Continuation from a flat to a round Earth model in the coplanar orbit transfer problem

M. Cerf1, T. Haberkorn, Emmanuel Trélat1

1EADS Astrium, les Mureaux
2MAPMO, Université d’Orléans

First Industrial Workshop, SADCO
2011, March 2nd
The coplanar orbit transfer problem

- Spherical Earth
- Central gravitational field \(g(r) = \frac{\mu}{r^2} \)

System in cylindrical coordinates

\[
\begin{align*}
\dot{r}(t) &= v(t) \sin \gamma(t) \\
\dot{\varphi}(t) &= \frac{v(t)}{r(t)} \cos \gamma(t) \\
\dot{v}(t) &= -g(r(t)) \sin \gamma(t) + \frac{T_{\text{max}}}{m(t)} u_1(t) \\
\dot{\gamma}(t) &= \left(\frac{v(t)}{r(t)} - \frac{g(r(t))}{v(t)} \right) \cos \gamma(t) + \frac{T_{\text{max}}}{m(t)v(t)} u_2(t) \\
\dot{m}(t) &= -\beta T_{\text{max}} \|u(t)\|
\end{align*}
\]

- Thrust: \(T(t) = u(t) T_{\text{max}} \) \((T_{\text{max}} \text{ large: strong thrust}) \)
- Control: \(u(t) = (u_1(t), u_2(t)) \) satisfying \(\|u(t)\| = \sqrt{u_1(t)^2 + u_2(t)^2} \leq 1 \)
The coplanar orbit transfer problem

<table>
<thead>
<tr>
<th>Initial conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r(0) = r_0$, $\varphi(0) = \varphi_0$, $v(0) = v_0$, $\gamma(0) = \gamma_0$, $m(0) = m_0$,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>a point of a specified orbit: $r(t_f) = r_f$, $v(t_f) = v_f$, $\gamma(t_f) = \gamma_f$,</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>an elliptic orbit of energy $K_f < 0$ and eccentricity e_f:</td>
</tr>
<tr>
<td>$\xi_{K_f} = \frac{v(t_f)^2}{2} - \frac{\mu}{r(t_f)} - K_f = 0$,</td>
</tr>
<tr>
<td>$\xi_{e_f} = \sin^2 \gamma + \left(1 - \frac{r(t_f)v(t_f)^2}{\mu}\right)^2 \cos^2 \gamma - e_f^2 = 0$.</td>
</tr>
</tbody>
</table>

(orientation of the final orbit not prescribed: $\varphi(t_f)$ free; in other words: argument of the final perigee free)

<table>
<thead>
<tr>
<th>Optimization criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\max m(t_f)$ (note that t_f has to be fixed)</td>
</tr>
</tbody>
</table>
Application of the Pontryagin Maximum Principle

Hamiltonian

\[
H(q, p, p^0, u) = p_r v \sin \gamma + p_\varphi \frac{v}{r} \cos \gamma + p_v \left(-g(r) \sin \gamma + \frac{T_{\text{max}}}{m} u_1 \right) \\
+ p_\gamma \left(\left(\frac{v}{r} - \frac{g(r)}{v} \right) \cos \gamma + \frac{T_{\text{max}}}{mv} u_2 \right) - p_m \beta T_{\text{max}} \|u\|,
\]

Extremal equations

\[
\dot{q}(t) = \frac{\partial H}{\partial p}(q(t), p(t), p^0, u(t)), \quad \dot{p}(t) = -\frac{\partial H}{\partial q}(q(t), p(t), p^0, u(t)),
\]

Maximization condition

\[
H(q(t), p(t), p^0, u(t)) = \max_{\|w\| \leq 1} H(q(t), p(t), p^0, w)
\]
Application of the Pontryagin Maximum Principle

Hamiltonian

\[
H(q, p, p^0, u) = p_r v \sin \gamma + p_\phi \frac{v}{r} \cos \gamma + p_\nu \left(-g(r) \sin \gamma + \frac{T_{\text{max}}}{m} u_1 \right)
+ p_\gamma \left(\left(\frac{v}{r} - \frac{g(r)}{v} \right) \cos \gamma + \frac{T_{\text{max}}}{mv} u_2 \right) - p_m \beta T_{\text{max}} \|u\|,
\]

