Characterization by observability inequalities of controllability and stabilization properties

Emmanuel Trélat* Gengsheng Wang† Yashan Xu‡

Abstract

Given a linear control system in a Hilbert space with a bounded control operator, we establish a characterization of exponential stabilizability in terms of an observability inequality. Such dual characterizations are well known for exact (null) controllability. Our approach exploits classical Fenchel duality arguments and, in turn, leads to characterizations in terms of observability inequalities of approximate null controllability and of α-null controllability. We comment on the relationships among those various concepts, at the light of the observability inequalities that characterize them.

Contents

1 Context and main result on stabilizability 2

2 Several results on null and approximate controllability 4
 2.1 α-null controllability 4
 2.2 Approximate controllability 6

3 Further comments 8
 3.1 Null controllability implies stabilizability 8
 3.2 Examples 10
 3.2.1 First example 10
 3.2.2 Second example 11
 3.3 Extension to unbounded admissible control operators 13
 3.4 Extension to Banach spaces 15
 3.5 Open problems 16

4 Proofs 17
 4.1 Fenchel duality arguments 18
 4.1.1 Application of Fenchel duality 18
 4.1.2 Computation of the minimizer 19
 4.1.3 An alternative optimization problem 19
 4.1.4 Proofs of Propositions 1 and 3 20
 4.2 Fenchel dualization of the exponential stabilization property 20

*Sorbonne Université, Université Paris-Diderot SPC, CNRS, Inria, Laboratoire Jacques-Louis Lions, équipe CAGE, F-75005 Paris (emmanuel.trelat@sorbonne-universite.fr).
†Center for Application Mathematics, Tianjin University, Tianjin, 300072, China (wanggs@yeah.net)
‡School of Mathematical Sciences, Fudan University, KLMNS, Shanghai, 200433, China (yashanxu@fudan.edu.cn)
Let Framework.

1 Context and main result on stabilizability

Framework. Let X and U be Hilbert spaces. We consider the linear control system

$$\dot{y}(t) = Ay(t) + Bu(t) \quad t \geq 0$$

where $A : D(A) \rightarrow X$ is a linear operator generating a C_0 semigroup $(S(t))_{t \geq 0}$ on X and $B \in L(U, X)$ is a control operator.

Given an initial state $y_0 \in X$ and a control $u \in L^2_{loc}(0, +\infty; U)$, the unique solution $y(t) = y(t; y_0, u)$ ($t \geq 0$) to (1), associated with u and the initial condition $y(0) = y_0$, satisfies

$$y(T; y_0, u) = S(T)y_0 + L_T u \quad \forall T > 0$$

with $L_T \in L(L^2(0, T; U), X)$ defined by $L_T u = \int_0^T S(T-t)Bu(t) \, dt$. Note that $y \in C^0([0, +\infty), X) \cap H^1_{loc}(0, +\infty; X)$, with $X_{-1} = D(A^*)'$, the dual of $D(A^*)$ with respect to the pivot space X (see, e.g., [17, 45]). We recall that the dual mapping $L_T^* \in L(X, L^2(0, T; U))$ is given by $(L_T^* \psi)(t) = B^*S(T-t)^*\psi$ for every $\psi \in X$.

Throughout the paper we identify X (resp., U) with its dual X' (resp., U'). We denote by $\| \cdot \|_X$ and $\langle \cdot, \cdot \rangle_X$ (resp. $\| \cdot \|_U$ and $\langle \cdot, \cdot \rangle_U$) the Hilbert norm and scalar product in X (resp., in U).

It is well known that, for the control system (1), exact (null) controllability is equivalent by duality to an observability inequality. In the existing results (e.g., heat, wave, Schrödinger equations), such inequalities are instrumental to establish controllability properties (see the textbooks [15, 26, 29, 42, 45, 49]). Besides, exponential stabilizability, meaning that there exists a feedback operator K such that $A + BK$ generates an exponentially stable semigroup, is characterized in the existing literature in terms of infinite-horizon linear quadratic optimal control and algebraic Riccati theory (see the previous references). But, up to our knowledge, a dual characterization of exponential stabilizability in terms of an observability inequality is not known.

Stabilizability. The control system (1) is exponentially stabilizable if there exists a feedback operator $K \in L(X, U)$ such that the operator $A + BK$, of domain $D(A + BK) = D(A)$, generates an exponentially stable C_0 semigroup $(S_K(t))_{t \geq 0}$, i.e., there exists $M \geq 1$ and $\omega < 0$ such that

$$\|S_K(t)\|_{L(X)} \leq Me^{\omega t} \quad \forall t \geq 0.$$ \hspace{1cm} (3)

The infimum ω_K of all possible real numbers ω such that (3) is satisfied for some $M \geq 1$ is the growth bound of the semigroup $(S_K(t))_{t \geq 0}$ and is given (see [17, 33]) by

$$\omega_K = \inf_{t > 0} \frac{1}{t} \ln \|S_K(t)\|_{L(X)} = \lim_{t \to +\infty} \frac{1}{t} \ln \|S_K(t)\|_{L(X)}.$$ \hspace{1cm} (4)

Exponential stabilizability means that there exists $K \in L(X, U)$ such that $\omega_K < 0$.

2
When the control system (1) is exponentially stabilizable, the best stabilization decay rate is defined by
\[\omega^* = \inf \{ \omega_K \mid K \in L(X, U) \text{ s.t. } (S_K(t))_{t \geq 0} \text{ is exponentially stable} \}. \] \hfill (4)

When \(\omega^* = -\infty \), the control system (1) is said to be **completely stabilizable**: this means that stabilization can be achieved at any decay rate. We also speak of **rapid stabilization**.

Main result. Hereafter, we denote \(\|B^*S(T - \cdot)^*\psi\|_{L^2(0,T;U)} = \left(\int_0^T \|B^*S(T - t)^*\psi\|^2_U \, dt \right)^{1/2} \).

