \dot{z} = f(z, v) \), where the state is \( z \in \mathbb{R}^l \) and the control is \( v \in \mathbb{R}^m. \) The method is the following: let us assume that \( f(0, 0) = 0 \) and we want to study the local controllability of \( \dot{z} = f(z, v) \) around \( 0 \in \mathbb{R}^l \) with small controls. We expand \( z = z_1 + z_2 + z_3 + \cdots, v = v_1 + v_2 + v_3 + \cdots, \) where \( (z_1, v_1) \) is of order 1, \((z_2, v_2)\) is of order 2, \((z_3, v_3)\) is of order 3, and so on. Identifying the different orders in \( \dot{z} = f(z, v) \) leads to

\[ \dot{z}_1 = \frac{\partial f}{\partial z}(0, 0)z_1 + \frac{\partial f}{\partial v}(0, 0)v_1, \]

\[ \dot{z}_2 = \frac{\partial f}{\partial z}(0, 0)z_2 + \frac{\partial f}{\partial v}(0, 0)v_2 + \frac{1}{2} \frac{\partial^2 f}{\partial z^2}(0, 0)(z_1, z_1) + \frac{\partial^2 f}{\partial z \partial v}(0, 0)(z_1, v_1) + \frac{1}{2} \frac{\partial^2 f}{\partial v^2}(0, 0)(v_1, v_1), \]

∗Received by the editors March 2, 2016; accepted for publication (in revised form) August 18, 2017; published electronically November 28, 2017.

http://www.siam.org/journals/sicon/55-6/M106378.html

Funding: This work was supported by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7) and by ANR Project Finite4SoS (ANR 15-CE23-0007). The second author’s work was also supported by Universidad del Valle, Cali, Colombia.

†Laboratoire Jacques-Louis Lions, UMR 7598, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France (coron@ann.jussieu.fr, rivas@ann.jussieu.fr).
and so on. The control system (1.2) is a linear control system where the state is $z_1 \in \mathbb{R}^l$ and the control is $v_1 \in \mathbb{R}^m$. We decompose this linear system into its controllable part and its uncontrollable part. Let $n \in \{0,1,\ldots,l\}$ be the dimension of the linear controllable part. We assume that $n \in \{1,\ldots,l-1\}$ and let $k := l-n \in \{1,\ldots,l-1\}$. Performing, if necessary, a linear change of variables, we may assume that the controllable part is the vector space

$$H := \{ z := (x^{tr}, y^{tr})^{tr} \in \mathbb{R}^l \text{ with } x \in \mathbb{R}^n, \ y = 0 \in \mathbb{R}^{l-n} \}.$$ 

Then there exist $A \in \mathbb{R}^{n \times n}$, $M \in \mathbb{R}^{n \times l}$, $L \in \mathbb{R}^{k \times k}$, and $B \in \mathbb{R}^{n \times m}$ such that

$$\frac{\partial f}{\partial z}(0,0) = \begin{pmatrix} A & M \\ 0 & L \end{pmatrix}, \quad \frac{\partial f}{\partial v}(0,0) = \begin{pmatrix} B \\ 0 \end{pmatrix}$$

and such that the linear control system $\dot{x} = Ax + Bu$, where the state is $x \in \mathbb{R}^n$ and the control is $u \in \mathbb{R}^m$, is controllable. Let us assume that $z_1(0) \in H$. Then $z_1(t)$ is in $H$ for every time $t$. We write $z_1 = (x,0)$ and $u = v_1$. From (1.2) we get

$$\dot{x} = Ax + Bu.$$ 

We take $v_2 = 0$. Let $y \in \mathbb{R}^l$ be the last $l$ components of $z_2$: $z_2 = (\xi^{tr}, y^{tr})^{tr}$ for some $\xi \in \mathbb{R}^n$. Then (1.3) leads to

$$\dot{y} = Ly + Q_1(x,x) + Q_2(x,u) + Q_3(u,u),$$

where $Q_1 : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^k$, $Q_2 : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$, and $Q_3 : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^k$ are bilinear maps. Note that (1.5) and (1.6) are just our initial control system (1.1). The key points of the power series expansion method are that if (1.1) is controllable in time $T$, then $\dot{z} = f(z,v)$ is locally controllable in time $T$, and, moreover, the power series expansion method provides a method to check whether (1.1) is controllable in time $T$. This method was used in [8] to prove a controllability result on a Korteweg–de Vries equation. (In fact, in the case studied in [8], an expansion to the order 2 was not sufficient; an expansion to the order 3 was necessary.) Here we use this power series expansion in order to asymptotically stabilize $\dot{z} = f(z,v)$. Roughly speaking, under the assumptions that $0 \in \mathbb{R}^k$ is stable (but not necessarily asymptotically stable) for $\dot{y} = Ly$, that (1.5) is controllable, and that (1.1) is controllable, we provide a method to construct time-varying periodic feedback laws $(t,z) \in \mathbb{R} \times \mathbb{R}^l \mapsto v(t,z) \in \mathbb{R}^m$ leading to a local exponential stability of the closed-loop system $\dot{z} = f(z,v(t,z))$ for the weighted “norm” $|x|^2 + |y|$. We illustrate this method on some classical control systems. Note that this method can also be used in the framework of partial differential equations; see [10] for a Korteweg–de Vries equation.

Let us point out that the linearized control system of (1.1) around the trajectory $(\bar{x}, \bar{y}, \bar{u}) := (0,0,0)$ is

$$\dot{x} = Ax + Bu \quad \text{and} \quad \dot{y} = Ly,$$

a linear control system which is never controllable. We assume the existence of $T > 0$ such that the following three properties $(\mathcal{P}_1)$, $(\mathcal{P}_2)$, and $(\mathcal{P}_3)$ hold:

$(\mathcal{P}_1)$ There exists

$$\rho_1 \in (0,1)$$

such that

$$\dot{x} = Ax \Rightarrow (|x(T)|^2 \leq \rho_1 |x(0)|^2).$$
Note that property \((P_1)\) implies that \(0 \in \mathbb{R}^n\) is asymptotically stable for \(\dot{x} = Ax\). Conversely, if \(0 \in \mathbb{R}^n\) is asymptotically stable for \(\dot{x} = Ax\), then \((P_1)\) holds if \(T > 0\) is large enough (and it holds for every \(T > 0\) if one is allowed to perform a suitable linear invertible transformation on \(x\)). In particular, if \(\dot{x} = Ax + Bu\) is controllable, this property always holds if \(T > 0\) is large enough, provided one replaces \(A\) by \(A + BK\) with a suitable \(K \in \mathbb{R}^{m \times n}\). In all the applications presented below, \(\dot{x} = Ax + Bu\) is controllable.

\((P_2)\)

\[
|e^{TL}y| \leq |y| \quad \forall y \in \mathbb{R}^k.
\]

Note that property \((P_2)\) implies that \(0 \in \mathbb{R}^k\) is stable for \(\dot{y} = Ly\). Conversely, if \(0 \in \mathbb{R}^k\) is stable for \(\dot{y} = Ly\), performing, if necessary, a linear invertible transformation on \(y\), \((1.9)\) holds for every \(T > 0\). Let us emphasize that our results are interesting only if \(0 \in \mathbb{R}^k\) is not asymptotically stable for \(\dot{y} = Ly\). Indeed, if \(0 \in \mathbb{R}^k\) is asymptotically stable for \(\dot{y} = Ly\) and if property \((P_1)\) also holds, then \(0 \in \mathbb{R}^{n+k}\) is already globally asymptotically stable for \((1.1)\) with the feedback law \(u = 0\), and \(0 \in \mathbb{R}^{n+k}\) is already locally asymptotically stable for \((1.19)\) with the feedback law \(u_\varepsilon = 0\), provided that \((1.20)\) and \((1.21)\) hold. In all of the applications given below, \(0 \in \mathbb{R}^k\) is not asymptotically stable for \(\dot{y} = Ly\).

\((P_3)\)

There exist \(\delta > 0\), \(C_0 > 0\), and a measurable function \(v : [0, T] \times S^{k-1} \to \mathbb{R}^m\) such that

\[
\begin{align*}
|v(t, b)| &\leq C_0 \quad \forall t \in [0, T], \forall b \in S^{k-1}, \\
|v(t, b) - v(t, b')| &\leq C_0|b - b'| \quad \forall t \in [0, T], \forall b \in S^{k-1}, \forall b' \in S^{k-1}, \\
(1.12) \quad (\dot{x} = A\hat{x} + B\nu(t, b), \dot{\hat{y}} = L\hat{y} + Q_1(\hat{x}, \hat{x}) + Q_2(\hat{x}, v(t, b)) + Q_3(v(t, b), v(t, b)), \\
\hat{x}(0) = 0, \hat{y}(0) = 0) \Rightarrow (\ddot{x}(T) = 0, \ddot{y}(T) \leq e^{TL}\varepsilon \leq -2\delta) \quad \forall b \in S^{k-1}.
\end{align*}
\]

In \((P_3)\) and in what follows, \(S^{k-1}\) denotes the unit sphere of \(\mathbb{R}^k\); \(S^{k-1} := \{b \in \mathbb{R}^k ; |b| = 1\}\).