Maximization condition leads to

- \(u(t) = (u_1(t), u_2(t)) = (0, 0) \) whenever \(\Phi(t) < 0 \)
- \(u_1(t) = \frac{p_\nu(t)}{\sqrt{p_\nu(t)^2 + \frac{p_\gamma(t)^2}{v(t)^2}}} \), \(u_2(t) = \frac{p_\gamma(t)}{v(t) \sqrt{p_\nu(t)^2 + \frac{p_\gamma(t)^2}{v(t)^2}}} \) whenever \(\Phi(t) > 0 \)

where

\[
\Phi(t) = \frac{1}{m(t)} \sqrt{p_\nu(t)^2 + \frac{p_\gamma(t)^2}{v(t)^2}} - \beta p_m(t) \quad \text{(switching function)}
\]
Application of the Pontryagin Maximum Principle

Hamiltonian

\[
H(q, p, p^0, u) = p_r v \sin \gamma + p_\varphi \frac{v}{r} \cos \gamma + p_v \left(-g(r) \sin \gamma + \frac{T_{\text{max}}}{m} u_1 \right) \\
+ p_\gamma \left(\left(\frac{v}{r} - \frac{g(r)}{v} \right) \cos \gamma + \frac{T_{\text{max}}}{mv} u_2 \right) - p_m \beta T_{\text{max}} \|u\|,
\]

Transversality conditions

- case of a fixed point of a specified orbit: \(p_\varphi(t_f) = 0, \ p_m(t_f) = -p^0 \)
- case of an orbit of given energy and eccentricity:

\[
\partial_r \xi_K_f (p_\gamma \partial_v \xi_e - p_v \partial_\gamma \xi_e) + \partial_v \xi_K_f (p_r \partial_\gamma \xi_e - p_\gamma \partial_r \xi_e) = 0
\]

Remark

- \(p^0 \neq 0 \) (no abnormal) \(\Rightarrow p^0 = -1 \)
- no singular arc (Bonnard - Caillau - Faubourg - Gergaud - Haberkorn - Noailles - Trélat)
Shooting method

Find a zero of

\[S(t_f, p_0) = \begin{pmatrix} r(t_f, p_0) - r_f \\ v(t_f, p_0) - v_f \\ \gamma(t_f, p_0) - \gamma_f \\ p_\varphi(t_f, p_0) \\ p_m(t_f, p_0) - 1 \end{pmatrix} \] or

\[\begin{pmatrix} \xi_{K_f}(p_0) \\ \xi_{e_f}(p_0) \\ \ast \ast \ast \\ p_\varphi(t_f, p_0) \\ p_m(t_f, p_0) - 1 \end{pmatrix}, \]

Main problem: how to make the shooting method converge?

- initialization of the shooting method
- discontinuities of the optimal control
Main problem: how to make the shooting method converge?

- initialization of the shooting method
- discontinuities of the optimal control

Several methods:

- use first a direct method to provide a good initial guess, e.g. AMPL combined with IPOPT:

but usual flaws of direct methods (computationally demanding, lack of numerical precision).
Main problem: how to make the shooting method converge?

- initialization of the shooting method
- discontinuities of the optimal control

Several methods:

- use the impulse transfer solution to provide a good initial guess:

 but valid only for nearly circular initial and final orbits. See also:
Main problem: how to make the shooting method converge?

- initialization of the shooting method
- discontinuities of the optimal control

Several methods:

- multiple shooting method parameterized by the number of thrust arcs:

Shooting method

Main problem: how to make the shooting method converge?
- initialization of the shooting method
- discontinuities of the optimal control

Several methods:
- differential or simplicial continuation method linking the minimization of the L^2-norm of the control to the minimization of the fuel consumption:

but not adapted for high-thrust transfer.
Observation:
Solving the optimal control problem for a flat Earth model with constant gravity is simple and algorithmically very efficient.