Given \(\alpha \geq 0 \), \(T > 0 \) and \(y_0 \in X \), we define
\[
\mu^T_{y_0,\alpha} = \inf \left\{ C \geq 0 \mid \langle \psi, S(T)y_0 \rangle_X - \alpha\|y_0\|_X \|\psi\|_X \leq C\|B^*S(T - \cdot)^*\psi\|_{L^2(0,T;U)} \quad \forall \psi \in X \right\}
\] \hfill (5)
with the convention that \(\inf \emptyset = +\infty \). Actually, when the above set is not empty, the infimum is reached (see Section 4). By definition, we have \(\mu^T_{y_0,\alpha_1} \leq \mu^T_{y_0,\alpha_2} \), if \(\alpha_1 \leq \alpha_2 \); \(\mu^T_{y_0,\alpha} = 0 \) if \(\alpha \geq \|S(T)\|_{L(X)} \); \(\mu^T_{y_0,\alpha} = \lambda \mu^T_{y_0,\alpha} \) for every \(\lambda > 0 \) (and thus \(\mu^T_{y_0,\alpha} = \mu^T_{y_0,\alpha/\|y_0\|_X} \|y_0\|_X \)). This homogeneity property leads us to define
\[\mu^T_{\alpha} = \sup_{\|y_0\|_X = 1} \mu^T_{y_0,\alpha} \] \hfill (6)

We claim that
\[
\mu^T_{\alpha} = \inf \left\{ C \geq 0 \mid \|S(T)^*\psi\|_X - \alpha\|\psi\|_X \leq C\|B^*S(T - \cdot)^*\psi\|_{L^2(0,T;U)} \quad \forall \psi \in X \right\}
\] \hfill (7)
(see Lemma 2 in Section 4.2) and we have as well \(\mu^T_{\alpha} \in [0, +\infty] \), \(\mu^T_{\alpha_1} \leq \mu^T_{\alpha_2} \) if \(\alpha_1 \leq \alpha_2 \), and \(\mu^T_{\alpha} = 0 \) if \(\alpha \geq \|S(T)\|_{L(X)} \).

Theorem 1. The following items are equivalent:

- The control system (1) is exponentially stabilizable.
- For every \(\alpha \in (0, 1) \), there exists \(T > 0 \) such that \(\mu^T_{\alpha} < +\infty \).
- There exist \(\alpha \in (0, 1) \) and \(T > 0 \) such that \(\mu^T_{\alpha} < +\infty \).
- For every \(\alpha \in (0, 1) \), there exists \(T > 0 \) such that the control system (1) is cost-uniformly \(\alpha \)-null controllable\(^1\) in time \(T \), i.e., there exists \(C = C(\alpha, T) \geq 0 \) such that, for every \(y_0 \in X \), there exists \(u \in L^2(0,T;U) \) such that
\[\|y(T; y_0, u)\|_X \leq \alpha\|y_0\|_X \quad \text{and} \quad \|u\|_{L^2(0,T;U)} \leq C\|y_0\|_X. \] \hfill (8)
- There exist \(\alpha \in (0, 1) \) and \(T > 0 \) such that the control system 1 is cost-uniformly \(\alpha \)-null controllable in time \(T \).
- For every \(\alpha \in (0, 1) \), there exist \(T > 0 \) and \(C \geq 0 \) such that
\[\|S(T)^*\psi\|_X \leq C\|B^*S(T - \cdot)^*\psi\|_{L^2(0,T;U)} + \alpha\|\psi\|_X \quad \forall \psi \in X. \] \hfill (9)
- There exist \(\alpha \in (0, 1) \), \(T > 0 \) and \(C \geq 0 \) such that the inequality (9) is satisfied.

\(^1\)This definition and some characterizations will be given with more details in Section 2.1.
When one of these items is satisfied, the smallest possible constant \(C \) in (8) and in the observability inequality (9) is \(C = \mu_0^T \); moreover, for every \(\alpha \in (0, 1) \), the real number \(T > 0 \) in the second, third and fourth items above can be taken the same.

Furthermore, the best stabilization decay rate defined by (4) is

\[
\omega^* = \inf \left\{ \frac{\ln \alpha}{T} \mid (\alpha, T) \in \mathcal{A} \right\} = \lim_{\alpha \to 0^+} \inf \left\{ \frac{\ln \alpha}{T} \mid T \in \mathcal{T}(\alpha) \right\} \tag{10}
\]

where

\[
\mathcal{A} = \left\{ (\alpha, T) \in (0, 1) \times (0, +\infty) \mid \mu_\alpha^T < +\infty \right\} \quad T(\alpha) = \left\{ T > 0 \mid \mu_\alpha^T < +\infty \right\} \quad \forall \alpha \in (0, 1). \tag{11}
\]

Theorem 1 will be proved in Section 4.

Remark 1. If the semigroup \((S(t))_{t \geq 0}\) is exponentially stable then the observability inequality (9) is obviously satisfied with \(B = 0 \). Indeed, the semigroup \((S(t))_{t \geq 0}\) is exponentially stable if and only if there exists \(T > 0 \) such that \(\|S(T)\|_{L(X)} < 1 \). This is in accordance with the fact that, in this case, no control is required to stabilize the control system.

When the semigroup is not exponentially stable, the observability inequality (9) can be seen as a weakened version of the observability inequality corresponding to exact null controllability (see (14) in Remark 4 further), by adding the term \(\alpha \|\psi\|_X \) at the right-hand side for some \(\alpha \in (0, 1) \); this appears as a kind of compromise between the lack of exponential stability of \((S(t))_{t \geq 0}\) and the feedback action needed to exponentially stabilize the control system (1).

Remark 2. The equality (10) is comparable with the results on the stability rate given in [17, Chapter 4, Proposition 2.2].

By the second item of Theorem 1, if the control system (1) is exponentially stabilizable, then \(\{ \alpha \mid (\alpha, T) \in \mathcal{A} \text{ for some } T > 0 \} = (0, 1) \).

A number of comments, in relation with other controllability concepts, are provided in Sections 2 and 3. It can already be noted that, in the weak observability inequality (9) which characterizes the stabilizability property, the coefficient \(\alpha \) satisfies \(0 < \alpha < 1 \). The limit case \(\alpha = 1 \) is critical. Also, it is interesting to underline that, in some sense, the constant \(\mu^T_\alpha \) quantifies the stabilizability property.

The proof of Theorem 1 follows a series of easy arguments essentially exploiting Fenchel duality. In turn, these arguments allow us to obtain characterizations, in terms of observability inequalities, of the concepts of \(\alpha \)-null controllability and of approximate null controllability, that we gather in the next section.