For \(\varepsilon > 0\), let us consider the following periodic time-varying feedback law \(u_\varepsilon : \mathbb{R} \times \mathbb{R}^k \to \mathbb{R}^m:\n
\[
(1.13) \quad u_\varepsilon(t, y) := \begin{cases} 
\varepsilon \sqrt{|e^{-TL}y|}v(t, \frac{e^{-TL}y}{|e^{-TL}y|}) & \forall t \in [0, T], \forall y \in \mathbb{R}^k \setminus \{0\}, \\
0, & \forall t \in [0, T], \forall y \in \mathbb{R}^k.
\end{cases}
\]

\[
(1.14) \quad u_\varepsilon(t + T, y) = u_\varepsilon(t, y) \quad \forall t \in \mathbb{R}, \forall y \in \mathbb{R}^k.
\]

In order to motivate property \((P_3)\), let us mention that the more popular condition of controllability implies this property. More precisely, let us first define the (classical) notion of controllability we are considering.

**Definition 1.1.** Let \(\tau > 0\). The control system \((1.1)\) is locally controllable in time \(\tau > 0\) if there exists \(\eta > 0\) such that, for every \((x_0, y_0) \in \mathbb{R}^n \times \mathbb{R}^k\) such that
$|x_0| + |y_0| < \eta$, there exists $u \in L^\infty([0, \tau]; \mathbb{R}^m)$ such that

\begin{equation}
\begin{aligned}
(1.15) \quad \dot{x} = Ax + Bu, \quad \dot{y} = Ly + Q_1(x, x) + Q_2(x, u) + Q_3(u, u), \quad x(0) = x_0, \quad y(0) = y_0 \\
\Rightarrow \left( x(\tau) = 0, \quad y(\tau) = 0 \right).
\end{aligned}
\end{equation}

(Let us point out that if $((x^r, y^r)^{ir}, u) : [0, \tau] \rightarrow \mathbb{R}^{n+k} \times \mathbb{R}^m$ is a trajectory of the control system (1.1), then for every $\lambda \in \mathbb{R}$, $((\lambda x^r, \lambda^2 y^r)^{ir}, \lambda u) : [0, \tau] \rightarrow \mathbb{R}^{n+k} \times \mathbb{R}^m$ is a trajectory of the control system (1.1). Hence the local controllability in time $\tau > 0$ in fact implies the global controllability in time $\tau$.) There are many explicit conditions relying on iterated Lie brackets that allow one to check whether the control system (1.1) is locally controllable in small time (i.e., in time $\tau$ for every $\tau > 0$). For more details on these explicit conditions, see in particular [22] and [6, Chapter 3]. With this notion of local controllability, one has the following proposition, which is proved in Appendix A.

**Proposition 1.2.** Let us assume that there exists $\tau \in (0, T)$ such that the control system (1.1) is locally controllable in time $\tau$. Then property (P3) holds.

In all of the applications given below, there indeed exists a $\tau \in (0, T)$ such that the control system (1.1) is locally controllable in time $\tau$.

We are interested in the asymptotic behavior of the solutions to the closed-loop system

\begin{equation}
\begin{aligned}
(1.16) \quad \dot{x} = Ax + Bu_c(t, y) \quad \text{and} \quad \dot{y} = Ly + Q_1(x, x) + Q_2(x, u) + Q_3(u, u).
\end{aligned}
\end{equation}

Let us emphasize that the regularity of $u_c$ is sufficient for the existence of solutions of the Cauchy problem associated to (1.16). Moreover, by a theorem due to Kurzweil [12], $0 \in \mathbb{R}^{n+m}$ is globally asymptotically stable for (1.16) if and only if there is a Lyapunov function (of class $C^\infty$) which is $T$-periodic with respect to time. The existence of this Lyapunov function is important since it ensures some robustness with respect to (small) perturbations, which is, in fact, the true goal of the stabilization issue.

The following theorem, which is proved in section 2, shows that the feedback law $u_c$ defined by (1.13), (1.14) leads to global asymptotic stability, provided that $\varepsilon > 0$ is small enough.

**Theorem 1.3.** Let us assume that (P1), (P2), and (P3) hold. Then, there exists $\varepsilon_0 > 0$ such that for every $\varepsilon \in (0, \varepsilon_0)$, there exist $C > 0$ and $\lambda > 0$ such that for every solution $(x, y)$ of (1.16), one has

\begin{equation}
\begin{aligned}
(1.17) \quad |x(t)|^2 + |y(t)| \leq Ce^{-\lambda t} \left( |x(0)|^2 + |y(0)| \right) \quad \forall t \in [0, +\infty).
\end{aligned}
\end{equation}

Our next result allows us to stabilize nonlinear control systems for which the quadratic “approximation” satisfies the assumptions of Theorem 1.3. The control system now takes the following more general form

\begin{equation}
\begin{aligned}
(1.18) \quad \dot{x} = Ax + Bu + R_x(x, y, u), \quad \dot{y} = Ly + Q_1(x, x) + Q_2(x, u) + Q_3(u, u) + R_y(x, y, u),
\end{aligned}
\end{equation}

where the state is $(x^r, y^r)^{ir} \in \mathbb{R}^{n+k}$, with $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^k$, and the control is $u \in \mathbb{R}^m$. We assume that $R_x : \mathbb{R}^n \times \mathbb{R}^k \rightarrow \mathbb{R}^n$ and $R_y : \mathbb{R}^n \times \mathbb{R}^k \rightarrow \mathbb{R}^k$ are both...
continuous. Our next result deals with the asymptotic stability of 0 for the closed-loop system

\begin{equation}
\left\{
\begin{array}{l}
\dot{x} = Ax + Bu_\varepsilon(t, y) + R_\varepsilon(x, y, u_\varepsilon(t, y)), \\
\dot{y} = Ly + Q_1(x, x) + Q_2(u_\varepsilon(t, y)) + Q_3(u_\varepsilon(t, y)) + R_\varepsilon(x, y, u_\varepsilon(t, y)). \\
\end{array}
\right.
\end{equation}

We have the following theorem, which is proved in section 3.

**Theorem 1.4.** Let us assume that \((P_1), (P_2), \text{ and } (P_3)\) hold. Let us also assume the existence of \(\eta > 0\) and \(M > 0\) such that for every \((x, y, u) \in \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^m\) satisfying \(|x| + |y| + |u| \leq 1\),

\begin{equation}
|R_\varepsilon(x, \varepsilon^2 y, \varepsilon u)| \leq M\varepsilon^{1+\eta} \quad \forall \varepsilon \in (0, 1),
\end{equation}

\begin{equation}
|R_\varepsilon(x, \varepsilon^2 y, \varepsilon u)| \leq M\varepsilon^{2+\eta}.
\end{equation}

Then, there exists \(\varepsilon_0 > 0\) such that for every \(\varepsilon \in (0, \varepsilon_0]\), there exist \(C > 0\), \(\rho > 0\), and \(\lambda > 0\) such that for every solution \((x, y)\) of (1.19) with \(|x(0)|^2 + |y(0)| \leq \rho\), one has

\[|x(t)|^2 + |y(t)| \leq Ce^{-\lambda t} \left(|x(0)|^2 + |y(0)|\right) \quad \forall t \in [0, +\infty).\]

**Remark 1.5.** Our method allows the construction of *time-varying* feedback laws. Note that, as first pointed out by Sussmann in [21] and by Brockett in [1], there are controllable systems which cannot be asymptotically stabilized by means of continuous stationary (i.e., not depending on time) feedback laws. To overcome this difficulty the use of time-varying feedback laws has been proposed in two pioneering works: [19] by Sontag and Sussmann for control systems with states of dimension 1, and [17] by Samson for the control system studied in section 4.3, which we revisit with our method. General results showing that many controllable systems can be asymptotically (and even in finite time) stabilized by means of time-varying feedback laws can be found in [3, 5]. The fact that the control systems presented in section 4 can be asymptotically stabilized by means of time-varying feedback laws follows from [3, 5]. The novelty of our approach is to allow explicit constructions of such feedback laws.

**2. Proof of Theorem 1.3.** Let

\begin{equation}
\rho_2 \in (\rho_1, +\infty).
\end{equation}

Theorem 1.3 is a corollary of the following proposition, where assumption (1.7) is no longer required.

