LINKS BETWEEN LOCAL CONTROLLABILITY AND LOCAL CONTINUOUS STABILIZATION

J.-M. Coron
Laboratoire d'Analyse Numérique, Bât. 425, Université Paris-Sud, 91405 Orsay, France

Abstract: We prove that a control system which satisfies well known sufficient conditions for small time local controllability — for example the Hermes Condition — can be dynamically locally asymptotically stabilized by means of a continuous time-varying feedback law. For special systems (including systems without drift) we get local stabilization in finite time by means of a continuous time-varying feedback law.

Keywords: Nonlinear control systems, local controllability, local stabilization, time-varying feedback law.

1. Introduction
For f in $C^\infty(\mathbb{R}^n \times \mathbb{R}^m; \mathbb{R}^n)$ we consider the control system
\begin{equation}
\dot{x} = f(x, u)
\end{equation}
where u in \mathbb{R}^m is the control. H. Sussmann and V. Jurjdevic have proved in [SJ] that the set of reachable points from x_0 in small time and with small controls has x_0 in the closure of its interior if (and only if f is analytic)
\begin{equation}
f(x_0, 0) = 0,
\end{equation}
\begin{equation}
\left\{ h(x_0); h \in \text{Lie} \left\{ \frac{\partial^{\alpha}}{\partial x^\alpha} (\cdot, 0); \alpha \in \mathbb{N}^m \right\} \right\} = \mathbb{R}^n
\end{equation}
where, for a family \mathcal{F} of vector fields on \mathbb{R}^n, Lie \mathcal{F} denotes the Lie algebra generated by the vector fields in \mathcal{F}. Condition (1.3) for all x_0 in \mathbb{R}^n implies, for special f, the complete controllability of $\dot{x} = f(x, u)$. This is in particular the case if
\begin{equation}
f(x, u) = \sum_{i=1}^m u_i f_i(x).
\end{equation}

Let us recall that H. Sussmann has proved in [Su1] that, if f is analytic, the complete controllability implies that $\dot{x} = f(x, u)$ can be steered to the origin by means of a piecewise analytic feedback law: $u = u(x)$. Let us also mention that in [DMK] and [Kaw2] it is proved that if $n = 2, m = 1$ and f is affine then local controllability implies that $\dot{x} = f(x, u)$ is asymptotically stabilizable by means of a continuous feedback law. Unfortunately, as it has been shown by R. Brock-ett in [B], the complete controllability does not imply in more general situations - even if (1.4) holds - that $\dot{x} = f(x, u)$ can be asymptotically stabilized by means of a continuous feedback law. For example
\begin{equation}
\dot{x}_1 = u_1, \quad \dot{x}_2 = u_2, \quad \dot{x}_3 = x_1 u_2 - x_2 u_1
\end{equation}
is a control system which satisfies (1.3) for all x_0 in \mathbb{R}^n and (1.4). Therefore it is completely controllable, but it is proved in [B] that it cannot be asymptotically stabilized by means of a continuous feedback law. In [Sa], C. Samson has proved that (1.5) can be globally asymptotically stabilized by means of a smooth time-varying feedback law $u = u(x, t)$. It turns out to be true in general under conditions (1.4) and (1.3) for all x_0 in $\mathbb{R}^n \setminus \{0\}$. More precisely it is proved in [C1] (see [F] and [Se] for special cases but with explicit feedback laws; see also [CPo] and [So3]).

Theorem 1.1. Assume (1.3) for all x_0 in $\mathbb{R}^n \setminus \{0\}$ and (1.4). Then, for any positive T, there exists u in $C^\infty(\mathbb{R}^n \times \mathbb{R}; \mathbb{R}^m)$ such that
\begin{equation}
u(0, t) = 0 \quad \text{for all } t \in \mathbb{R},
\end{equation}
\begin{equation}u(x, t + T) = u(x, t) \quad \forall (x, t) \in \mathbb{R}^n \times \mathbb{R},
\end{equation}
\begin{equation}u(x, t + T) = u(x, t) \quad \forall (x, t) \in \mathbb{R}^n \times \mathbb{R}.
\end{equation}
Theorem 1.1 can be slightly generalized in the following

Proposition 1.2. Assume that (1.3) holds for all x_0 in $\mathbb{R}^n \setminus \{0\}$ and that there exists φ in $C^\infty(\mathbb{R}^n; \mathbb{R}^m)$ such that
\begin{equation}\varphi(0) = 0
\end{equation}
\begin{equation}f(x, \varphi(u)) = -f(x, u) \quad \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^m.
\end{equation}
Then the conclusion of theorem 1.1 holds.

Examples 1.3. a) Choosing $\varphi(u) = -u$ we get Theorem 1.1. b) If $f(x, u) = u_1 g(x, u_2), u_1 \in \mathbb{R}, u_2 \in \mathbb{R}^{m-1}$ we can take $\varphi(u_1, u_2) = (-u_1, u_2)$.