2 Several results on null and approximate controllability

2.1 \(\alpha \)-null controllability

Let \(T > 0 \) and \(\alpha \geq 0 \) be arbitrary.

Definition 1. Given some \(y_0 \in X \), the control system (1) is \(\alpha \)-null controllable from \(y_0 \) in time \(T \) if there exists \(u \in L^2(0, T; U) \) such that \(\|y(T; y_0, u)\|_X \leq \alpha \|y_0\|_X \), i.e., \(y(T; y_0, u) \in \alpha \|y_0\|_X \mathcal{B} \), where \(\mathcal{B} \) is the closed unit ball in \(X \).

The control system (1) is \(\alpha \)-null controllable in time \(T \) if, for every \(y_0 \in X \), the system is \(\alpha \)-null controllable from \(y_0 \) in time \(T \).

The control system (1) is cost-uniformly \(\alpha \)-null controllable in time \(T \) if there exists \(C = C(\alpha, T) \geq 0 \) such that, for every \(y_0 \in X \), there exists \(u \in L^2(0, T; U) \) such that \(\|y(T; y_0, u)\|_X \leq \alpha \|y_0\|_X \) and \(\|u\|_{L^2(0, T; U)} \leq C\|y_0\|_X \).
Note that, for $\alpha = 0$, the notion of 0-null controllability coincides with the usual notion of exact null controllability. We have the following results.

Proposition 1. Let $T > 0$, $\alpha \geq 0$ and $y_0 \in X$ be arbitrary. The following items are equivalent:

- The control system (1) is α-null controllable from y_0 in time $T > 0$.
- We have $\mu_{y_0,\alpha}^T < +\infty$.
- There exists $C \geq 0$ such that
 \[\langle \psi, S(T)y_0 \rangle_X \leq C \| B^*S(T - \cdot)^*\psi \|_{L^2(0,T;U)} + \alpha \| y_0 \|_X \| \psi \|_X \quad \forall \psi \in X. \]

When one of these items is satisfied, the smallest possible constant C in the observability inequality (12) is $C = \mu_{y_0,\alpha}^T$. Moreover, $\mu_{y_0,\alpha}^T$ is the minimal L^2 norm of the control required to steer the control system (1) from y_0 to the target set $\alpha \| y_0 \|_X B$.

Proposition 2. Let $T > 0$ and $\alpha > 0$ be arbitrary. The following items are equivalent:

- The control system (1) is cost-uniformly α-null controllable in time $T > 0$.
- We have $\mu_{\alpha}^T < +\infty$.
- There exists $C \geq 0$ such that
 \[\| S(T)^*\psi \|_X \leq C \| B^*S(T - \cdot)^*\psi \|_{L^2(0,T;U)} + \alpha \| \psi \|_X \quad \forall \psi \in X. \]

When one of these items is satisfied, the smallest possible constant C in the observability inequality (13) is $C = \mu_{\alpha}^T$.

Propositions 1 and 2 will be proved in Section 4.

Remark 3. The control system (1) is exponentially stabilizable if and only if there exists (or, for every) $\alpha \in (0,1)$, there exists $T > 0$ such that the control system (1) is cost-uniformly α-null controllable in time T (i.e., $\mu_{\alpha}^T < +\infty$).

Remark 4. As said above, for $\alpha = 0$ we recover the usual notion of exact null controllability. Recall that the control system (1) is exactly null controllable in time $T > 0$ if, for every $y_0 \in X$, there exists $u \in L^2(0,T;U)$ such that $y(T; y_0, u) = 0$. This is equivalent to $\text{Ran}(S(T)) \subset \text{Ran}(L_T)$ (see (2)), and also, by duality, to the observability inequality

\[\| S(T)^*\psi \|_X \leq \mu_0^T \| B^*S(T - \cdot)^*\psi \|_{L^2(0,T;U)} \quad \forall \psi \in X \]

which is (13) with $\alpha = 0$.

Remark 5. If the control system (1) is exactly null controllable in time T then $\mu_0^T < +\infty$ for every $\alpha > 0$, and μ_0^T has a limit as $\alpha \to 0^+$, denoted by μ_0^T (these facts are easily seen by considering the optimal controls $\bar{u}_{y_0,\alpha}$). In particular, we have the observability inequality

\[\langle \psi, S(T)y_0 \rangle_X \leq \mu_0^T \| B^*S(T - \cdot)^*\psi \|_{L^2(0,T;U)} \quad \forall \psi \in X \]

for every $\psi \in X$ and every $y_0 \in X$ of norm 1. Taking

$y_0 = \frac{S(T)^*\psi}{\| S(T)^*\psi \|_X}$,

we recover the observability inequality (14). Actually:

exact null controllable in time T \iff $\mu_0^T = \lim_{\alpha \to 0^+} \mu_0^T < +\infty$.

Remark 6. We claim that, for $\alpha = 0$:

- cost-uniformly 0-null controllable in time T \iff 0-null controllable in time T
but for $\alpha > 0$ we only have:

\[
\text{cost-uniformly α-null controllable in time } T \nRightarrow \alpha\text{-null controllable in time } T
\]

Indeed, the first claim is a classical fact of the HUM theory (see [29], see also [9, Proposition 1.19] where the uniform boundedness principle is used to get the result).

In the second claim, the converse is wrong because it may happen that $\mu_T^{y_0,\alpha} < +\infty$ for every $y_0 \in X$ while $\mu_T^{\alpha} = \sup_{\|y_0\|_X = 1} \mu_T^{y_0,\alpha} = +\infty$: see an example in Section 3.2.1. See also Remark 13.