**Proposition 2.1.** There exist \(\varepsilon_0 > 0\) and \(C > 0\) such that for every \(\varepsilon \in [0, \varepsilon_0]\) and for every solution of (1.16), one has

\begin{equation}
|x(t)|^2 + |y(t)| \leq C(|x(s)|^2 + |y(s)|) \quad \forall s \in [0, T], \forall t \in [s, T],
\end{equation}

\begin{equation}
|x(T)|^2 + \varepsilon|y(T)| \leq \rho_2|x(0)|^2 + \varepsilon \left(1 - \varepsilon^2 \delta\right)|y(0)|.
\end{equation}

**Proof of Proposition 2.1.** Let \((x^{tr}, y^{tr})^{tr}\) be a solution of (1.16) on \([0, T]\). From now on, we denote by \(C > 0\) various constants which vary from place to place but do not depend on \(\varepsilon \in (0, 1)\), on \(t \in [0, T]\), or on \((x^{tr}, y^{tr})^{tr}\), the solution of (1.16). However, these constants \(C\) may depend on \(T, A, B, L, \text{ and } v\).

From (1.10), (1.13), and (1.16), we get that

\begin{equation}
\frac{d}{dt} \left(|x|^4 + |y|^2\right) \leq C \left(|x|^4 + |y|^2\right),
\end{equation}
which gives (2.2). From (1.10), (1.13), (1.16), and (2.2), we get that
\[(2.5) \quad |x(t) - e^{tA}x(0)| \leq C\varepsilon \left( |x(0)| + \sqrt{|y(0)|} \right).\]
From (1.16) and (2.5), we have
\[(2.6) \quad |y(t) - e^{tL}y(0)| \leq C \left( |x(0)|^2 + \varepsilon^2 |y(0)| \right).\]
From (1.8), (2.1), (2.5), and (2.6), there exists \(\varepsilon_1 > 0\), such that for every
\[(2.7) \quad \varepsilon \in [0, \varepsilon_1],\]
one has (2.3) for every solution of (1.16) satisfying \(|x(0)| \geq \varepsilon^{2/3} \sqrt{|y(0)|}\). From now on, we consider that (2.7) holds and that
\[(2.8) \quad |x(0)| < \varepsilon^{2/3} \sqrt{|y(0)|}.\]
Note that if \((x,y)\) is a solution of (1.16), then, for every \(\lambda \geq 0\), \((\lambda x, \lambda^2 y)\) is also a solution of (1.16). Hence, also using (2.8), in order to prove (2.3) we may assume, without loss of generality, that
\[(2.9) \quad b := y(0) \in S^{k-1},\]
\[(2.10) \quad |x(0)| \leq \varepsilon^{2/3}.
\]
Equations (2.5), (2.6), (2.9), and (2.10) lead us to
\[(2.11) \quad |x(t)| \leq C\varepsilon^{2/3}, \quad |y(t) - e^{tL}b| \leq C\varepsilon^{4/3} \quad \forall t \in [0, T].\]
Let us define \(x_1 : [0, T] \to \mathbb{R}^n, x_2 : [0, T] \to \mathbb{R}^n, x_3 : [0, T] \to \mathbb{R}^n, r : [0, T] \to \mathbb{R}^m\) by
\[(2.12) \quad x_1(t) := e^{tA}x(0),\]
\[(2.13) \quad \dot{x}_2 = Ax_2 + Bv(t, b), \quad x_2(0) = 0,\]
\[(2.14) \quad x_3 := x - x_1 - \varepsilon x_2,\]
\[(2.15) \quad r(t) := u_x(t, y(t)) - \varepsilon v(t, b).\]
From (1.8) and (2.12), one has
\[(2.16) \quad |x_1(T)|^2 \leq \rho_1 |x(0)|^2.\]
From (1.10), (1.12), and (2.13),
\[(2.17) \quad |x_2(t)| \leq C \quad \forall t \in [0, T],\]
\[(2.18) \quad x_2(T) = 0.\]
From (1.16), (2.12), (2.13), and (2.14), one has
\[(2.19) \quad \dot{x}_3 = Ax_3 + Bv_x(t, y(t)) - \varepsilon Bv(t, b), \quad x_3(0) = 0.\]
From (1.10), (1.11), (1.13), (2.11), and (2.19), one has
\[(2.20) \quad |x_3(t)| \leq C\varepsilon^2 \quad \forall t \in [0, T].\]
Concerning $u\varepsilon$ and $r$, using (1.10), (1.11), and (2.11), one has the following estimates:

(2.21) \[ |u\varepsilon(t, y(t))| \leq C\varepsilon, \quad |r(t)| \leq C\varepsilon^{7/3} \quad \forall t \in [0, T]. \]

Let us fix

(2.22) \[ \rho_{3/2} \in (\rho_1, \rho_2). \]

(The existence of $\rho_{3/2}$ follows from (2.1).) From (2.14), (2.16), (2.18), (2.20), and (2.22), one gets that

(2.23) \[ |x(T)|^2 \leq \rho_{3/2}|x(0)|^2 + C\varepsilon^4. \]

We now estimate $y$. Let $y_1 : [0, T] \to \mathbb{R}^k$, $y_2 : [0, T] \to \mathbb{R}^k$, and $y_3 : [0, T] \to \mathbb{R}^k$ be defined by

(2.24) \[ y_1 = Ly_1 + 2Q_1(x_1, x) - Q_1(x_1, x_1) + Q_2(x_1, u), \quad y_1(0) = 0, \]
(2.25) \[ y_2 = Ly_2 + Q_1(x_2, x_2) + Q_2(x_2, v) + Q_3(v, v), \quad y_2(0) = 0, \]
(2.26) \[ y_3 := y - y_1 - \varepsilon^2 y_2 - e^{TL}b. \]

In (2.24), (2.25) and in what follows, $u(t) := u\varepsilon(t, y(t))$, and, with a slight abuse of notation, $v(t)$ is $v(t, b)$. Then, from (2.11), (2.12), and (2.24), one has

(2.27) \[ |y_1(t)| \leq C\varepsilon^{2/3}|x(0)| \quad \forall t \in [0, T], \]
and (1.10), (1.12), (2.9), (2.13), (2.17), and (2.25) give us

(2.28) \[ |y_2(T)| \leq C(1 + \varepsilon^2), \quad y_2(T) \cdot e^{TL}b \leq -2\delta + C\varepsilon^2. \]

From (1.10), (2.9), and (2.28), we have

(2.29) \[ |e^{TL}b + \varepsilon^2y_2(T)| \leq 1 - 4\delta\varepsilon^2 + C\varepsilon^4. \]

Equations (1.16), (2.14), (2.15), (2.24), (2.25), and (2.26) give us

(2.30) \[ \dot{y}_3 = Ly_3 + \varepsilon Q_1(x_2, x_3) + \varepsilon Q_2(x_3, x_2) + Q_1(x_3, x_3) + \varepsilon Q_2(x_2, r) + \varepsilon Q_3(x_3, v) + Q_2(x_3, r) + \varepsilon Q_3(v, r) + Q_3(r, r), \quad y_3(0) = 0. \]

From (2.17), (2.20), (2.21), and (2.30), one has

(2.31) \[ |y_3(T)| \leq C\varepsilon^3. \]

Using (2.26), (2.27), (2.29), and (2.31), one has

(2.32) \[ |y(T)| \leq 1 - 4\delta\varepsilon^2 + C\varepsilon^3 + C\varepsilon^{2/3}|x(0)|. \]

From (2.9), (2.22), (2.23), and (2.32), there exists $\varepsilon_0 > 0$ such that if $\varepsilon \in [0, \varepsilon_0]$,

(2.33) \[ |x(T)|^2 + \varepsilon|y(T)| \leq \rho_2|x(0)|^2 + \varepsilon(1 - 2\delta\varepsilon^2)|y(0)|, \]

which concludes the proof of Proposition 2.1. \[ \square \]

Remark 2.2. It follows from our proof of Theorem 1.3 that in this theorem, one can take

(2.34) \[ \lambda = \min \left\{ -\frac{\ln(\rho_2)}{T}, -\frac{\ln(1 - \varepsilon_0^2\delta)}{T} \right\}. \]
3. Proof of Theorem 1.4. In this section we deduce Theorem 1.4 from Theorem 1.3 and the existence of homogeneous Lyapunov functions for asymptotically stable homogeneous time-varying vector fields.

Let $Z$ be a time-varying vector field of period $T$ with respect to time; i.e., $Z: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies

$$Z(t+T,z) = Z(t,z) \quad \forall t \in \mathbb{R}, \forall z \in \mathbb{R}^n.$$ 

We say that $Z$ is a Carathéodory function if it satisfies the following three properties:

- \[ \forall R > 0, \exists C(R) > 0 \text{ such that } |Z(t,z)| \leq C(R) \quad \forall t \in \mathbb{R}, \forall z \in \mathbb{R}^n \text{ such that } |z| \leq R; \]
- \[ \forall z \in \mathbb{R}^n, \text{ the function } t \in \mathbb{R} \mapsto Z(t,z) \text{ is measurable}; \]
- \[ \text{for almost every } t \in \mathbb{R}, \text{ the function } z \in \mathbb{R} \mapsto Z(t,z) \text{ is continuous.} \]

Let $I$ be an interval of $\mathbb{R}$, and let $z: I \to \mathbb{R}^n$. As usual, we say that $z$ is a solution of $\dot{z} = Z(t,z)$ on $I$ if $z$ is absolutely continuous on every compact subinterval of $I$ and

$$\dot{z}(t) = Z(t,z(t)) \text{ for almost every } t \in I.$$ 

Let us recall that Carathéodory’s theorem ensures that if $Z$ is a Carathéodory function, then, for every $t_0 \in \mathbb{R}$ and for every $z_0 \in \mathbb{R}^n$, there are an open interval $I$ containing $t_0$ and a solution $z: I \to \mathbb{R}^n$ of $\dot{z} = Z(z)$ such that $z(t_0) = z_0$.