In view of that:

Continuation from this simple model to the initial round Earth model.
Simplified flat Earth model

System

\[
\begin{align*}
\dot{x}(t) &= v_x(t) \\
\dot{h}(t) &= v_h(t) \\
\dot{v}_x(t) &= \frac{T_{\text{max}}}{m(t)} u_x(t) \\
\dot{v}_h(t) &= \frac{T_{\text{max}}}{m(t)} u_h(t) - g_0 \\
\dot{m}(t) &= -\beta T_{\text{max}} \sqrt{u_x(t)^2 + u_h(t)^2}
\end{align*}
\]

Control

Control \((u_x(\cdot), u_h(\cdot))\) such that \(u_x(\cdot)^2 + u_h(\cdot)^2 \leq 1\)

- **initial conditions:** \(x(0) = x_0, \ h(0) = h_0, \ v_x(0) = v_{x0}, \ v_h(0) = v_{h0}, \ m(0) = m_0\)
- **final conditions:** \(h(t_f) = h_f, \ v_x(t_f) = v_{xf}, \ v_h(t_f) = 0\)
Modified flat Earth model

Idea: mapping circular orbits to horizontal trajectories

\[
\begin{align*}
 x &= r \varphi \\
 h &= r - r_T \\
 v_x &= v \cos \gamma \\
 v_h &= v \sin \gamma \\
\end{align*}
\]

\[
\begin{align*}
 r &= r_T + h \\
 \varphi &= \frac{x}{r_T + h} \\
 v &= \sqrt{v_x^2 + v_h^2} \\
 \gamma &= \arctan \frac{v_h}{v_x}
\end{align*}
\]

\[
\begin{pmatrix}
 u_x \\
 u_h
\end{pmatrix} =
\begin{pmatrix}
 \cos \gamma & -\sin \gamma \\
 \sin \gamma & \cos \gamma
\end{pmatrix}
\begin{pmatrix}
 u_1 \\
 u_2
\end{pmatrix}
\]
Modified flat Earth model

Plugging this change of coordinates into the initial round Earth model:

\[
\begin{align*}
\dot{r}(t) &= v(t) \sin \gamma(t) \\
\dot{\phi}(t) &= \frac{v(t)}{r(t)} \cos \gamma(t) \\
\dot{v}(t) &= -g(r(t)) \sin \gamma(t) + \frac{T_{\text{max}}}{m(t)} u_1(t) \\
\dot{\gamma}(t) &= \left(\frac{v(t)}{r(t)} - \frac{g(r(t))}{v(t)} \right) \cos \gamma(t) + \frac{T_{\text{max}}}{m(t)v(t)} u_2(t) \\
\dot{m}(t) &= -\beta T_{\text{max}} \|u(t)\|
\end{align*}
\]

leads to...
Modified flat Earth model

\[\dot{x}(t) = v_x(t) + v_h(t) \frac{x(t)}{r_T + h(t)} \]
\[\dot{h}(t) = v_h(t) \]
\[\dot{v}_x(t) = \frac{T_{\text{max}}}{m(t)} u_x(t) - \frac{v_x(t)v_h(t)}{r_T + h(t)} \]
\[\dot{v}_h(t) = \frac{T_{\text{max}}}{m(t)} u_h(t) - g(r_T + h(t)) + \frac{v_x(t)^2}{r_T + h(t)} \]
\[\dot{m}(t) = -\beta T_{\text{max}} \| u(t) \| \]

Differences with the simplified flat Earth model (with constant gravity):
- the term in green: variable (usual) gravity.
- the terms in red: "correcting terms" allowing the existence of horizontal (periodic up to translation in \(x \)) trajectories with no thrust.
Continuation procedure

Simplified flat Earth model (with constant gravity) $\xrightarrow{\text{continuation procedure}}$ modified flat Earth model:

\[
\begin{align*}
\dot{x}(t) &= v_x(t) + \lambda_2 v_h(t) \frac{x(t)}{r_T + h(t)} \\
\dot{h}(t) &= v_h(t) \\
\dot{v}_x(t) &= \frac{T_{\text{max}}}{m(t)} u_x(t) - \lambda_2 \frac{v_x(t)v_h(t)}{r_T + h(t)} \\
\dot{v}_h(t) &= \frac{T_{\text{max}}}{m(t)} u_h(t) - \frac{\mu}{(r_T + \lambda_1 h(t))^2} + \lambda_2 \frac{v_x(t)^2}{r_T + h(t)} \\
\dot{m}(t) &= -\beta T_{\text{max}} \sqrt{u_x(t)^2 + u_h(t)^2}
\end{align*}
\]

- $\lambda_1 = \lambda_2 = 0$: simplified flat Earth model with constant gravity
- $\lambda_1 = 1, \lambda_2 = 0$: simplified flat Earth model with usual gravity
- $\lambda_1 = \lambda_2 = 1$: modified flat Earth model (equivalent to usual round Earth)
Continuation procedure