Remark 7. Let $\alpha \geq 0$ and $T > 0$ be fixed. Summing up, we have seen that:

- α-null controllable from y_0 in time T \iff $\mu_T^{y_0,\alpha} < +\infty$
- α-null controllable in time T \iff $\forall y_0 \in X \mu_T^{y_0,\alpha} < +\infty$
- cost-uniformly α-null controllable in time T \iff $\mu_T^\alpha < +\infty$

and that none of these properties are equivalent when $\alpha > 0$. We have also seen that:

the system is exponentially stabilizable
\[
\iff \forall \alpha \in (0, 1) \exists T > 0 \text{ s.t. the system is cost-uniform α-null controllable in time } T
\]
\[
\iff \forall \alpha \in (0, 1) \exists T > 0 \text{ s.t. } \mu_T^\alpha < +\infty.
\]
\[
\iff \exists \alpha \in (0, 1) \exists T > 0 \text{ s.t. the system is cost-uniform α-null controllable in time } T
\]
\[
\iff \exists \alpha \in (0, 1) \exists T > 0 \text{ s.t. } \mu_T^\alpha < +\infty.
\]

Remark 8. The constant $\mu_T^{y_0,\alpha}$ quantifies the α-null controllability property: actually, as established in the proof in Section 4.1, when $\mu_T^{y_0,\alpha} < +\infty$ we have

\[\mu_T^{y_0,\alpha} = \| \bar{u}_{y_0,\alpha} \|_{L^2(0,T;U)}\]

where $\bar{u}_{y_0,\alpha}$ is the (unique) control of minimal L^2 norm steering in time T the control system (1) from y_0 to the ball $\alpha\|y_0\|_X B$.

2.2 Approximate controllability

Let $T > 0$ be arbitrary.

Definition 2. Given some $y_0 \in X$, the control system (1) is approximately null controllable from y_0 in time T if, for every $\alpha > 0$, the system is α-null controllable from y_0 in time T. Equivalently, for every $\varepsilon > 0$ there exists $u \in L^2(0,T;U)$ such that $\|y(T; y_0, u)\|_X \leq \varepsilon$.

The control system (1) is approximately null controllable in time T if, for every $y_0 \in X$, it is approximately null controllable from y_0 in time T.

Proposition 3. Let $y_0 \in X$ be arbitrary. The following items are equivalent:

- The control system (1) is approximately null controllable in time $T > 0$.
- For every $\alpha > 0$, we have $\mu_T^{y_0,\alpha} < +\infty$.
- For every $\alpha > 0$, there exists $C \geq 0$ such that

\[
\langle \psi, S(T)y_0 \rangle_X \leq C \|B^* S(T - \cdot)^* \psi\|_{L^2(0,T;U)} + \alpha \|y_0\|_X \|\psi\|_X \quad \forall \psi \in X.
\]
When one of these items is satisfied, the smallest possible constant C in the observability inequality (15) is

$$C = \mu_{y_0,\alpha}^T.$$

Equivalently, one can replace “every $\alpha > 0$” with “every $\alpha \in (0, \|S(T)\|_{L(X)})$” in Proposition 3. This proposition will be proved in Section 4.

Remark 9. This proposition is not new and can be found, in a slightly different form, in [9].

The last item of Proposition 3 (unique continuation property) has been suggested by the referee, whom we thank for this suggestion. The proof of the equivalence of the third and fourth items follows [9, Proposition 1.17]: Item 3 obviously implies Item 4 by taking $\alpha \to 0$. That Item 4 implies Item 3 is proved by contradiction: if the inequality (15) does not hold, then there exists $\alpha > 0$ such that, for every $n \in \mathbb{N}^*$, there exists $\psi_n \in X$ such that $(\psi_n, S(T)y_0)_X = 1 > n\|B^*S(T - \cdot)^*\psi_n\|_{L^2(0,T;U)} + \alpha\|y_0\|_X\|\psi_n\|_X$, hence ψ_n is bounded and hence, up to some subsequence, it converges weakly to some $\psi \in X$, which must satisfy $(\psi, S(T)y_0)_X = 1$ (and thus $\psi \neq 0$) and also $B^*S(T - \cdot)^*\psi = 0$ on $[0,T]$, whence $\psi = 0$, which raises a contradiction.

It is interesting to note that the unique continuation property (Item 4 of Proposition 3) is a qualitative way of expressing approximate controllability, while the observability inequality (15) is a quantitative way of expressing it: the constant $\mu_{y_0,\alpha}^T$ quantifies approximate controllability, it gives an account for the “quality” of the approximate controllability property.

Remark 10. The control system (1) is approximately null controllable in time $T > 0$ if and only if $\text{Ran}(S(T))$ (or its closure) is contained in the closure of $\text{Ran}(L_T)$, or, by duality, given any $\psi \in X$, if $B^*S(T-t)^*\psi = 0$ for every $t \in [0,T]$ then $S(T)^*\psi = 0$ (see [49, Theorem 2.1 page 207]).

Remark 11. Until now, we have spoken only of approximate null controllability. Let us comment about the more usual concept of approximate controllability.

The control system (1) is *approximately controllable in time $T > 0$* if, for every $\varepsilon > 0$, for all $y_0, y_1 \in X$, there exists $u \in L^2(0,T;U)$ such that $\|y(T; y_0, u) - y_1\|_X \leq \varepsilon$.

Equivalently, $\text{Ran}(L_T)$ is dense in X, or, by duality, $L_T^*\psi$ is injective, which means that, given any $\psi \in X$, if $B^*S(T-t)^*\psi = 0$ for every $t \in [0,T]$ then $\psi = 0$ (unique continuation property: compare with the one given in Remark 10 and with the one given in Proposition 3).

It is interesting to note the following result:

Let $T > 0$ be arbitrary. Assume that $S(T)^$ is injective, i.e., that $\text{Ran}(S(T))$ is dense in X. Then approximate controllability in time T is equivalent to approximate null controllability in time T.*

The assumption that $S(T)^*$ is injective is satisfied when $(S(t))_{t \geq 0}$ is either a group (obviously) or an analytic C_0 semigroup.

To prove the latter fact, by taking the adjoint, let us prove that if $(S(t))_{t \geq 0}$ is an analytic semigroup then for every $T \geq 0$ the operator $S(T)$ is injective: let $T \geq 0$ and $x \in X$ be such that $S(T)x = 0$, then $S(t)x = S(t - T)S(T)x = 0$ for every $t \geq T$, and by analyticity we infer that $S(t)x = 0$ for every $t \geq 0$, whence $x = 0$.

In contrast, when the semigroup is neither a group nor analytic, $S(T)$ may fail to be injective: for instance, the left-shift semigroup on the positive half-line is such that, for every y_0 there exists $T = T(y_0)$ such that $S(T)y_0 = 0$.