Let $r = (r_1, \ldots, r_n)^{\top} \in (0, +\infty)^n$, and let $Y = (Y_1, \ldots, Y_n)^{\top}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a time-varying vector field. One says that the time-varying vector field $Y = (Y_1, \ldots, Y_n)^{\top}$ is $r$-homogeneous of degree $0$ if

$$Y(t, (\varepsilon^{r_1}z_1, \ldots, \varepsilon^{r_n}z_n)^{\top}) = \varepsilon^r Y(t, z_1, \ldots, z_n) \quad \forall \varepsilon > 0, \forall z = (z_1, \ldots, z_n)^{\top} \in \mathbb{R}^n, \forall t \in \mathbb{R}. $$

**Theorem 3.1** (see [15]). Let $T > 0$. Let $Y$ be a time-varying vector field of period $T$ with respect to time. We assume that

- $Y$ is a Carathéodory vector field,
- $Y$ is $r$-homogeneous.

Let

$$\theta \in \{ \max\{r_i, 1 \leq i \leq n\}, +\infty \}.$$ 

Then there exists a function $V \in C^\infty(\mathbb{R} \times (\mathbb{R}^n \setminus \{0\}); \mathbb{R}) \cap C^1(\mathbb{R} \times \mathbb{R}^n; \mathbb{R})$ such that

$$V(t,x) > V(t,0) = 0 \quad \forall (t,x) \in \mathbb{R} \times (\mathbb{R}^n \setminus \{0\}),$$

$$V(t+T,x) = V(t,x) \quad \forall (t,x) \in \mathbb{R} \times \mathbb{R}^n,$$

$$\lim_{|x| \to +\infty} \min \{ V(t,x); t \in \mathbb{R} \} = +\infty,$$

$$\frac{\partial V}{\partial t} + Y \cdot \nabla V < 0 \text{ in } \mathbb{R} \times (\mathbb{R}^n \setminus \{0\}) \times \mathbb{R},$$

$$V(t, (\varepsilon^{r_1}x_1, \ldots, \varepsilon^{r_n}x_n)^{\top}) = \varepsilon^\theta V(t, (x_1, \ldots, x_n)^{\top}) \quad \forall (\varepsilon, t, x) \in (0, +\infty) \times \mathbb{R} \times \mathbb{R}^n.$$ 

As a corollary of this theorem, one has the following theorem.
Theorem 3.2 (see [15]). Let $T > 0$. Let $X$, $Y$, and $R$ be three time-varying vector fields of period $T$ with respect to time. We assume that

$X, Y,$ and $R$ are Carathéodory vector fields,

$Y$ is $r$-homogeneous,

$X = Y + R$.

We also assume that for some $\rho > 0$, $\eta > 0$, and $M > 0$, one has

$$\left| R_i(\varepsilon^{r_1} x_1, \ldots, \varepsilon^{r_n} x_n, t) \right| \leq M \varepsilon^{r_i + \eta} \quad \forall \varepsilon \in (0, 1)$$

for every $i \in \{1, \ldots, n\}$ and for every $x = (x_1, \ldots, x_n)^{tr} \in \mathbb{R}^n$ such that $|x| \leq \rho$. Let us assume that $0$ is locally (or globally) asymptotically stable for $\dot{x} = Y(t, x)$. Then $0$ is locally asymptotically stable for $\dot{x} = X(t, x)$, and there exist $\lambda > 0$, $C > 0$, and $\rho > 0$ such that for every solution $x : [0, +\infty) \to \mathbb{R}^n$ of $\dot{x} = X(t, x)$ such that

$$\sum_{i=1}^{n} |x_i(0)|^{1/r_i} \leq \rho,$$

one has

$$\sum_{i=1}^{n} |x_i(t)|^{1/r_i} \leq Ce^{-\lambda t} \sum_{i=1}^{n} |x_i(0)|^{1/r_i} \quad \forall t \in [0, +\infty).$$

(In fact, in [15], Theorem 3.2 is stated with more regularity on the vector fields. However, the Carathéodory regularity is, in fact, sufficient. See also (the proof of) Theorem 12.16 in [6], which relies on [16].)

Theorem 1.4 follows directly from Theorems 1.3 and 3.2.

4. Applications. In this section we present various applications of our approach to construct stabilizing time-varying feedback laws.

4.1. An example with $k = 1$. Let us consider the control system

$$\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= w, \\
\dot{y} &= x_1^2 - x_2^2,
\end{align*}$$

where the state is $(x_1, x_2, y)^{tr} \in \mathbb{R}^3$ and the control is $w \in \mathbb{R}$. Let us recall the Poincaré inequality

$$\int_{0}^{1} \varphi(t)^2 dt \leq \frac{1}{\pi^2} \int_{0}^{1} \dot{\varphi}(t)^2 dt \quad \forall \varphi \in C^1([0, 1])$$

such that $\varphi(0) = \varphi(1) = 0$.

This inequality can be proved by expanding $\varphi$ as the following Fourier series:

$$\varphi(x) = \sum_{l=1}^{+\infty} f_l \sin(l \pi x).$$

Indeed, with this expansion, one has for every $\varphi \in C^1([0, 1])$ such that $\varphi(0) = \varphi(1) = 0$,

$$\int_{0}^{1} \varphi(t)^2 dt = \sum_{l=1}^{+\infty} \frac{1}{2} f_l^2 \leq \frac{1}{\pi^2} \sum_{l=1}^{+\infty} \frac{\pi^2 l^2}{2} f_l^2 = \frac{1}{\pi^2} \int_{0}^{1} \dot{\varphi}(t)^2 dt.$$
Note that $1/\pi^2$ is optimal in (4.2), as one can see by considering $\varphi(x) := \sin(\pi x)$. From inequality (4.2), one gets that the control system (4.1) is not (locally or globally) controllable in time $T$ if $T \leq \pi$. Moreover, using the fact that $1/\pi^2$ is optimal in (4.2) and using the power series expansion (see section 1), one gets that the control system (4.1) is (locally and globally) controllable in time $T$ if $T > \pi$. However, it does not satisfy the following necessary condition for feedback stabilization by means of continuous stationary feedback laws due to Brockett [1] (see also [6, Theorem 1.1]).

**Theorem 4.1.** Let us consider the control system $\dot{z} = f(z, w)$, where $z \in \mathbb{R}^l$ is the state and $w \in \mathbb{R}^m$ is the control. Assume that $f(0, 0) = 0$ and 0 can be locally asymptotically stabilized by means of continuous stationary feedback laws; i.e., there exists a continuous map $w : \mathbb{R}^l \to \mathbb{R}^m$ vanishing at 0, such that 0 is (locally) asymptotically stable for the closed-loop system $\dot{z} = f(z, w(z))$. Then

(4.3)

the image by $f$ of every neighborhood of $(0, 0) \in \mathbb{R}^l \times \mathbb{R}^m$ is a neighborhood of $0 \in \mathbb{R}^l$.

The control system (4.1) does not satisfy the Brockett condition (4.3). Indeed, if $(\alpha, \beta)^T \in \mathbb{R}^2$ is such that $\beta < -\alpha^2$, there is not $(x_1, x_2, w)^T \in \mathbb{R}^3$ such that

$$x_2 = \alpha, \quad w = 0, \quad x_1^2 - x_2^2 = \beta.$$ 

Hence, by Theorem 4.1, the control system (4.1) cannot be locally asymptotically stabilized by means of continuous stationary feedback laws. We are going to see that Theorem 1.3 can be applied to construct time-varying stabilizing feedback laws. Let us first point out that (1.8) is not satisfied. In order to deal with this problem it suffices to apply the transformation $w := -x_1 - x_2 + u$, which transforms the control system (4.1) into the control system

(4.4)

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -x_1 - x_2 + u, \quad \dot{y} = x_1^2 - x_2^2,$$

where the state is $(x_1, x_2, y)^T \in \mathbb{R}^3$ and the control is $u \in \mathbb{R}$. This control system is of the form (1.1), with

$$A := \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \quad B := \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad L := 0,$$

$$Q_1(x, x') := x_1 x'_1 - x_2 x'_2 \quad \forall (x_1, x_2)^T \in \mathbb{R}^2, \quad \forall (x'_1, x'_2)^T \in \mathbb{R}^2, \quad Q_2 := 0, \quad Q_3 := 0.$$