We will sketch in Section 2 the modifications of the proof given in [C1] in order to get Proposition 1.2. Let us notice that (1.9) and (1.10) implies $f(x, 0) = 0$ and therefore do not allow a drift term. In presence of a drift term many studies have been carried out on sufficient conditions for the Small Time Local Controllability (STLC) — this means that the attainable set from x_0 at time $t > 0$ contains x_0 in its interior for all $t > 0$; see e.g. the recent nice survey [Kaw1] by M. Kawski.
on this question. An important tool to study STLC is the local approximation cones of the attainable set and the associated families of admissible control variations, see [Kaw1]. For stabilization it seems natural to modify the definition of p-th order tangent vector to the attainable set at zero in the following way (we assume $f(0,0)=0$)

Definition 1.4. For a positive integer p, let D^p be the set of vectors $\xi \in \mathbb{R}^n$ such that there exists u in $C^0([0,1]; L^1((0,1); \mathbb{R}^m))$ such that

$$|u(s)(t)| \leq s \quad \text{for all } (s,t) \in [0,1] \times [0,1],$$

and

$$\psi(u,s) = s^p \xi + o(s^p) \quad \text{as } s \to 0$$

where $\psi(u,s)$ denotes the value at time 0 of the solution of $\dot{x} = f(x,u(s)(t))$, $x(0) = 1$.

In order to state our main results on the stabilization of systems with a drift term let us introduce some other definitions

Definition 1.5. The system $\dot{x} = f(x,u)$ is locally asymptotically stabilizable by means of a T-periodic feedback law if there exists $u : \mathbb{R} 	imes \mathbb{R} \to \mathbb{R}^m$ such that

$$u \in C^\infty((\mathbb{R} \setminus \{0\}) \times \mathbb{R}; \mathbb{R}^m) \cap C^0(\mathbb{R}; \mathbb{R}^2),$$

$$u(0,t) = 0 \quad \text{for all } t \in \mathbb{R},$$

$$u(x,t+T) = u(x,t) \quad \forall x, t \in \mathbb{R} \times \mathbb{R}.$$

$$3\delta > 0 \text{ such that for } |x_0| < \delta, t_0 \leq t \leq t_1 \text{ there exists one and only one solution on } [t_0,t_1],$$

and

$$\left\{ \begin{array}{l}
\dot{x} = f(x,u(x,t)) \quad x(t_0) = x_0 \\
0 \in \mathbb{R}^n \quad \text{is a locally asymptotically stable point of } \dot{x} = f(x,u(x,t))
\end{array} \right\}$$

If such a u exists we will say that $\dot{x} = f(x,u)$ is T-LAS. If, moreover, for all small enough x_0, we have

$$\left\{ \begin{array}{l}
\dot{x} = f(x,u(x,t)) \quad \text{and } x(0) = x_0 \\
\implies x(T) = 0
\end{array} \right\}$$

we will say that $\dot{x} = f(x,u)$ is T-Locally Stabilizable (T-LS).

Definition 1.6. Let k be an integer: $\dot{x} = f(x,u)$ is k-dynamically T-LAS (resp. T-LS) if the system $\dot{x} = f(x,u)$, $\dot{y} = v$ where the control is $(u,v) \in \mathbb{R}^m \times \mathbb{R}^k$, is T-LAS (resp. T-LS). Note that

$$T\text{-LS} \implies T\text{-LAS},$$

$$T\text{-LAS} \implies k\text{-dynamically } T\text{-LAS},$$

$$\left\{ \begin{array}{l}
k\text{-dynamically } T\text{-LAS and } k \leq k' \\
\implies k'\text{-dynamically } T\text{-LAS}
\end{array} \right\}.$$

Until the end of this paper we will assume

$$f(0,0) = 0,$$

$$\left\{ h(0) : h \in \text{Lie \{0\}} \right\} = \mathbb{R}^n.$$

Let us remark that (1.23) and (1.24) for the system $\dot{x} = f(x,u)$ are equivalent to (1.23) and (1.24) for the system $\dot{x} = f(x,y)$, $\dot{y} = u \in \mathbb{R}^m$. Let $D = \cup_{\delta > 1} D^\delta$ and let $\text{int} (D)$ its interior. We will prove in Section 3

Theorem 1.7. Assume

$$0 \in \text{int } D.$$

Then, for all positive real number T, $\dot{x} = f(x,u)$ is n-dynamically T-LAS.

In Section 5 we will make some remarks concerning (1.25). In particular we will see that the Hermes Condition ([Su2; Section 7.3]) implies (1.25). Let us recall that this condition for $m = 1$ and $f(x,u) = f_0(x) + u f_1(x)$ (see Section 5 for the general case) means that any iterated Lie bracket of f_0 and f_1 with an even number of f_1 and an odd number of f_0 can be expressed at 0 as the sum of iterated Lie brackets containing fewer f_1. Let us notice that the interest of time-varying feedback law (resp. dynamical stabilization) for systems with drift has already been pointed out in [SS] [resp. [CP]].

It would be interesting to know if (1.25) implies that $\dot{x} = f(x,u)$ is T-LS: our next theorem is a partial result in this direction [see [C3] for other cases; see also [SCW] for different cases and T-LAS, instead of T-LS, but with explicit feedback laws].