Remark 12. By the same approach, we obtain as well the following characterization of approximate controllability by an observability inequality:
Define $\mu^T_{y_0, y_1, \alpha} \in [0, +\infty]$ similarly as $\mu^T_{y_0, \alpha}$, replacing the term $S(T)y_0$ with $S(T)y_0 - y_1$. The control system (1) is approximately controllable in time $T > 0$ if and only, for all $y_0, y_1 \in X$ and for every $\alpha > 0$, there exists $C \geq 0$ such that

$$\langle \psi, S(T)y_0 - y_1 \rangle_X \leq C \|B^*S(T - \cdot)^* \psi\|_{L^2(0,T;U)} + \alpha \|y_0\|_X \|\psi\|_X \quad \forall \psi \in X.$$

When $\mu^T_{y_0, y_1, \alpha} < +\infty$, it is the smallest constant C in the observability inequality above.

This statement underlines in an unusual way the difference between approximate controllability and approximate null controllability (as said in Remark 11, both notions coincide if $S(T)^*$ is injective, or equivalently if $\text{Ran}(S(T))$ is dense in X).

Similar statements can be given as well for α-controllability to some target point y_1. We do not give details.

Remark 13. There is no relationship in general between approximate controllability and exponential stabilizability:

- There exist control systems that are exponentially stabilizable but that are not approximately null controllable in any time T. For instance, take $B = 0$ and take A generating an exponentially stable semigroup, i.e., $\|S(t)\|_{L(X)} \leq Me^{-\beta t}$ for some $M \geq 1$ and $\beta > 0$, then a minimal time $T_\alpha = \frac{1}{\beta} \ln \frac{M}{\alpha}$ is at least required to realize α-null controllability, which cannot be bounded uniformly with respect to every $\alpha > 0$ arbitrarily small.

- There exist control systems that are approximately controllable in some time T but that are not exponentially stabilizable (see [15, Example 5.2.2 page 228], [35, Example 3.16], [44], [49, Theorem 3.3, (ii), page 227], which all give the same example; see also the example provided in Section 3.2.1, already commented in Remark 6).

We mention however [5, Theorem 1.6] which states that, when $(S(t))_{t \geq 0}$ is analytic, under some spectral assumptions, approximate controllability is equivalent to exponential stabilizability and to a Fattorini-Hautus criterion.\footnote{We thank Guillaume Olive for having indicated this reference to us.}

Remark 14. Given $T > 0$, recall that $\mu^T_{\alpha} = \mu^T_{y_0, \alpha} = 0$ when $\alpha \geq \|S(T)\|_{L(X)}$. When $\alpha \to 0^+$, μ^T_{α} and $\mu^T_{y_0, \alpha}$ may tend to $+\infty$. Assuming that μ^T_{α} is uniformly bounded with respect $\alpha \in (0, \|S(T)\|_{L(X)})$, approximate null controllability in time T is equivalent to exact null controllability in time T.

3 Further comments

3.1 Null controllability implies stabilizability

Inspecting the observability inequalities (14) and (9), we recover the well known fact that if the control system (1) is exactly null controllable in some time T then it is exponentially stabilizable (see, e.g., [49, Theorem 3.3 page 227]). The converse is wrong in general: as said in Remark 5, the control system (1) is exactly null controllable in time T if and only if $\mu^T_0 = \lim_{\alpha \to 0^+} \mu^T_{\alpha} < +\infty$: it may happen that when the system is exponentially stabilizable, as $\alpha \to 0^+$, the infimum of times T such that $\mu^T_{\alpha} < +\infty$ tends to $+\infty$.

We thank Guillaume Olive for having indicated this reference to us.
Complete stabilizability. Complete stabilizability means that, given any \(\omega \in \mathbb{R} \), one can find a feedback \(K \in L(X,U) \) such that \(\omega K < \omega \), or equivalently, that the best stabilization rate given by (10) is \(-\infty\). According to the expression (10), we have complete stabilizability if either, for a given \(\alpha \in (0, 1) \), we have \(\mu_T^\alpha < +\infty \) for every \(T > 0 \) arbitrarily small, or, for a given \(T > 0 \), we have \(\mu_T^\alpha < +\infty \) for every \(\alpha > 0 \) arbitrarily small (which is equivalent, by Remark 5, to exact null controllability in time \(T \)). Several remarks on complete stabilizability are in order.

- We have the following result:

 Proposition 4. If the control system (1) is exactly null controllable in some time \(T > 0 \) then it is completely stabilizable.

 This result is proved in Appendix A.1. It also follows by Remark 5: since \(\mu_T^\alpha \) remains uniformly bounded as \(\alpha \to 0 \) for some \(T > 0 \) fixed, we see from (10) that \(\omega^* = -\infty \).

- We have the following result:

 Proposition 5. When \((S(t))_{t \geq 0}\) is a group, the following properties are equivalent:

 (i) Exact controllability in some time \(T \).

 (ii) Exact null controllability in some time \(T \).

 (iii) Complete stabilizability.

 This result is already known (see [41, 46] and [49, Theorem 3.4 page 229]). We provide in Appendix A.2 a proof of it that uses Theorem 1.

 The strategy developed in [24] (applying also, to some extent, to unbounded admissible control operators) consists of taking \(K_\lambda = -B^*C_\lambda^{-1} \) where \(C_\lambda \) is defined by

 \[
 C_\lambda = \int_0^{T+1/2\lambda} f_\lambda(t)S(-t)BB^*S(-t)^*dt
 \]

 (variant of the Gramian operator) with \(\lambda > 0 \) arbitrary, \(f_\lambda(t) = e^{-2\lambda t} \) if \(t \in [0,T] \) and \(f_\lambda(t) = 2\lambda e^{-2\lambda t}(T + 1/2\lambda - t) \) if \(t \in [T,T+1/2\lambda] \). The function \(V(y) = \langle y, C_\lambda^{-1}y \rangle \) is a Lyapunov function (as noticed in [12]), and the feedback \(K_\lambda \) yields exponential stability with rate \(-\lambda \). We also refer to [13, 14, 34, 40] for issues on rapid stabilization.