In order to apply Theorem 1.3, let us first check that properties ($P_1$), ($P_2$), and ($P_3$) are satisfied. Let $x = (x_1, x_2)^T : [0, T] \to \mathbb{R}^2$ be a solution of $\dot{x} = Ax$. Then

$$\frac{d}{dt} (x_1^2 + x_2^2) = -x_2^2,$$

$$\frac{d}{dt} x_2 = -x_1 - x_2 \neq 0 \quad \text{for } (x_1, x_2) \in (\mathbb{R}\setminus\{0\}) \times \{0\},$$

which, together with the (proof of the) LaSalle invariance principle implies that ($P_1$) holds. Since $L = 0$, one has ($P_2$). Let us now turn to ($P_3$). Let us first point out that, by the Poincaré inequality (4.2), ($P_3$) cannot hold if $T \leq \pi$. Let us also mention that, by the controllability of (4.1) in time $T$ if $T > \pi$ and by Proposition 1.2, ($P_3$) holds if $T > \pi$. Let us give an explicit $v$ having the properties required in ($P_3$). We take $T = 3.6$ and define $v : [0, T] \times \{-1, 1\} \to \mathbb{R}$ by

(4.5)

$$v(t, b) := \begin{cases} g(t) & \text{if } b = -1 \text{ and } 1 \leq t \leq T, \\
0 & \text{if } b = -1 \text{ and } 0 \leq t < 1, \\
f(t) & \text{if } b = 1 \text{ and } T/4 \leq t \leq (T + 4)/4, \end{cases}$$
with
\[
f(t) = \frac{1}{10} \left( t^2(12 + t(4 + t)) - 2t(6 + t(3 + t))T + (2 + t(2 + t))T^2 \right),
\]
\[
g(t) = \frac{T^4}{2560} \left( (2 + (-1 + t)(10 + t(3 + t))) - 128(-5 + t(7 + t(3 + 2t)))T
\right.
\[
+ 16(7 + 6t(1 + t))T^2 - 8(1 + 2t)T^3 + T^4 \right).
\]

These controls are represented in Figure 1. Clearly (1.10) and (1.11) hold.

![Figure 1](image1.png)

**Fig. 1.** Control \( v \) defined by (4.5) for \( b = -1 \) on the left and \( b = 1 \) on the right.

Straightforward computations show that (1.12) holds, since, for \( \tilde{y} \) defined in (1.12), one has for \( b = 1 \), \( \tilde{y}(3.6) \ast b = -4.92 \), and for \( b = -1 \), \( \tilde{y}(3.6) \ast b = -0.12 \). See also Figure 2.

![Figure 2](image2.png)

**Fig. 2.** Solutions of (4.4) with \( x(0) = 0 \in \mathbb{R}^2 \), \( y(0) = 0 \in \mathbb{R} \), and \( u = v(t,b) \) for \( v \) defined in (4.5), with \( b = 1 \) on the left and \( b = -1 \) on the right.

The feedback law \( u \) defined by (1.13) and (1.14) is

\[
u_{\varepsilon}(t, y) = \varepsilon \sqrt{|y|} v(t - 4|t/4|, \text{Sign}(y)),
\]

where, for \( s \in \mathbb{R} \), \([s]\) is the integer part of \( s \) and \( \text{Sign}(s) \) is the sign of \( s \): \( \text{Sign}(s) = 1 \) for \( s \in (0, +\infty) \), \( \text{Sign}(s) = -1 \) for \( s \in (-\infty, 0) \), and \( \text{Sign}(0) = 0 \).
In Figures 3 and 4 a trajectory of system (4.1) with the feedback law (4.6) is shown.

4.2. An example with $k = 2$. We consider the control system

$$
\dot{x}_1 = u_1, \quad \dot{x}_2 = u_2, \quad \dot{y}_1 = x_1^2 - x_2^2, \quad \dot{y}_2 = 2x_1x_2,
$$

where the state is $z := (x_1, x_2, y_1, y_2)^T \in \mathbb{R}^4$ and the control is $u = (u_1, u_2)^T \in \mathbb{R}^2$. One can easily check that for every $T > 0$, this control system is (globally) controllable in time $T$. This control system satisfies the Brockett condition (4.3). However, one has the following necessary condition, due to Coron [2] for feedback stabilization by means of stationary feedback laws, a condition which is slightly stronger than the Brockett condition (4.3).

**Theorem 4.2.** If the control system $\dot{z} = f(z, v)$, where $z \in \mathbb{R}^l$ is the state, $v \in \mathbb{R}^n$ is the control, and $f(0, 0) = 0$, can be locally asymptotically stabilized by means of continuous stationary feedback laws, then for $\varepsilon > 0$ small enough,

$$
f_*\left( H_{l-1}\left( \{(z, u) \in \mathbb{R}^n; f(z, u) \neq 0, |z| < \varepsilon, \text{ and } |u| < \varepsilon \} \right) \right) = H_{l-1}(\mathbb{R}^l \setminus \{0\}, \mathbb{Z}),
$$

where $H_{l-1}(\Omega, \mathbb{Z})$ denotes the $(l-1)$-singular homology group of $\Omega$ with integer coefficients and $f_*$ is the homomorphism induced by $f : \{(z, u) \in \mathbb{R}^n; f(z, u) \neq 0, |z| < \varepsilon \} \to H_{l-1}(\mathbb{R}^l \setminus \{0\}, \mathbb{Z})$. 

\[ \text{Fig. 3. For } \varepsilon = 0.9 \text{ and initial data } x_1(0) = -0.2, x_2(0) = 0.5, \text{ and } y(0) = 0.46, \text{ the trajectory of the solution of the control system (4.1) is shown on the left, while the comparison of decay between } |(x_1, x_2)^T|^2 + 0.9|y| \text{ and } y(t) = 0.38 \exp(-0.012t) \text{ is shown on the right.} \]

\[ \text{Fig. 4. For } \varepsilon = 0.9 \text{ and initial data } x_1(0) = -0.6, x_2(0) = 0.1, \text{ and } y(0) = -0.2, \text{ the trajectory of the solution of the control system (4.1) is shown on the left, while the comparison of decay between } |(x_1, x_2)^T|^2 + 0.9|y| \text{ and } 0.037 \exp(-0.027t) \text{ is shown on the right.} \]
\[ \varepsilon, \text{ and } \|u\| < \varepsilon \rightarrow \mathbb{R}^l \setminus \{0\} \] (see, e.g., [20, page 161]).

The control system (4.7) does not satisfy the Coron condition in Theorem 4.2. Indeed, the control system (4.7) can be written as \( \dot{z} = f(z, u) \) with, for \( z = (x_1, x_2, y_1, y_2)^t \in \mathbb{R}^4 \) and \( u = (w_1, w_2)^t \in \mathbb{R}^2 \),

\[
f(z, u) = (w_1, w_2, x_1^2 - x_2^2, 2x_1x_2)^t.
\]

Then one can check that for every \( \varepsilon > 0 \),

\[
f_\varepsilon \left( H_3 \{(z, u) \in \mathbb{R}^4 \times \mathbb{R}^2; f(z, u) \neq 0, |z| < \varepsilon \text{ and } |u| < \varepsilon \} \right) = 2H_3(\mathbb{R}^4 \setminus \{0\}, \mathbb{Z}).
\]

By Theorem 4.2, since the control system (4.7) does not satisfy (4.2), it cannot be asymptotically stabilized by means of (continuous) stationary feedback laws. However, it is locally controllable in small time and, by [5], it can be asymptotically stabilized by means of periodic time-varying feedback laws. Let us check that, once more, the method presented in this article allows us to construct such feedback laws.

As in the previous application in section 4.1, condition (P_1) is not satisfied. In order to deal with this problem it suffices to apply the transformation \( w_1 = -x_1 + u_1 \) and \( w_2 = -x_2 + u_2 \), which transforms the control system (4.7) into

\[
(4.8) \quad \dot{x}_1 = -x_1 + u_1, \quad \dot{x}_2 = -x_2 + u_2, \quad \dot{y}_1 = x_1^2 - x_2^2, \quad \dot{y}_2 = 2x_1x_2,
\]

where the state is \( x = (x_1, x_2, y_1, y_2)^t \in \mathbb{R}^4 \) and the control is \( u = (u_1, u_2)^t \in \mathbb{R}^2 \). This control system has the form (1.1), with \( n = m = k = 2 \),

\[
(4.9) \quad A := \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad L := 0,
\]
\[
(4.10) \quad Q_1(x, x') := (x_1x'_1 - x_2x'_2, 2x_1x'_2)^t \quad \forall (x_1, x_2)^t, (x'_1, x'_2)^t \in \mathbb{R}^2, \quad Q_2 := 0, \quad Q_3 := 0.
\]

Then (P_1) is satisfied with \( \rho_1 := e^{-T} \in (0, 1) \). Clearly (4.9) implies that (P_2) holds. By the controllability of (4.7) in time \( T \) for every \( T > 0 \) and by Proposition 1.2, (P_3) holds for every \( T > 0 \). Let us give an explicit \( v \) having the properties required in (P_3). We choose \( T := 4 \) and consider the control law \( v : [0, T] \times S^1 \rightarrow \mathbb{R}^2 \) defined by

\[
(4.12) \quad v_1(t, b) = -\frac{3\sqrt{70}}{512} \text{Sign}(b_2) \sin \left( \frac{\arccos(b_1)}{2} \right) t(t - 4)(t^2 - 8),
\]
\[
(4.13) \quad v_2(t, b) = -\frac{3\sqrt{70}}{512} \text{Sign}(b_2) \cos \left( \frac{\arccos(b_1)}{2} \right) t(t - 4)(t^2 - 8),
\]

with \( v = (v_1, v_2)^t \) and \( b = (b_1, b_2)^t \). This control is represented in Figures 5 and 6.