Theorem 1.8. Let $u = (u_1, u_2) \in \mathbb{R}^{m-1} \times \mathbb{R}$ and $x = (x_1, x_2) \in \mathbb{R}^{m-1} \times \mathbb{R}$. Assume $n \geq 4$. (1.25).

$$f(x,u) = (f_1(x,u), u_2) \in \mathbb{R}^{m-1} \times \mathbb{R} \simeq \mathbb{R}^n,$$

$$f_1((0,x_2),(0,u_2)) = 0 \quad \forall (x_2,u_2) \in \mathbb{R} \times \mathbb{R}.$$

Then $\dot{x} = f(x,u)$ is T-LS for all positive T.

For $n \geq 3$ our next proposition is a consequence of Theorem 1.8.

Proposition 1.9. Assume (1.25) holds. Then for all positive T, $\dot{x} = f(x,u)$ is 1-dynamically T-LS.

Proof. For $n \geq 3$ apply Theorem 1.8 to the system $\dot{x} = f(x,u)$, $\dot{y} = v \in \mathbb{R}$. For $n \leq 2$ see Remark 4.1 b) or [C3].

Our next proposition is a corollary of Theorem 1.8 if $n \geq 4$ and is proved in [C3] if $n \leq 3$

Proposition 1.10. Assume $f(x,u) = \sum_{i=1}^m u_i f_i(x)$. Then $\dot{x} = f(x,u)$ is T-LS for all positive T.

Proof. Since $f(x,u) = \sum_{i=1}^m u_i f_i(x)$, $\dot{x} = f(x,u)$ satisfies the Hermes Condition and therefore (1.25). Moreover without loss of generality we may assume $f_m = e_m$ and $f_i, e_m = 0$ for all $i \in [1, m-1]$. The conclusion follows from Theorem 1.8 if $n \geq 4$; if $n \leq 3$ see Remark 4.2 b) or [C3].

Some of the proofs are only sketched. The details of these proofs are given in [C2] and [C3]. Section 3 deals with Theorem 1.7, Section 4 deals with Theorem 1.8. One of the tools we use is the study of the controllability of the linearized equations around trajectories. Roughly speaking we will see in Section 2 that, under some Lie algebra rank condition, the linearized

166
equations around a generic family of trajectories near \(x_0 = 0 \) and with \(u \) "small" are locally controllable with impulsive controls. This is a generalization of a result contained in [C1].

Finally let us mention that many results on continuous feedback stabilization have been found recently. For a recent nice survey on this subject see [So2].

2. Study of the linearized equation

Throughout this paper "manifold" always means finite dimensional, Hausdorff second countable manifold of class \(C^\infty \). Unless otherwise specified the manifolds have no boundary. For two manifolds \(V \) and \(W \), and for \(p \) in \(\mathbb{N} \cup \{0\} \), \(C^p(V;W) \) is provided with the Whitney topology (see e.g. [GC:pp.42]). On \(C^\infty(V;W) \) we define a topology, called the \(C^\infty \)-topology, in the following way. For an integer \(k \), let \(J^k(V;W) \) be the set of \(k \)-jets of \(C^\infty \)-mappings from \(V \) into \(W \). Let \((K_i; i \in \mathbb{N}) \) be a sequence of compact subsets of \(V \) such that \(K_i \subseteq K_{i+1} \) for all integer \(i \), \(\bigcup_{i \in \mathbb{N}} K_i = V \), and \(K_0 = \phi \). For a sequence \(k = (k_i; i \in \mathbb{N}) \) of integers and for a sequence \(U = (U_i; i \in \mathbb{N}) \) where \(U_i \) is an open subset of \(J^k_i(V;W) \) for all integer \(i \), let \(O(k,U) \) be the set of \(u \) in \(C^\infty(V;W) \) such that \(J^k_i(V \setminus K_i) \subseteq U_i \) for all integer \(i \). Our topology is the topology whose basis is the family of set \(O(k,U) \) where \(k \) and \(U \) are as above. This topology is independent of the choice of \((K_i; i \in \mathbb{N}) \) and is finer than the Whitney \(C^\infty \)-topology if \(V \) is not compact. Note also that \(C^\infty(V;W) \) with our topology, as \(C^\infty(V;W) \) with the Whitney \(C^\infty \)-topology, is a Baire space (adapt the proof of [GG:Proposition II.3.13]). For a \(C^\infty \)-smooth fibration \(p : W \to V \), \(C^\infty(V) \) denotes the set of the \(C^\infty \)-smooth sections of this fibration. Let \(N \) and \(\Lambda \) be two manifolds and let \(U \) be an open set of \(\mathbb{R}^m \).