Simplified flat Earth model (with constant gravity) \(\xrightarrow{\text{continuation procedure}}\) modified flat Earth model:

\[
\begin{align*}
\dot{x}(t) &= v_x(t) + \lambda_2 v_h(t) \frac{x(t)}{r_T + h(t)} \\
\dot{h}(t) &= v_h(t) \\
\dot{v}_x(t) &= \frac{T_{\text{max}}}{m(t)} u_x(t) - \lambda_2 \frac{v_x(t)v_h(t)}{r_T + h(t)} \\
\dot{v}_h(t) &= \frac{T_{\text{max}}}{m(t)} u_h(t) - \frac{\mu}{(r_T + \lambda_1 h(t))^2} + \lambda_2 \frac{v_x(t)^2}{r_T + h(t)} \\
\dot{m}(t) &= -\beta T_{\text{max}} \sqrt{u_x(t)^2 + u_h(t)^2}
\end{align*}
\]

\(\Rightarrow\) Two-parameters family of optimal control problems: \((\text{OCP})_{\lambda_1, \lambda_2}\)
Continuation procedure

(OCP)_{0,0}
flat Earth model, constant gravity

(\text{linear) continuation on } \lambda_1 \in [0, 1] \quad \text{final time } t_f \text{ free}

(OCP)_{1,0}
flat Earth model, usual gravity

\downarrow
(\text{linear) continuation on } \lambda_2 \in [0, 1] \quad \text{final time } t_f \text{ fixed}

(OCP)_{1,1}
modified flat Earth model (equivalent to round Earth model)

Application of the PMP to (OCP)_{\lambda_1, \lambda_2} \Rightarrow \text{series of shooting problems.}
Remark: Once the continuation process has converged, we obtain the initial adjoint vector for \((OCP)_{1,1}\) in the modified coordinates.

To recover the adjoint vector in the usual cylindrical coordinates, we use the general fact:

Lemma

Change of coordinates \(x_1 = \phi(x)\) and \(u_1 = \psi(u)\)

\[\Rightarrow \text{dynamics } f_1(x_1, u_1) = d\phi(x) \cdot f(\phi^{-1}(x_1), \psi^{-1}(u_1)) \]

and for the adjoint vectors:

\[p_1(\cdot) = t d\phi(x(\cdot))^{-1} p(\cdot). \]

Here, this yields:

\[p_r = \frac{x}{r_T + h} p_x + p_h \]
\[p_\varphi = (r_T + h) p_x \]
\[p_v = \cos \gamma p_{v_x} + \sin \gamma p_{v_h} \]
\[p_\gamma = v(-\sin \gamma p_{v_x} + \cos \gamma p_{v_h}). \]
Analysis of the flat Earth model

System

\[
\begin{align*}
\dot{x} &= v_x \\
\dot{h} &= v_h \\
\dot{v}_x &= \frac{T_{\text{max}}}{m} u_x \\
\dot{v}_h &= \frac{T_{\text{max}}}{m} (u_h - g_0) \\
\dot{m} &= -\beta T_{\text{max}} \sqrt{u_x^2 + u_h^2}
\end{align*}
\]

Initial conditions

- \(x(0) = x_0\)
- \(h(0) = h_0\)
- \(v_x(0) = v_{x0}\)
- \(v_h(0) = v_{h0}\)
- \(m(0) = m_0\)

Final conditions

- \(x(t_f)\) free
- \(h(t_f) = h_f\)
- \(v_x(t_f) = v_{xf}\)
- \(v_h(t_f) = 0\)
- \(m(t_f)\) free

Theorem

If \(h_f > h_0 + \frac{v_{x0}^2}{2g_0}\), then the optimal trajectory is a succession of at most two arcs, and the thrust \(\|u(\cdot)\| T_{\text{max}}\) is

- either constant on \([0, t_f]\) and equal to \(T_{\text{max}}\),
- or of the type \(T_{\text{max}} \rightarrow 0\),
- or of the type \(0 \rightarrow T_{\text{max}}\).
Main ideas of the proof:

- Application of the PMP
- The switching function \(\Phi = \frac{1}{m} \sqrt{p_{v_x}^2 + p_{v_h}^2} - \beta p_m \) satisfies:

\[
\dot{\Phi} = \frac{-p_h p_{v_h}}{m \sqrt{p_{v_x}^2 + p_{v_h}^2}}
\]

\[
\ddot{\Phi} = \frac{\beta \| u \|}{m} \dot{\Phi} - \frac{m}{\sqrt{p_{v_x}^2 + p_{v_h}^2}} \dot{\Phi}^2 + \frac{p_h^2}{m \sqrt{p_{v_x}^2 + p_{v_h}^2}}
\]