In Figure 7 the condition (P_3) can be verified.
for (4.13) is defined in (4.10) and (4.11) when \( b \) is defined in (4.10) and (4.11) when \( S \) is defined in (4.7) with \( v \) in the first line (right) and in the second line (left) as defined in \( S \) respectively when \( t, b \) and \( v \) take the values \( (0, 5, 86) \) and \( (0, 5, 86)^T \). This control is represented on Fig. 5 and 6.

For the control system (4.8), we consider the feedback law

\[
(4.14) \quad u_i(t, y) = u_{ic}(t, y) = \varepsilon \sqrt{|y| v_i(t, y/|y|)}, \quad i = 1, 2.
\]

In Figures 8 and 9, a trajectory of system (4.8) with the feedback law (4.14) is shown.
varying feedback laws for the control system (4.15) were constructed. Let us just means of continuous stationary feedback laws. However, let us emphasize that, by
Theorem 4.1, the control system (4.15) cannot be locally asymptotically stabilized by
this control system, the state is \((x_1, x_2)\). Following nonlinear system, describing the motion of a baby stroller (or unicycle):

\[
\begin{align*}
\dot{x}_1 &= w_1 \cos x_2, \\
\dot{x}_2 &= w_2, \\
\dot{y} &= w_1 \sin x_2,
\end{align*}
\]

where \(x_1\) and \(y\) are the coordinates of the midpoint between the two back wheels and
\(x_2\) is an angle which gives the orientation of the baby stroller (see Figure 10). For
this control system, the state is \((x_1, x_2, y)\) and the control is \((w_1, w_2)\) \(\in \mathbb{R}^2\).

By a theorem due to Rashevski and Chow (see, for example, [6, Theorem 3.19]),
the control system (4.15) is locally controllable in time \(T\) for every \(T > 0\). The control
system (4.15) does not satisfy the Brockett condition (4.3), as it can be easily checked
by looking at the solution of

\[
\begin{align*}
w_1 \cos x_2 &= 0, \\
w_2 &= 0, \\
w_1 \sin x_2 &= \varepsilon,
\end{align*}
\]

where the unknown is \((x_1, x_2, y, w_1, w_2)\) \(\in \mathbb{R}^5\) and the data is \(\varepsilon \neq 0\). Hence, by
Theorem 4.1, the control system (4.15) cannot be locally asymptotically stabilized by
means of continuous stationary feedback laws. However, let us emphasize that, by
[3], we know that the control system (4.15) can be asymptotically stabilized by means
of periodic time-varying feedback laws. Various explicit stabilizing periodic time-
varying feedback laws for the control system (4.15) were constructed. Let us just

\[
\begin{align*}
\dot{x}_1 &= w_1 \cos x_2, \\
\dot{x}_2 &= w_2, \\
\dot{y} &= w_1 \sin x_2,
\end{align*}
\]
mention Samson's pioneering work [17], as well as [7]. Let us show how Theorem 1.4 can be applied to construct such stabilizing feedback laws.

The quadratic approximation (in the sense explained in the introduction) of (4.15) around \((0,0) \in \mathbb{R}^3 \times \mathbb{R}\) is

\[
\dot{x}_1 = w_1, \quad \dot{x}_2 = w_2, \quad \dot{y} = w_1 x_2, \tag{4.16}
\]

where the state is \((x_1, x_2, y)^T \in \mathbb{R}^3\) and the control is \((w_1, w_2)^T \in \mathbb{R}^2\).

The control system (4.16) has the form of (1.1). However, it does not satisfy property \((P_1)\). In order to handle this problem, we perform the following change of variables:

\[
u_1 = w_1 + x_1, \quad \nu_2 = w_2 + x_2.
\]

This transforms the control system (4.16) into the control system

\[
\dot{x}_1 = -x_1 + u_1, \quad \dot{x}_2 = -x_2 + u_2, \quad \dot{y} = -x_1 x_2 + x_2 u_1, \tag{4.17}
\]

where the state is \((x_1, x_2, y)^T \in \mathbb{R}^3\) and the control is \((u_1, u_2)^T \in \mathbb{R}^2\). It still has the form (1.1) with \(n = 2, m = 2, k = 1\),

\[
A := \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B := \begin{pmatrix} 1 \\ 0 \end{pmatrix},
\]

\[
Q_1(x, \tilde{x}) := -\frac{1}{2}(x_1 \tilde{x}_2 + \tilde{x}_1 x_2), \quad Q_2(x, u) = x_2 u_1, \quad Q_3(u, \tilde{u}) = 0
\]

for every \(x = (x_1, x_2)^T \in \mathbb{R}^2\), every \(\tilde{x} = (\tilde{x}_1, \tilde{x}_2)^T \in \mathbb{R}^2\), every \(u = (u_1, u_2)^T \in \mathbb{R}^2\), and every \(\tilde{u} \in \mathbb{R}^2\).

Property \((P_1)\) now holds. For the control system (4.17), one has \(L = 0\), and therefore property \((P_2)\) holds. Let us now consider property \((P_3)\). By a theorem due to Sussmann [22], the control system (4.17) is locally controllable in time \(T\) for every \(T > 0\), and therefore, by Proposition 1.2, \((P_3)\) holds for every \(T > 0\). Let us give an explicit \(u\) having the properties required in \((P_3)\). We take \(T := 3\). Let \(a_{\pm} = (2187 - 280\delta + 140\varepsilon_1)/2187\) with \(\delta > 0\) as in \((P_3)\) and \(\varepsilon_1 > 0\). Let us define \(v = (v_1, v_2)^T : [0,3] \times \{-1,1\} \to \mathbb{R}^2\) by

\[
v_1(t, \pm 1) = a_{\pm}(t^4 - 6t^3 + 10t^2 - t - 3) \quad \forall t \in [0,3],
\]

\[
v_2(t, 1) = -v_2(t, -1) = t^4 - 2t^3 + 3t^2 - 18t + 18 \quad \forall t \in [0,3].
\]
The controls \( t \in [0, T] \mapsto v(t, b) \), with \( b \in S^0 = \{-1, 1\} \), are plotted in Figure 11. Clearly (1.10) and (1.11) hold. As it can be seen in Figure 12, straightforward computations give that if we take \( 2\delta = 0.5 \) and \( \varepsilon_1 = 0.12 \), then for \( y \) defined in (1.12), for \( b = -1 \), we have \( \tilde{y}(3) = 1.49 \), and for \( b = 1 \), we have \( \tilde{y}(3) = -1.49 \), which shows that (1.12) holds.

For \( \varepsilon > 0 \), we define \( u_\varepsilon = (u_{1\varepsilon}, u_{2\varepsilon})^t : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^2 \) by (1.13) and (1.14). Let \( \rho_2 \in (\rho_1, 1) \).

We may now apply Proposition 2.1. Let \( \varepsilon_0 > 0 \) and \( C > 0 \) as in this proposition, and let \( \varepsilon \in (0, \varepsilon_0] \). By Proposition 2.1, we get that
\[
|x(t)|^2 + \varepsilon |y(t)| \leq C \left( |x(0)|^2 + \varepsilon |y(0)| \right) \quad \forall t \in [0, T],
\]
\[
|x(T)|^2 + \varepsilon |y(T)| \leq \rho_2 |x(0)|^2 + \varepsilon (1 - \varepsilon^2 \delta) |y(0)|
\]
for every solution \((x, y) : [0, T] \to \mathbb{R}^2 \times \mathbb{R}\) of the closed-loop system
\[
\dot{x}_1 = -x_1 + u_{1\varepsilon}, \quad \dot{x}_2 = -x_2 + u_{2\varepsilon}(t, y), \quad \dot{y} = -x_1 x_2 + x_2 u_{2\varepsilon}(t, y).
\]

Let us now check, using Theorem 1.4, that the same time-varying feedback also leads to asymptotic stability for the initial control system (4.15), i.e., that \( 0 \in \mathbb{R}^3 \) is also (locally) asymptotically stable for
\[
\begin{align*}
\dot{x}_1 &= (-x_1 + u_{1\varepsilon}(t, y)) \cos x_2, \\
\dot{x}_2 &= -x_2 + u_{2\varepsilon}(t, y), \\
\dot{y} &= (-x_1 + u_{1\varepsilon}(t, y)) \sin x_2.
\end{align*}
\]
Let $R_x : \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ and $R_y : \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by

$$R_x(x, y, u) := ((-x_1 + u_1)(-1 + \cos x_2), 0)^{tr}, \quad R_y(x, y, u) := (-x_1 + u_1)(-x_2 + \sin x_2)$$

for every $x = (x_1, x_2)^{tr} \in \mathbb{R}^2$, every $y \in \mathbb{R}$, and every $u = (u_1, u_2)^{tr} \in \mathbb{R}^2$. Then (4.15) is the control system (1.19). Let us point out that there exists $M_1 > 0$ such that

$$|x_3(-1 + \cos x_2)| \leq M_1(|x_2| + |x_3|)^3,$$
$$|x_3(-x_2 + \sin x_2)| \leq M_1(|x_2| + |x_3|)^4 \quad \forall (x_2, x_3)^{tr} \in \mathbb{R}^2.$$

In particular, (1.20) and (1.21) hold for $\eta := 2 > 0$, provided that $M > 0$ is large enough. Hence, using Theorem 1.4, one gets the following proposition.