We denote by \(\pi : TN \to N \) the tangent bundle of \(N \) and by \(C^\infty(T \times U \times \Lambda) \) the \(C^\infty \)-smooth sections of the fibration \(\pi : TN \times U \times \Lambda \to N \times U \times \Lambda \). Let \(E \) be a vector subbundle of the tangent bundle of \(N \). Let \(g \) be in \(C^\infty(T \times U \times \Lambda) \). Throughout this section we assume that, for any \((x_0,u_0,\lambda_0,\alpha) \) in \(N \times U \times \Lambda \times \mathbb{N}^m \)

\[
\frac{\partial g}{\partial u}(x_0,u_0,\lambda_0,\alpha) \in E(x_0). \tag{2.1}
\]

We will say that \(g \) satisfies hypothesis \(H(k) \) at \((x_0,\lambda_0) \) if

\[
\text{Span} \left\{ \frac{\partial g}{\partial u}(x_0,0,\lambda_0,\alpha) \mid 1 \leq |\alpha| \leq k \right\} \cup \text{Br}_k \left(\frac{\partial g}{\partial u_0}(.,0,\lambda_0,\alpha) \mid 1 \leq |\alpha| \leq k \right)(x_0) = E(x_0) \tag{2.2}
\]

where \(\text{Br}_k F \) denotes the set of iterated Lie brackets of vectors in \(F \) of total length between \(k \) and \(k \) and where \(\text{Br}_k F(x_0) = \{ h(x) \mid h \in \text{Br}_k F \} \). Let, for \(\lambda_0 \) chosen in \(\Lambda \) and for \(u \) in \(C^\infty([0,T];U) \), \(: [0,T] \to N \) be a solution of

\[
\dot{\gamma} = g(\gamma,u(t),\lambda_0). \tag{2.3}
\]

The linearized control system around \(\gamma \) is:

\[
y(t) = A(t)y(t) + \sum_{i=1}^m v_i b_i(t) \tag{2.4}
\]

where \(v \in \mathbb{R}^m \) is the control and

\[
A(t) = \frac{\partial g}{\partial x} (\gamma(t),u(t),\lambda_0), b_i(t) = \frac{\partial g}{\partial u_i} (\gamma(t),u(t),\lambda_0). \tag{2.5}
\]

We will say that \(\gamma \) is \((E,r) \)-controllable (and \(r \)-controllable if \(E = TM \)) at time \(t \) if

\[
\text{Span} \left\{ \left(\frac{d}{dt} - A(r) \right)^j b_i \right\}_{r=1} \mid 1 \leq i \leq m, 0 \leq j \leq r \right\} = E(\gamma(t)). \tag{2.6}
\]

For the reason of this definition, see e.g. [SM] or [Kai: p.614]. Finally we will say that \(\gamma \) is \((E,N) \)-controllable on \((0,T) \) (and \(N \)-controllable if \(E = TM \)) if, for any \(t \) in \((0,T) \), there exists an integer \(r \) such that \(\gamma \) is \((E,r) \)-controllable at time \(t \).

Let \(\theta \) in \(C^\infty(\Lambda;M) \) be such that the Cauchy problem

\[
\frac{\partial \hat{x}}{\partial t} = g(\hat{x},0,\lambda) \quad \text{and} \quad \hat{x}(0,\lambda) = \theta(\lambda) \tag{2.7}
\]

has a solution on \([0,T] \times \Lambda \). Let \(d \) be a metric on \(N \times \Lambda \). Then we have

Theorem 2.1. For any neighborhood \(\Omega \) of 0 in \(C^\infty([0,T] \times \Lambda;\mathbb{R}^m) \) there exists \(\hat{u} \) in \(\Omega \cap C^\infty([0,T] \times \Lambda;\mathbb{R}^m) \) such that

(i) the solution of the Cauchy problem

\[
\frac{\partial \hat{x}}{\partial t} = g(\hat{x},\hat{u}(t,\lambda),\lambda) \quad \text{and} \quad \hat{x}(0,\lambda) = \theta(\lambda) \tag{2.8}
\]

is defined on \([0,T] \times \Lambda\);

(ii) for all \((t,\lambda) \) in \((0,T) \times \Lambda \) and all integer \(k, \) if \(g \) satisfies \(t,\ldots,\lambda \) at \((x,\lambda), \) for all \((x,\lambda) \) in \(N \times \Lambda \) such that \(d((x,\lambda), (\hat{x}(t,\lambda),\lambda)) \leq 1 \) then

\[
\hat{x}(t,\lambda) \text{ is } (E,N) \text{ - controllable at time } t. \tag{2.9}
\]

Let us sketch the proof of Theorem 2.1 when \(\Lambda \) is reduced to a point \(\lambda_0 \) (the same proof works when \(\Lambda \) is compact) and \(\Omega \) is a neighborhood of 0 in \(C^p([0,T] \times \{\lambda_0\};\mathbb{R}^m) \) (for the general case see [C2; Corollary 1.8]). From now on we will omit \(\lambda_0 \). One first notices that Theorem 2.1 for \(\hat{x} = g(x,y), \hat{y} = v \) and \(\Omega \) a neighborhood of 0 in the \(C^p_{-1}([0,T];\mathbb{R}^m) \)-topology implies Theorem 2.1 for \(\hat{x} = g(x,u) \) and \(\Omega \) a neighborhood of 0 in the \(C^p([0,T];\mathbb{R}^m) \)-topology. Hence we may assume that \(g(x,u) = g_0(x) + \sum_{i=1}^m u_i g_i(x). \)