- Let us assume that \(A \) is skew-adjoint, which is equivalent, by the Stone theorem, to the fact that \(A \) generates a unitary group \((S(t))_{t \in \mathbb{R}}\) (see [17]). Then \(\|S(T)^*\psi\|_X = \|\psi\|_X \) for every \(\psi \in X \) and therefore the observability inequality (9) characterizing exponential stabilizability is equivalent to the observability inequality characterizing exact controllability and can be achieved, for a given \(T > 0 \), with arbitrarily small values of \(\alpha > 0 \), which implies that \(\omega^* = -\infty \). Therefore we recover a result of [31]:

 Proposition 6. When \(A \) is skew-adjoint, the following properties are equivalent:

 (i) exact controllability in time \(T \);

 (ii) exact null controllability in time \(T \);

 (iii) exponential stabilizability;

 (iv) complete stabilizability.
3.2 Examples

3.2.1 First example

We take \(X = U = \ell^2(\mathbb{N}, \mathbb{R}) \), \(A \) the infinite-dimensional identity matrix, and \(B \) the diagonal infinite-dimensional matrix \(B = \text{diag}(1, \frac{1}{2}, \frac{1}{3}, \ldots) \). We claim that, with this choice:

- For every \(T > 0 \) and every \(\alpha \in (0, 1) \), the control system (1) is \(\alpha \)-null controllable in time \(T \), i.e.,
 \[
 \mu_{\alpha \cdot T} < +\infty \quad \forall y_0 \in X \quad \forall \alpha \in (0, 1) \quad \forall T > 0.
 \]
 Hence, the control system (1) is approximately null controllable in any time \(T > 0 \).

- The control system (1) is not exponentially stabilizable, i.e.,
 \[
 \mu_{\alpha \cdot T} = +\infty \quad \forall \alpha \in (0, 1) \quad \forall T > 0.
 \]

By Remark 3, the control system (1) is not cost-uniformly \(\alpha \)-null controllable in time \(T \).

Let us first prove the \(\alpha \)-null controllability property. Let \((e_n)_{n \in \mathbb{N}^*} \) be the canonical base of \(X \). For every \(n \in \mathbb{N}^* \), we denote by \(P_n \) the orthogonal projection of \(X \) onto \(\text{Span}(e_1, \ldots, e_n) \). Let \(y_0 \in X \) be arbitrary. Taking \(n \in \mathbb{N}^* \) large enough such that \(\|y_0 - P_n y_0\|_X \leq \alpha e^{-T} \|y_0\|_X \), and taking the control \(u = 0 \), we have

\[
\|y(T; (\text{id} - P_n)y_0, 0)\|_X \leq \alpha \|y_0\|_X.
\]

By the Duhamel formula, for every \(u \in L^2(0, T; U) \) we have

\[
y(T; y_0, u) = y(T; P_n y_0, u) + y(T; (\text{id} - P_n)y_0, 0).
\]

Note that, taking \(u \) such that \(u(t) \in \text{Ran}(P_n) \) for almost every \(t \in [0, T] \), we have \(y(t; P_n y_0, u) \in \text{Ran}(P_n) \) for every \(t \in [0, T] \). Since the control system in \(\mathbb{R}^n \) given by \(\dot{x}(t) = A_n x(t) + B_n u(t) \) with \(A_n \) the identity matrix and \(B_n = \text{diag}(1, \frac{1}{2}, \frac{1}{3}, \ldots) \), is controllable (it satisfies the Kalman condition), there exists \(u \in L^2(0, T; U) \) such that \(y(T; P_n y_0, u) = 0 \). Using (17) and (16), it follows that \(\|y(T; y_0, u)\|_X \leq \alpha \|y_0\|_X \), i.e., we have proved that the system is \(\alpha \)-null controllable in time \(T \).

Let us now prove that the system is not exponentially stabilizable. By contradiction, let us assume that there exist \(K \in L(X, U) \), \(M > 0 \) and \(\rho > 0 \) such that \(\|S(t)(0)\| \leq M e^{-\rho t} \) for every \(t \geq 0 \) (we use the notations of (3)). Denoting by \(a_n(t) \) the \(n \)-th component of \(y_K(t; y_0) = S(t)y_0 \), we have

\[
a_n(t) = a_n(t) + \langle e_n, BK y_K(t; y_0) \rangle = a_n(t) + \langle Be_n, Ky_K(t; y_0) \rangle.
\]

Hence,

\[
|a_n(t)| = |e^t a_n(0) + \int_0^t e^{t-s}(Be_n, Ky_K(s; y_0)) \, ds| \\
\geq e^t |a_n(0)| - \int_0^t e^{t-s} \|Be_n\| \|Ky_K(s; y_0)\| \, ds \\
\geq e^t |a_n(0)| - \int_0^t e^{t-s} \frac{1}{n} \|K\| \|M e^{-\rho s} y_0\| \, ds \\
\geq e^t \left(|a_n(0)| - \frac{M \|K\|}{(1 + \rho)n} \|y_0\| \right)
\]

(18)

Take \(m \in \mathbb{N} \) satisfying \(\frac{M \|K\|}{(1 + \rho)m} \leq \frac{1}{2} \) and take \(y_0 = e_m \). Then \(a_n(0) = \|y_0\| = 1 \). It follows from (18) with \(n = m \) that

\[
\|a_m(t)\| \geq e^t \left(1 - \frac{M \|K\|}{(1 + \rho)m} \right) \geq \frac{1}{2} e^t.
\]

Since \(\lim_{m \to +\infty} |a_m(t)| = +\infty \), we obtain that \(\|y_K(t; y_0)\| \to +\infty \), which is a contradiction.
Note that \((z, \partial_t u) \in L^2(0, \pi)\) by
\[
(Pv)(x) = \frac{2}{\pi} \sin x \int_0^\pi v(s) \sin s \, ds \quad \forall v \in L^2(0, \pi).
\]

Note that \(B \in L(X, U)\) is a bounded control operator. We claim that:

- With \(u = 0\), the control system \((19)\) is not asymptotically stable.
- The control system \((19)\) satisfies the observability inequality \((9)\) of Theorem 1, and hence it is stabilizable.
- The control system \((19)\) is not exactly null controllable in any time \(T > 0\). In particular, it is not completely stabilizable.

The fact that, with \(u = 0\), the control system \((19)\) is not asymptotically stable, can be seen from the fact that \((z, \partial_t z, u) = (\sin x, 0, \sin x)\) is a steady-state solution to \((19)\) with \(u = 0\).