**Proposition 4.3.** There exists $\varepsilon_0 > 0$ such that, for every $\varepsilon \in (0, \varepsilon_0]$, there exist $C > 0$, $\rho > 0$, and $\lambda > 0$ such that, for every solution $(x, y)$ of (4.20) with $|x(0)|^2 + |y(0)| \leq \rho$, one has

$$|x(t)|^2 + |y(t)| \leq Ce^{-\lambda t} \left( |x(0)|^2 + |y(0)| \right) \quad \forall t \in [0, +\infty).$$

Numerical simulations are presented in Figures 13 and 14.

**Fig. 13.** For $\varepsilon = 0.7$ and initial data $x_1(0) = 0.6$, $x_2(0) = 0.4$, and $y(0) = -0.49$, the trajectory of the solution of the control system (4.15) is shown on the left, while the comparison of decay between $|(x_1, x_2)^{tr}|^2 + 0.7|y|$ and $0.48 \exp(-0.19t)$ is shown on the right.

**Fig. 14.** For $\varepsilon = 0.7$ and initial data $x_1(0) = -0.2$, $x_2(0) = 0.7$, and $y(0) = -0.5$, the trajectory of the solution of the control system (4.15) is shown on the left, while the comparison of decay between $|(x_1, x_2)^{tr}|^2 + 0.7|y|$ and $0.85 \exp(-0.19t)$ is shown on the right.
4.4. Underactuated surface vessel system. Let us consider the nonlinear system that models the dynamic positioning of surface vessels through drilling, pipelaying, and diving support. More precisely, we consider a ship that has no side thruster but two independent main thrusters located at a distance from the center line in order to provide both surge force and yaw moment. Then the control system is

\begin{align}
\dot{u} &= -\frac{d_1}{m_1}u + \frac{m_2}{m_1}vr + \frac{1}{m_1}\tau_1, \\
\dot{v} &= -\frac{m_1}{m_2}ur - \frac{d_2}{m_2}v, \\
\dot{r} &= -\frac{d_3}{m_3}r + \frac{m_1 - m_2}{m_3}uv + \frac{1}{m_3}\tau_3,
\end{align}

\begin{align}
\dot{z}_1 &= u + z_2r, \\
\dot{z}_2 &= v - z_1r, \\
\dot{z}_3 &= r,
\end{align}

where the state is \((u, v, r, z_1, z_2, z_3)^t \in \mathbb{R}^6\) and the control is \((\tau_1, \tau_3) \in \mathbb{R}^2\). Physically, \(u, v,\) and \(r\) are the velocities in surge, sway, and yaw, respectively, the parameters \(m_i > 0\), for \(i = 1, 2, 3\), are given by the ship inertia and the added mass effects, the parameters \(d_i > 0\), for \(i = 1, 2, 3\), are given by the hydrodynamic damping, \(\tau_1\) is the surge control force, and \(\tau_3\) is the yaw control moment. Once more,

- using \([22]\), one gets that the control system (4.21), (4.22) is locally controllable in small time;
- the control system (4.21), (4.22) does not satisfy the Brockett condition (4.3), and therefore, by Theorem 4.1, the control system (4.21), (4.22) cannot be locally asymptotically stabilized by means of continuous stationary feedback laws;
- by \([5]\), the control system (4.21), (4.22) can be asymptotically stabilized by means of periodic time-varying feedback laws.

Let us point out that time-varying stabilizing feedback laws for the control system (4.21), (4.22) have been constructed by Mazenc, Pettersen, and Nijmeijer in \([13]\). Let us show how Theorem 1.3 can be used in constructing other time-varying stabilizing feedback laws.

Before treating the system, we perform transformations already presented in \([13]\). We do the following change of variables:

\begin{align*}
Z_2 &= z_2 + \frac{m_2}{d_2}v, \\
\tau_r &= \frac{m_1 - m_2}{m_3}uv - \frac{d_3}{m_3}r + \frac{1}{m_3}\tau_3, \\
\tau_\mu &= \frac{d_2}{m_2}z_1 + \frac{d_2}{m_2}\mu - \frac{m_2}{d_2}vr - \frac{1}{d_2}(m_2vr - d_1u + \tau_1).
\end{align*}

Then the control system (4.21), (4.22) becomes the control system

\begin{align}
\dot{z}_1 &= -\frac{d_2}{m_1}z_1 - \frac{d_2}{m_1}\mu + Z_2r - \frac{m_2}{d_2}vr, \\
\dot{Z}_2 &= \mu r, \\
\dot{z}_3 &= r,
\end{align}

\begin{align}
\dot{v} &= -\frac{d_2}{m_2}v + \frac{d_2}{m_2}(z_1 + \mu)r, \\
\dot{\mu} &= \tau_\mu, \\
\dot{r} &= \tau_r,
\end{align}

where the state is \((z_1, Z_2, z_3, v, \mu, r)^t \in \mathbb{R}^5\) and the control is \((\tau_\mu, \tau_r)^t \in \mathbb{R}^2\).

From now on, to simplify the notation, we consider the case where the physical constants are equal to 1, i.e., where \(m_i = 1\) and \(d_i = 1\) for \(i = 1, 2\). Once more a preliminary change of variables is necessary to guarantee that the system satisfies the assumptions of Theorem 1.4. We perform the following change of variables:

\begin{align}
\tau_\mu &= -\mu + \tau_\mu^*, \\
\tau_r &= -2z_3 - r + \tau_r^*.
\end{align}
With the notation of section 1, \( x := (z_1, \mu, z_3, r)^{tr} \in \mathbb{R}^4 \) and \( y := (v, Z_2)^{tr} \). Then the control system has the form (1.1) with \( n = 4, m = 2, k = 2 \),

\[
(4.26) \quad A := \begin{pmatrix}
-1 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -2 & -1
\end{pmatrix}, \quad B := \begin{pmatrix}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{pmatrix},
\]

\[
(4.27) \quad L = \begin{pmatrix}
-1 & 0 \\
0 & 0
\end{pmatrix}, \quad Q_1(x, x) = \begin{pmatrix}
(z_1 + \mu)^r \\
\mu r
\end{pmatrix}, \quad Q_2 := 0, \quad Q_3 := 0.
\]

Simple computations show

\[
\|e^{AT}\|_2 = \left\| \begin{pmatrix}
\frac{1}{e^t} & -\frac{1}{e^t} \\
0 & \frac{1}{e^t} \\
0 & 0 \\
0 & 0
\end{pmatrix} \right\|_2 = \max \left\{ \frac{7e^2 \cos(\sqrt{7}) - 7ie^2 \sin(\sqrt{7})}{7e^4}, \frac{7e^2 \cos(\sqrt{7}) + 7ie^2 \sin(\sqrt{7})}{7e^4} \right\}
\]

\[= 0.13 \]

hence, property \((P_1)\) holds for \( T = 4 \). Property \((P_2)\) follows from (4.27). Again, by using [22], one gets that the control system (1.1), with \( A, B, L, \) and \( Q \) defined by (4.26) and (4.27), is locally controllable in time \( T \) for every \( T > 0 \), and by Proposition 1.2, \((P_3)\) holds for every \( T > 0 \). Let us, once more, give an explicit \( v \) having the properties required in \((P_3)\). We again choose \( T = 4 \) and define the “control \( v^* \)” for property \((P_3)\) by

\[
(4.28) \quad \tau^*_\mu := \frac{-2338875b_2 + 4096b_1e^4 + 41895b_2e^4)(32 + 16t - 29t^2 + t^4)}{32768c(-30499 + 559e^4)}
\]

and

\[
(4.29) \quad \tau^*_r := \frac{-256b_1e^4(-256 + 416t - 304t^2 + 156t^3 - 49t^4 + 6t^5)}{4096b_2e^4 + 315b_2(-7425 + 133e^4)}
+ \frac{315b_2(-118800 + 10056t - 49578t^2 + 34270t^3 - 1771t^4 - 1028t^5)}{4096b_2e^4 + 315b_2(-7425 + 133e^4)}
+ \frac{315b_2(e^4(2128 - 104t + 850t^2 - 598t^3 + 23t^4 + 20t^5))}{4096b_1e^4 + 315b_2(-7425 + 133e^4)}
\]

for \( c = \frac{1}{4} \); see Figure 15.