The idea is to choose \(\hat{u}(t) = b(\mu(t))b(\mu(t)) \) where \(b = (b_1,\ldots,b_m) \in C^\infty(\mathbb{R},\mathbb{R}^m) \) is \(T \)-periodic and \(\mu \) is a large integer. The real number \(1/\mu \) plays the role of \(a \) in [C1; (4.1)]; it allows to "neglect" iterated Lie brackets of too large length if it is small. Proceeding in a similar way as in [C1] one can prove that, for generic \(b, \) if \(\mu \) is large enough \(\hat{u} \) is suitable; the only main modification is that we have, for \(t \) given and with the notations of [C1], to increase \(q \) in such a way that the condition
\[\text{rank}(C_p(I); t: 1 \leq p \leq q, |I| \leq \ell) \]

\[< q^*(\ell) = (m + 1)\frac{(m + 1)^r - 1}{m} \quad (2.11) \]

is now of codimension 2 — instead of codimension 1 in [C1] — in the space of jets \(\{b_j^p(t); j \leq q - 1, 1 \leq i \leq m\} \); note that now \(I \) may contain the index 0 and \(b_0 = 1 \).

Remark 2.2. a) One of the reasons for not having assumed \(E = T \) in order to allow time varying system — this is useful, for example, for step 1 in section 4: in order to study systems like \(\dot{x} = g(x, t, u, \lambda) \) one has just to apply theorem 2.1 to \(\dot{x} = g(x, s, u, \lambda) \), \(s = 1 \) which is a system on \(M \times R \); clearly for \(T'(s) \) equal to \(T'(s) \) in \(\mathcal{M} \times \{0\} \).

b) It follows from Theorem 2.1 (see [C2, Corollary 1.8]) that there exists an open neighborhood \(\Omega \) of 0 in \(C^\infty([0, T] \times \Lambda; \mathbb{R}^m) \) and \(\rho \) such that any \(u \in \Omega \) satisfies (2.8) and such that the set of \(u \) in \(\Omega \), satisfying (2.8) and (2) is generic in \(\Omega \) (for the \(C^\infty([0, T] \times \Lambda; \mathbb{R}^m) \)-topology).

c) Theorem 2.1 still holds even if (2.1) does not hold and if one replaces in (2.2) and (2.6) by \(\Lambda \) : see again [C2; Corollary 1.8].

d) Theorem 2.1 is related to a previous paper due to E.D. Sontag [So1]; the main novelty of our result is the \((E, N) \)-controllability and the smoothness with respect to \(\lambda \).

e) After our paper has been completed E.D. Sontag has obtained in [So3] an interesting result related to Theorem 2.1; using his method one can also get Theorem 2.1 if \(N \) is an open subset of \(\mathbb{R}^n \), \(g \) is analytic with respect to \(x, \) and \(E = T N \). Note that using our method we can get [So3; Thm 2] with even controllability with impulsive controls, \(N \) any manifold and \(g \) only \(C^\infty \). (In this case one replaces the strong accessibility condition by \(E = T N \); see [C2] for more details.

As an application of Theorem 2.1 we explain how to modify the proof of Theorem 1.1 given in [C1] in order to get Proposition 1.2. We apply Theorem 2.1 with \(N = \Lambda = \mathbb{R}^n \times [0, \frac{T}{2}]; \mathbb{R}^m \) such that, on \(\{0\} \times \left[\frac{T}{2}, \frac{T}{2} \right] \) and \(\{0\} \times \left[\frac{T}{2}, \frac{T}{2} \right] \),

\[\frac{\partial^\alpha}{\partial t^\alpha} \frac{\partial^\beta}{\partial x^\beta} u = 0 \quad \forall (x, \alpha) \in \mathbb{N}^n \times \mathbb{N} \quad (2.11) \]

and, for any \(x_0 \) in \(\mathbb{R}^n \{0\} \), the solution of \(\dot{x} = f(x, u(x, t)) \), \(x(0) = x_0 \) is \(\mathbb{N} \)-controllable on \((0, T) \). Moreover we can impose that \(\bar{u} \) is small enough (for the \(C^\infty ([0, \frac{T}{2}]; \mathbb{R}^m) \)-topology) in such a way that, for all \(t \) in \([0, \frac{T}{2}] \), \(x_0 \rightarrow x(x_0, t) \) is a diffeomorphism of \(\mathbb{R}^n \). We extend \(\bar{u} \) to \(\mathbb{R}^n \times \mathbb{R} \) by requiring (as in [C1]):

\[\bar{u}(x, t-T) = \varphi(\bar{u}(x, t)) \quad \forall (x, t) \in \mathbb{R}^n \times \left[\frac{T}{2}, T \right] \quad (2.12) \]

and

\[\bar{u}(x, t+T) = \bar{u}(x, t) \quad \forall (x, t) \in \mathbb{R}^n \times \mathbb{R} \quad (2.13) \]

By (1.9), (2.11), (2.12) and (2.13) \(\bar{u} \in C^\infty(\mathbb{R}^n \times \mathbb{R}; \mathbb{R}^m) \). Moreover, by (1.10) and (1.12), if \(\dot{z} = f(z, \bar{u}(x_0, t)) \) and \(z(0) = x_0 \), then \(\bar{z}(T) = x_0 \). The remaining part of the proof of Proposition 1.2 is similar to the one given in [C1; Section 5].