\(\Rightarrow \) \(\Phi \) has at most one minimum

\(\Rightarrow \) strategies \(T_{\text{max}}, T_{\text{max}} - 0, 0 - T_{\text{max}}, \) or \(T_{\text{max}} - 0 - T_{\text{max}} \)

- The strategy \(T_{\text{max}} - 0 - T_{\text{max}} \) cannot occur
A priori, we have:

5 unknowns
\(p_h, p_{v_x}, p_{v_h}(0), p_m(0), \) and \(t_f \)

5 equations
\[
\begin{align*}
 h(t_f) &= h_f, \\
 v_x(t_f) &= v_{xf}, \\
 v_h(t_f) &= 0, \\
 p_m(t_f) &= 1, \\
 H(t_f) &= 0
\end{align*}
\]

but using several tricks and some system analysis, the shooting method can be simplified to:

3 unknowns
\(p_{v_x}, p_{v_h}(0), \) and the first switching time \(t_1 \)

3 equations
\[
\begin{align*}
 h(t_f) &= h_f, \\
 v_x(t_f) &= v_{xf}, \\
 v_h(t_1) + g_0 t_1 &= g_0 p_{v_h}(0)
\end{align*}
\]

⇒ very easy and efficient (instantaneous) algorithm

and the initialization of the shooting method is automatic (CV for any initial adjoint vector)

⇒ automatic tool for initializing the continuation procedure
Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations

Numerical simulations

\(T_{\text{max}} = 180 \text{ kN} \)

\(\text{Isp} = 450 \text{ s} \)

Initial conditions

\(\varphi_0 = 0 \) (SSO)

\(h_0 = 200 \text{ km} \)

\(v_0 = 5.5 \text{ km/s} \)

\(\gamma_0 = 2 \text{ deg} \)

\(m_0 = 40000 \text{ kg} \)

Final conditions

\(h_f = 800 \text{ km} \)

\(v_f = 7.5 \text{ km/s} \)

\(\gamma_f = 0 \text{ deg} \)

(nearly circular final orbit)

Evolution of the shooting function unknowns \((p_h, p_{v_x}, p_{v_h}, p_m)\) (abscissa) with respect to homotopic parameter \(\lambda_2\) (ordinate)

\(\rightarrow \) continuous but not \(C^1\) path: \(\lambda_2 \approx 0.01, \lambda_2 \approx 0.8, \) and \(\lambda_2 \approx 0.82\):

- \(0 \leq \lambda_2 \lesssim 0.01: T_{\text{max}} - 0\)
- \(0.01 \lesssim \lambda_2 \lesssim 0.8: T_{\text{max}} - 0 - T_{\text{max}}\)
- \(0.8 \lesssim \lambda_2 \lesssim 0.82: T_{\text{max}} - 0\)
- \(0.82 \lesssim \lambda_2 \leq 1: T_{\text{max}} - 0 - T_{\text{max}}\)
Numerical simulations

Trajectory and control strategy of $(\text{OCP})_{1,0}$ (dashed) and $(\text{OCP})_{1,1}$ (plain). $t_f \approx 1483\ s$

Remark

In the case of a final orbit (no injecting point): additional continuation on transversality conditions.
Numerical simulations

Comparison with a direct method:
- Heun (RK2) discretization with N points
- combination of AMPL with IPOPT
- needs however a careful initial guess

Continuation method

3 seconds:
- $(\text{OCP})_{0,0}$: instantaneous
- from $(\text{OCP})_{0,0}$ to $(\text{OCP})_{1,0}$: 0.5 second
- from $(\text{OCP})_{1,0}$ to $(\text{OCP})_{1,1}$: 2.5 seconds

→ Accuracy: 10^{-12}

Direct method

- $N = 100$: 5 seconds
- $N = 1000$: 165 seconds

→ Accuracy: 10^{-6}
Conclusion

- Algorithmic procedure to solve the problem of minimization of fuel consumption for the coplanar orbit transfer problem by shooting method approach
- Does not require any careful initial guess

Open questions

- Is this procedure systematically efficient, for any possible coplanar orbit transfer?
- Extension to 3D