Trajectories of the closed-loop system are shown in Figure 16 for \( \epsilon = 0.5 \) and for different values of the initial data.

In Figures 17 and 18 trajectory of system (4.23) and (4.24) with the feedback law \( u_e(t, b) = (\epsilon \sqrt{\tau^*_\mu}(t - [t/4], b), \epsilon \sqrt{\tau^*_r}(t - [t/4], b) \) as (1.14) is shown.
Trajectory of the solution of the control system (4.21) and (4.22) for between

\[ z(0) = 0 \]

\[ z \in \mathbb{R}^3 \]

\[ \tau \text{ is defined as in } (4.26) \]

and the initial data

\[ (\mu, r) = (0.5, 0.2) \]

\[ \tau^\dagger = 0.49 \exp(-0.2t) \]

\[ \tau^\star = 0.5 \]

\[ \mu^\star, r^\star \]

\[ \tau^\dagger, \tau^\star \]

\[ (\mu, r) = (0, 1) \]

\[ (\mu, r) = (1, 0) \]

\[ |(z_1, z_3, \mu, r)|^2 + 0.5|v, z_2|^2 \]

\[ 0.49 \exp(-0.2t) \]

\[ 0.5 \]

For \( \varepsilon = 0.5 \) and initial data \( z_1(0) = 0.8, z_3(0) = 0.3, \mu(0) = 0.2, r(0) = 0.1, v(0) = -0.2, z_2(0) = 0.5, \) the trajectory of the solution of the control system (4.21) and (4.22) is shown on the left, while the comparison of decay between \(|(z_1, z_3, \mu, r)|^2 + 0.5|v, z_2|^2|\) and 0.49 exp\((-0.2t)\) is shown on the right.
5. Open problems. In the literature, there are interesting models that do not adapt to our study, such as the rigid spacecraft [9] described by the control system

\[
\begin{align*}
\dot{x}_1 &= x_5 x_6, \\
\dot{x}_2 &= x_1 + c x_3 x_6, \\
\dot{x}_3 &= x_5, \\
\dot{x}_5 &= u_1, \\
\dot{x}_6 &= u_2,
\end{align*}
\]

where the state is \((x_1, x_2, x_3, x_5, x_6)^T \in \mathbb{R}^5\) and the control is \((u_1, u_2)^T \in \mathbb{R}^2\), and \(c \neq 0\), as well as the X4 flyer modeled by (see [23])

\[
\begin{align*}
\dot{x} &= x_1, \\
\dot{x}_1 &= \frac{1}{m} \alpha \sin(\beta), \\
\dot{y} &= y_1, \\
\dot{y}_1 &= \frac{1}{m} \alpha \cos(\beta), \\
\dot{\beta} &= \varphi, \\
\dot{z} &= z_1, \\
\dot{z}_1 &= g - \frac{1}{m} \nu, \\
\dot{\varphi} &= \omega, \\
\dot{\omega} &= \tau_\varphi,
\end{align*}
\]

where the state is \((x, x_1, y, y_1, z, z_1, \alpha, \beta, \varphi, \omega)^T \in \mathbb{R}^{10}\) and the control is \((u, \nu, \tau_\varphi)^T \in \mathbb{R}^3\).

For the satellite,

\[
L := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
\]

and for the X4 flyer,

\[
L := \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}.
\]

Therefore, these two problems do not satisfy property \((P_2)\).

**Appendix A. Proof of Proposition 1.2.** Let us assume, for the moment, that the following lemma holds.

**Lemma A.1.** Let \(\tau \in (0, T)\). Let us assume that the control system (1.1) is locally controllable in time \(\tau\). Then there exists \(\bar{u} \in L^\infty([0, T]; \mathbb{R}^m)\) such that if \((\bar{x}, \bar{y}) \in C^0([0, T]; \mathbb{R}^n \times \mathbb{R}^k)\) is the solution of

\[
\begin{align*}
\dot{\bar{x}} &= A\bar{x} + B\bar{u} (t), \\
\dot{\bar{y}} &= L\bar{y} + Q_1(\bar{x}, \bar{x}) + Q_2(\bar{x}, \bar{u}) + Q_3(\bar{u}, \bar{u}), \\
\bar{x}(0) &= 0, \\
\bar{y}(0) &= 0,
\end{align*}
\]

Fig. 18. For \(\varepsilon = 0.5\) and initial data \(z_1(0) = 0.56, z_3(0) = -0.3, \mu(0) = 0.2, r(0) = 0.1, v(0) = -0.2,\) and \(z_2(0) = 0.5,\) the trajectory of the solution of the control system (4.21) and (4.22) is shown on the left, while the comparison of decay between \(|(z_1, z_3, \mu, r)^T|^2 + 0.5|v, z_2|^T|\) and \(7.38 \exp(-0.15t)\) is shown on the right.
then the following two properties hold:

(A.2) \( \dot{x}(T) = 0 \) and \( \dot{y}(T) = 0; \)
(A.3) the linearized control system of (1.1) around 
\((\dot{x}^{tr}, \dot{y}^{tr})^{tr}, \bar{u})\) is controllable.

For \( r > 0 \), let \( B_r^k \) be the open ball of radius \( r \) centered at \( 0 \) in \( \mathbb{R}^k \). Using the inverse mapping theorem and Lemma A.1, there exist \( r > 0 \) and \( W \in C^1(B_r^k; L^\infty([0, T]; \mathbb{R}^m)) \) such that for every \( b \in B_r^k, \)

\[(A.4) \quad \dot{x} = Ax + BW(b)(t), \quad \dot{y} = Ly + Q_1(x, x) + Q_2(x, W(b)(t)) + Q_3(W(b)(t), W(b)(t)), \quad x(0) = 0, \quad y(0) = 0 \Rightarrow (x(T) = 0, \ y(T) = b).\]

Let us now define \( v : [0, T] \times S^{k-1} \to \mathbb{R}^m \) by

\[(A.5) \quad v(t, b) := W \left( -e^{TL} \frac{rb}{2\|e^{TL}\|_2} \right) (t) \quad \forall (t, b) \in [0, T] \times S^{k-1}.\]

Then one has (1.10), and if \( C_0 > 0 \) is large enough, (1.11) holds. Moreover, from \( (A.4) \) and \( (A.5) \), one has, for every \( b \in S^{k-1}, \)

\[(A.6) \quad \dot{x} = A\dot{x} + Bv(t, b), \quad \dot{y} = L\dot{y} + Q_1(\dot{x}, \dot{x}) + Q_2(x, v(t, b)) + Q_3(v(t, b), v(t, b)), \quad \dot{x}(0) = 0, \quad \dot{y}(0) = 0 \Rightarrow \left( \dot{x}(T) = 0, \dot{y}(T) = -e^{TL} \frac{rb}{2\|e^{TL}\|_2} \right),\]

which shows that (1.12) holds with

\[(A.7) \quad \delta := \frac{r}{4\|e^{TL}\|_2\|e^{-TL}\|_2}.\]

Finally, let us prove Lemma A.1. By the Hermann [11] and Nagano [14] theorem and the controllability assumption, the control system (1.1) satisfies the Lie algebra rank condition at \((0, 0) \in \mathbb{R}^{n+k} \times \mathbb{R}^m\) (see, e.g., [6, Definition 3.16]). Then, by [4, Theorem 1.3], for every \( \eta > 0 \), there exists \( \bar{u} \in C^\infty([0, T - \tau]; \mathbb{R}^m) \) such that if \( (\bar{x}, \bar{y}) \in C^\infty([0, T - \tau]; \mathbb{R}^n \times \mathbb{R}^k) \) is the solution of (A.1) on \([0, T - \tau]\), then the following two properties hold:

\[(A.8) \quad |\bar{x}(T - \tau)| + |\bar{y}(T - \tau)| < \eta; \]
(A.9) the linearized control system of (1.1) around 
\((\bar{x}^{tr}, \bar{y}^{tr})^{tr}, \bar{u})\) is controllable.

We choose \( \eta > 0 \) as in Definition 1.1. Then, from \( (A.8) \) we can extend \( \bar{u} \) to \([0, T]\) so that it is an element of \( L^\infty([0, T]; \mathbb{R}^m) \) such that if \( (\bar{x}, \bar{y}) \) is extended to \([0, T]\) so that it is the element of \( C^0([0, T]; \mathbb{R}^n \times \mathbb{R}^k) \) which is the solution of (A.1) on \([0, T]\), then (A.2) holds. Then (A.9) implies (A.3). This concludes the proof of Lemma A.1 and, also, the proof of Proposition 1.2.

Remark A.2. An alternative proof of Proposition 1.2 can be provided by using [18] instead of [4].
REFERENCES