Let us prove that the control system \((19)\) is not exactly null controllable in any time \(T > 0\). By contradiction, if there were some \(T > 0\) such that the system \((19)\) is exactly null controllable, then by taking the initial data \((z_0, z_1, w_0) = (0, 0, \sin 2x)\), we could find a control \(u \in L^2(0, T; L^2(0, \pi))\) steering the system \((19)\) from \((z_0, z_1, w_0)\) to zero in time \(T\). However, setting \(a(t) = \int_0^t w(t, x) \sin(2x) \, dx\), from the second equation of \((19)\), we obtain
\[
\dot{a}(t) = \langle w(t, x), (\Delta + \text{id}) \sin(2x) \rangle_{L^2(0, \pi)} = -3 \langle w(t, x), \sin(2x) \rangle_{L^2(0, \pi)} = -3a(t).
\]
Since \(a(0) = \pi/2 \neq 0\), we must have \(a(T) \neq 0\), which raises a contradiction.

Let us finally prove that the control system \((19)\) is stabilizable. By Theorem 1, it suffices to establish that:

There exist \(\alpha \in (0, 1), T > 0\) and \(C > 0\) such that
\[
\|S(T)^* \Psi\|^2_X \leq C \|B^* S(T - \cdot)^* \Psi\|^2_{L^2(0, \pi, U)} + \alpha^2 \|\Psi\|^2_X \quad \forall \Psi \in X
\]
(20)

To prove (20), we first observe that \(D(A^*) = D(A)\) and
\[
A^* = \begin{pmatrix} 0 & -\text{id} & 0 \\ -\Delta & 0 & P \\ 0 & \text{id} & \Delta + \text{id} \end{pmatrix}, \quad B^* \begin{pmatrix} \phi \\ \psi \\ \xi \end{pmatrix} = \psi + P\xi.
\]
We define the adjoint system
\begin{align}
\partial_t \phi &= \psi \\
\partial_t \psi &= \Delta \phi - P \xi \\
\partial_t \xi &= -\psi - \Delta \xi - \xi
\end{align} \tag{21}
with \((\phi(T), \psi(T), \xi(T)) = (\phi_T, \psi_T, \xi_T) \in D(A^*)\). The inequality (20) is then equivalent to
\[
\left\| \begin{pmatrix} \phi(0) \\ \psi(0) \\ \xi(0) \end{pmatrix} \right\|_X^2 \leq C \int_0^\pi \| \psi(t) + P \xi(t) \|^2 dt + \alpha^2 \left\| \begin{pmatrix} \phi(T) \\ \psi(T) \\ \xi(T) \end{pmatrix} \right\|_X^2 \forall (\phi_T, \psi_T, \xi_T) \in D(A^*). \tag{22}
\]
Let us establish (22) for \(T = \pi, \alpha = \sqrt{2}e^{-3T} < 1\) and for some \(C > 0\) which will be given later. To this end, we arbitrarily fix \((\phi_T, \psi_T, \xi_T) \in D(A^*)\). We write
\[
\begin{pmatrix} \phi_T \\ \psi_T \\ \xi_T \end{pmatrix} = \begin{pmatrix} P \phi_T \\ P \psi_T \\ P \xi_T \end{pmatrix} + \begin{pmatrix} (\text{id} - P) \phi_T \\ (\text{id} - P) \psi_T \\ (\text{id} - P) \xi_T \end{pmatrix} = \begin{pmatrix} \phi_{T,1} \\ \psi_{T,1} \\ \xi_{T,1} \end{pmatrix} + \begin{pmatrix} \phi_{T,2} \\ \psi_{T,2} \\ \xi_{T,2} \end{pmatrix}.
\]
Denote respectively by \(\begin{pmatrix} \phi(\cdot) \\ \psi(\cdot) \\ \xi(\cdot) \end{pmatrix}, \begin{pmatrix} \phi_1(\cdot) \\ \psi_1(\cdot) \\ \xi_1(\cdot) \end{pmatrix}\) and \(\begin{pmatrix} \phi_2(\cdot) \\ \psi_2(\cdot) \\ \xi_2(\cdot) \end{pmatrix}\) the solutions to (21) with final data (at time \(T\)) \(\begin{pmatrix} \phi_T \\ \psi_T \\ \xi_T \end{pmatrix}, \begin{pmatrix} \phi_{T,1} \\ \psi_{T,1} \\ \xi_{T,1} \end{pmatrix}, \begin{pmatrix} \phi_{T,2} \\ \psi_{T,2} \\ \xi_{T,2} \end{pmatrix}\) . Then we have
\[
\begin{pmatrix} \phi \\ \psi \\ \xi \end{pmatrix} = \begin{pmatrix} \phi_1 \\ \psi_1 \\ \xi_1 \end{pmatrix} + \begin{pmatrix} \phi_2 \\ \psi_2 \\ \xi_2 \end{pmatrix}.
\]
Since \((\phi_1(t, \cdot), \psi_1(t, \cdot), \xi_1(t, \cdot)) \in \text{Span } (\sin x)\) and since the pair
\[
\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, (0, 1, 1)
\]
satisfies the (observability) Kalman condition, there exists \(C_1 > 0\) independent of the final data such that
\[
\left\| \begin{pmatrix} \phi_1(0) \\ \psi_1(0) \\ \xi_1(0) \end{pmatrix} \right\|_X^2 \leq C_1 \int_0^\pi \| \psi_1(t, \cdot) + \xi_1(t, \cdot) \|^2 dt = C_1 \int_0^\pi \| \psi_1(t, \cdot) + P \xi_1(t, \cdot) \|^2 dt. \tag{23}
\]
Now, since \((\phi_2(t, \cdot), \psi_2(t, \cdot), \xi_2(t, \cdot)) \in \text{Span } (\sin x)^\perp\) and \(P \xi_2(t, \cdot) = 0\), it follows from (21) that
\begin{align}
\partial_t \phi_2 &= \psi_2 \\
\partial_t \psi_2 &= \Delta \phi_2 \\
\phi_2(T) &= \phi_{T,2}, \quad \psi_2(T) = \psi_{T,2}. \tag{24}
\end{align}
From (24) and by observability of the wave equation (which is true because \(T > \pi\)), there exists \(C_2 > 0\) independent of the final data such that
\[
\left\| \begin{pmatrix} \phi_2(0) \\ \psi_2(0) \end{pmatrix} \right\|_{L^2 \times L^2}^2 \leq C_2 \int_0^\pi \| \psi_2(t, \cdot) \|^2 dt = C_2 \int_0^\pi \| \psi_2(t, \cdot) + P \xi_2(t, \cdot) \|^2 dt. \tag{25}
\]
Besides, it follows from the third equation of (21) that
\[
\xi_2(0) = e^{T(\Delta + \text{id})} \xi_2(T) + \int_0^T e^{t(\Delta + \text{id})} \psi_2(t, \cdot) dt,
\]
which implies that