3. Proof of Theorem 1.7

Let, for \(\epsilon > 0, B_\epsilon \) be the open ball of \(\mathbb{R}^n \) of radius \(\epsilon \) and let \(T \) be a positive real number. We assume (1.25). Our first step comes from [Kaw; Appendix] see also [H1].

Lemma 3.1. There exist \(\epsilon > 0 \) and \(u \) in \(C^\infty(B_\epsilon; L^1([0, T]; \mathbb{R}^m)) \) such that:

\[\text{Sup}\{ |u(a)(t)| : t \in [0, T] \} \longrightarrow 0 \quad \text{as} \quad |a| \longrightarrow 0 \quad (3.1) \]

\[x(T, a; u) = 0 \quad \text{for all} \quad a \in B_\epsilon \quad (3.2) \]

where \(x \) is defined by \(x(0, a; u) = a \) and

\[\frac{\partial^\alpha}{\partial t^\alpha} x(t, a; u) = f(x(t, a; u), u(a)(t)) \quad (3.3) \]

Proof: In [Kaw, Appendix], M. Kawski has proved the existence of \(u : B_\epsilon \rightarrow L^1([0, T]; \mathbb{R}^m) \) satisfying (3.1) and (3.2). His \(u \) is not continuous — even if (1.25) holds — but a very slight modification of his proof gives a continuous \(u \). Let \(x_i, 1 \leq i \leq n \) be the usual basis of \(\mathbb{R}^n \) and let \(e_i = -e_i, a_i \) for \(i \) in \([n + 1, 2n] \). By (1.25) and noting that \(D^p \subset D^{p+1} \) we may assume, after possibly a change of scale, that for some \(p \geq 1 \) \(e_i \in D^p \) for all \(i \) in \([1, 2n] \). Let \(x_i = x_i(a, u) \). Hence, for a small enough,

\[\mu(x_i) \leq \mu(a)/2 \quad (3.5) \]

where \(x_i = x_i(a, u) \). Hence, for a small enough,

\[\mu(x_i) \leq \mu(a)/2 \quad (3.6) \]

We now define \(u(a) \) on \(\{u(a), \mu(a) + \mu(x_i)\} \) by

\[u(a)(t) = x_i(t, a) \quad (3.7) \]

We have, if \(a \) is small enough, \(\mu(x_2) \leq \mu(x_1)/2 \) with \(x_2 = x_i(a) \). We keep going and define in this way \(u(a) \) on \([0, \mu(a) + \sum_{i=1}^n \mu(x_i)] \). Note that, if \(a \) is small enough, \(\mu(a) + \sum_{i=1}^n \mu(x_i) \leq 2\mu(a) \leq T \). We extend \(u(a) \) on \([0, T] \) by \(u(a)(t) = 0 \) if \(t \in [\mu(a) + \sum_{i=1}^n \mu(x_i), T] \); \(u(a) \) satisfies all the required properties.

For \(\epsilon \) in \([0, \infty] \) let \(B_\epsilon = B_\epsilon(0) \) be \(\{x \in \mathbb{R}^n : 0 <\)
\(|z| < \varepsilon \) and let \(C^\infty_0(B'_t \times [0, T]; \mathbb{R}^n) \) be the set of functions \(u \) in \(C^\infty_0(B'_t \times [0, T]; \mathbb{R}^n) \cap C^\infty(B'_t \times [0, T]; \mathbb{R}^n) \) such that for all \(\alpha \in \mathbb{N}^{n+1} \)

\[
\partial^\alpha u = 0 \text{ on } B'_t \times \{0, T\},
\]

\[
u(0, t) = 0 \text{ for all } t \in [0, T].
\]

Our next statement is a corollary of Lemma 3.1 and Theorem 2.1. We do not need it for the proof of Theorem 1.7, but it will be useful in Section 4 (see also the end of this section).

Corollary 3.2. In Lemma 3.1 \(u \) can be chosen in \(C^\infty_0(B'_t \times [0, T]; \mathbb{R}^n) \).

Proof: By Theorem 2.1 there exist \(\delta > 0 \) and \(\tilde{u} \) in \(C^\infty_0(B'_t \times [0, T]; \mathbb{R}^n) \) such that the solutions of \(\dot{z} = f(\tilde{x}, \tilde{u}(a, t)) \), \(\tilde{z}(0, a; \gamma) = a \in B'_t \) are \(\mathbb{N} \)-controllable on \((0, T/3) \). Let \(u \) be as in Lemma 3.1 but with \(T/3, 2T/3 \) instead of \([0, T] \); we extend \(u \) on \((T/3, T) \) by \(\gamma(a, t) = u(\tilde{z}(T/3, a; \tilde{u}), t) \) for \(t \in (T/3, 2T/3) \) and by \(0 \) for \(t \in (2T/3, T) \). This makes sense if \(|u| < \eta \) with \(0 < \eta \) small enough. Then \(u \) satisfies the conclusion of Lemma 3.1; this map has the regularity required by Corollary 3.2 but the \(\mathbb{N} \)-controllability allows to smooth it in a map in \(C^\infty_0(B'_t \times [0, T]; \mathbb{R}^n) \) satisfying (3.2) (proceed as in [C1]; see [C3] for more details).

Now the proof of Theorem 1.7 goes as follows. Let \(\tilde{u} \) be as in Lemma 3.1 but with \(T/3 \) instead of \(T \). Let \((u, y) : \mathbb{R}^2 \times \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^m \rightarrow \mathbb{R}^m \) be \(T \)-periodic in \(t \) and such that for \(t \in [0, T] \) and \(|x| + |y| \) small enough

\[
u(0, y, y, t) = \tilde{u}(y, (y - (T/3)) \text{ if } t \in (T/3, 2T/3) \]

\[
u(0, y, y, t) = 0 \text{ if } t \in (T/3, 2T/3) \]

\[
u(0, y, y, t) = -|y - \nu(x, y, t)|^{1/2} \text{ if } t \in [0, T/3) \cup (2T/3, T) \]

Step 1. Using Corollary 3.2 and Proposition 2.1 one can prove that there exist \(\varepsilon > 0 \) and \(u_1 \) in \(C^\infty_0(B'_t \times [0, T]; \mathbb{R}^m) \) such that

\[
\dot{x}(t, a; u_1) = 0 \text{ for all } a \in B'_t.
\]

the trajectories \(t \rightarrow x(t, a; u_1) \) are \(\mathbb{N} \)-controllable on \((0, T) \) for all \(a \in B'_t \).

Let \(u_2 \) be the restriction of \(u \) to \((0, \varepsilon_1 a) \times [0, T] \) and let \(C^\infty_0((0, \varepsilon_1 a) \times [0, T]; \mathbb{R}^m) \) be the set of maps \(u \) in \(C^\infty_0((0, \varepsilon_1 a) \times [0, T]; \mathbb{R}^m) \cap C^\infty((0, \varepsilon_1 a) \times [0, T]; \mathbb{R}^m) \) such that

\[
\partial^\alpha u = 0 \text{ on } (0, \varepsilon_1 a) \times \{0, T\} \text{ for all } \alpha \in \mathbb{N}^2 \text{.}
\]

Note that \(u_2 \in C^\infty_0((0, \varepsilon_1 a) \times [0, T]; \mathbb{R}^m) \). We now use \(n \geq 4 \); the next step is wrong for \(n \leq 3 \).

Step 2. Perturbing \(u_1 \) slightly and in a suitable way, if necessary, we obtain a new \(u \) satisfying again the properties of Step 1 such that the corresponding \(u_2 \), called \(u_3 \), is such that, for all \(t \in (0, T) \) the map

\[
(0, \varepsilon) \rightarrow \mathbb{R}^m, \quad a_n \rightarrow x(t, a_n; u_2) \text{ is an embedding).
\]

Note that by (4.2), for all \(a_n \in (0, \varepsilon) \), the trajectories \(t \rightarrow x(t, a_n; u_2) \) are \(\mathbb{N} \)-controllable on \((0, T) \). The proof of this relies essentially on (4.2) and on the classical proof of Whitney's embedding theorem; see e.g. [GG:II.5]. One could alternatively slightly perturb only \(u_2 \) (instead of \(u_1 \)) and use ideas due to M. Gromov [G; (E) p. 1211] as well as [GG:II.5].

Step 3. Using the \(\mathbb{N} \)-controllability of the trajectories \(t \rightarrow x(t, a_n; u_3) \) on \((0, T) \) for all \(a_n \) in \((0, \varepsilon) \) and the above embedding property one can prove that there exists an open neighborhood \(\mathcal{N}_1 \) of \((0, \varepsilon_1 a/2) \) and \(u_4 \) in \(C^\infty_0([0, T]; \mathbb{R}^m) \) such that, for all \(t \in [0, T] \), the map \(a \in \mathcal{N}_1 \rightarrow x(t, a; u_4) \) in \(\mathbb{R}^m \) is an embedding and \(x(T, a; u_4) = 0 \) for all \(a \in \mathcal{N}_1 \). From this we get that there exists a neighborhood \(\mathcal{N}_2(N, \mathcal{N}_1) \) of \((0, \varepsilon_1 a/4) \) and \(u_5 \) in \(C^\infty_0((0, T]; \mathbb{R}^m) \) such that (1.17) holds with \(u = u_5, 0 \leq t_0 \leq t_1 \leq T \) and that (1.19) holds with \(u = u_5 \) and \(x(0) \in \mathcal{N}_2 \cup \{0\} \).

Step 4. Finally we replace in the above steps \([0, T] \) by \([T/2, T] \) and define \(u \) on \(\mathbb{R}^2 \times (T/2, T) \) by \(u = u_5 \) on this set. On \(\mathbb{R}^2 \times (0, T/2) \) we choose \(u \) in \(C^\infty_0((0, T]; \mathbb{R}^m) \) such that (1.17) holds for \(0 \leq t_0 \leq t_1 \leq T/2 \) and there exists \(\delta > 0 \) such that if \(|x(0)| < \delta_1 \) and \(\dot{z} = f(z, u(x, t)) \) then \(x(T/2) \in \mathcal{N}_2 \cup \{0\} \).

The existence of such \(u \) follows from (1.26) and (1.27). The map \(u \), extended by \(T \)-periodicity (in time) on all \(\mathbb{R}^2 \times \mathbb{R} \), satisfies (1.14) to (1.19).

Remark 4.1. a. We use \(n \geq 4 \) only at Step 2.

The existence of \(u_3 \) as in Step 2 can be proved (see [C3]) in a different manner if \(f_1(x, \langle -u_1, -u_2 \rangle) = -f_1(x, \langle u_1, u_2 \rangle) \) or \(f_1(x, \langle u_1, u_2 \rangle) = \tilde{f}_1(x, u_1) \): in these cases we do not need \(n \geq 4 \).

b. Assumptions (1.26) and (1.27) can be omitted, see [C3].
5. Links between the Sussmann condition and \(0 \in \text{Int } D\)

Let us assume, for the time being, that

\[f(x, u) = f_0(x) + \sum_{i=1}^{m} u_i f_i(x) . \]

Let \(\text{Br}(f) \) be the set of iterated Lie brackets of \(\{f_0, f_1, \ldots, f_m\} \). For \(h \in \text{Br}(f) \) let \(\delta(h) \) the number of times that \(f_i \) appears in \(h \). Recall (see [Su2; Section 7]) that, for \(\theta \in [0, +\infty) \), \(\dot{z} = f_0(x) + \sum_{i=1}^{m} u_i f_i(x) \) satisfies the Sussmann condition \(S(\theta) \) if whenever \(h \in \text{Br}(f) \) with \(\delta_0(h) \) odd and \(\delta_i(h) \) even for all \(i \) in \([1, m] \) then \(h(0) \) is the Span of the \(g(h) \) where the \(g \)'s are in \(\text{Br}(f) \) and satisfy

\[\theta \delta_0(g) < \sum_{i=1}^{m} \delta_i(g) < \theta \delta_0(h) + \sum_{i=1}^{m} \delta_i(h) . \] (5.1)

with the convention that when \(\theta = +\infty \), (5.1) is replaced by \(\delta_0(g) < \delta_0(h) \). H. Sussmann has proved:

Theorem 5.1. [Su2; Thm. 7.3]. If, for some \(\theta \in [0, 1] \), \(\dot{z} = f_0(x) + \sum_{i=1}^{m} u_i f_i(x) \) satisfies \(S(\theta) \) then it is STL. Moreover it follows directly from the proof of [Su2; Thm. 7.3] that we have

Proposition 5.2. Under the hypothesis of Theorem 5.1, \(0 \in \text{Int } (D) \).

Let us notice that one can check

Proposition 5.3. Let \(\theta \in [0, 1] \). Then \(\dot{z} = f_0(x) + \sum_{i=1}^{m} u_i f_i(x) \) satisfies \(S(\theta) \) if and only if \(\dot{z} = f_0(x) + \sum_{i=1}^{m} u_i f_i(x), \dot{y} = u \) satisfies \(S(\theta / (1 - \theta)) \).

This proposition allows us to extend \(S(\theta) \) to \(\dot{z} = f(x, u) \) in the following way

Definition 5.4. Let \(\theta \in [0, 1] \); we will say that \(\dot{z} = f(x, u) \) satisfies \(S(\theta) \) if \(\dot{z} = f(z, \dot{y}), \dot{y} = u \) satisfies \(S(\theta / (1 - \theta)) \).

What we have called in this paper the Hermes condition is \(S(0) \); the true Hermes condition is in fact more restrictive (see [H2] or [Su2; Section 7.3]). Moreover it follows from [Su2] that

Proposition 5.5. If, for some \(\theta \in [0, 1] \), \(\dot{z} = f(x, u) \) satisfies \(S(\theta) \) then it is STL.

Proof: Apply [Su2] to \(\dot{z} = f(z, \dot{y}), \dot{y} = u \) with the constraint \(f_0(u(s)) ds \leq 1 \) (instead of \(|u| \leq 1 \)).

Remark 5.6. Similar comments can be done for the sufficient condition for STL due to R. Bianchini and G. Stefani [BS]. In particular the hypothesis of [BS; Corollary p. 970] implies also \(0 \in \text{Int } (D) \).

Acknowledgments. We thank the Forschungsinstitut für Mathematik of ETH Zürich for its hospitality.

References

[CPO] J.-M. Coron, J.-B. Pomet, A remark on the design of time-varying stabilizing feedback laws for controllable systems without drift. These proceedings.

[SCW] R. Sepulchre, G. Campion, V. Wertz, some remarks about periodic feedback stabilization; These Proceedings.