\[\| \xi_2(0) \|^2 \leq \left(e^{-3T} \| \xi_2(T) \| + \int_0^T \| \psi_2(t, \cdot) \| \, dt \right)^2 \leq 2e^{-6T} \| \xi_2(T) \|^2 \]

\[\leq 2e^{-6T} \| \xi_2(T) \|^2 + 2T \int_0^\pi \| \psi_2(t, \cdot) \|^2 + P \| \xi_2(t, \cdot) \|^2 \, dt. \quad (26) \]

From (25) and (26), we infer that

\[\left\| \begin{pmatrix} \phi_2(0) \\ T \psi_2(0) \end{pmatrix} \right\|_X^2 \leq (C_2 + 2T) \int_0^\pi \| \psi_2(t, \cdot) + P \xi_2(t, \cdot) \|^2 \, dt + 2e^{-6T} \| \xi_2(T) \|^2 \]

\[\leq (C_2 + 2T) \int_0^\pi \| \psi_2(t, \cdot) + P \xi_2(t, \cdot) \|^2 \, dt + 2e^{-6T} \left\| \begin{pmatrix} \phi_2(T) \\ T \psi_2(T) \end{pmatrix} \right\|_X^2. \quad (27) \]

The desired inequality (22) follows from (23),(27) with \(T = \pi, \alpha = \sqrt{2}e^{-3T} < 1 \) and \(C = \max(C_1, C_2 + 2T) \).

3.3 Extension to unbounded admissible control operators

Throughout the paper, we have assumed that the control operator \(B \) is bounded, i.e., is linear continuous with values in \(X \), that is, \(B \in L(U, X) \). This assumption covers the case of internal controls, but not, in general, of boundary controls. For the latter case, we speak of unbounded control operators, which are operators \(B \) that are not continuous from \(U \) to \(X \) but are continuous from \(U \) to some larger space \(X_{-\alpha} \) which can be defined by extrapolation (scale of Hilbert spaces, see \([17, 42, 45]\)). Given such a control operator \(B \in L(U, X_{-\alpha}) \) with \(\alpha > 0 \), the range of the operator \(L_T \) may then fail to be contained in \(X \). We say that \(B \) is admissible when \(\text{Ran}(L_T) \subset X \) for some (and thus for all) \(T > 0 \) (see \([45]\)). Note that \(X_{-1} \) is isomorphic to \(D(A^*) \) (with \(X \) as a pivot space) and that if \(B \) is admissible then \(B \in L(U, X_{-1/2}) \).

For an admissible control operator, since \(\text{Ran}(L_T) \subset X \), all arguments of Section 4.1 (Fenchel duality) remain valid.\(^3\) One should anyway avoid to use \(G_T^{1/2} \) (where \(G_T := \int_0^T S(T-t)BB^*S(T-t)^* \, dt \) is the usual Gramian operator when \(B \) is bounded) in this more general context and replace \(\| G_T^{1/2} \psi \|_X \) with \(\| B^*S(T-\cdot)^* \psi \|_{L^2(0,T,U)} \) everywhere throughout the proof. Therefore:

Proposition 7. Propositions 1, 2 and 3 remain true in the more general context where the control operator \(B \) is admissible (and may be unbounded).

When the control operator \(B \) is not admissible, the question of knowing whether Propositions 1, 2 and 3 may be extended in some way is open.

Now, concerning the exponential stabilizability result, the only critical fact is in at the end of the proof of Lemma 4 where we invoke the Riccati theory: indeed this theory is well established in the general case only for admissible control operators and analytic semigroups (see Remark 16 at the end of the proof in Section 4.2). Therefore:

Theorem 2. Theorem 1 is true, without any change, in the more general context where the control operator \(B \) is admissible (and may be unbounded) and the semigroup \((S(t))_{t \geq 0} \) is analytic.

\(^3\)When the control operator is not admissible, we have \(\text{Ran}(L_T) \subset X_{-\alpha} \) for some \(\alpha > 0 \) and then the closed unit ball \(B \) should be the one in \(X_{-\alpha} \), while the considered controllability concepts are in the space \(X \).
For instance, this situation covers the case of heat equations in a C^2 bounded open subset $\Omega \subset \mathbb{R}^n$, with $X = L^2(\Omega)$, with Neumann control at the boundary of Ω (for which, at best, $B \in L(U, X_{-1/4+\varepsilon})$ for every $\varepsilon > 0$), but not with Dirichlet control at the boundary (for which, at best, $B \in L(U, X_{-3/4+\varepsilon})$ for every $\varepsilon > 0$). We refer to [26] for details.

Actually, as indicated to us by Marius Tucsnak, we do not need to use the Riccati operator but only the fact that the finite-cost property (also called optimizability) implies stabilizability, which is true (as well as the converse implication) for a bounded control operator.

Let us recall that the control system (1) is optimizable (or, enjoys the finite-cost property) if, for every $y_0 \in X$, there exists $u \in L^2(0, +\infty; U)$ such that $y(\cdot; y_0, u) \in L^2(0, +\infty; X)$.

The argument of the proof of Lemma 4 can easily be extended (see Remark 16) to the case of an admissible control operator B (which may be unbounded), and we obtain the following result:

Theorem 3. For an admissible control operator B (which may be unbounded), the following items are equivalent:

- The control system (1) is optimizable.
- For every $\alpha \in (0, 1)$ there exists $T > 0$ such that $\mu^T_\alpha < +\infty$.

For every $\alpha \in (0, 1)$, there exist $T > 0$ such that $\mu^T_\alpha < +\infty$.

- For every $\alpha \in (0, 1)$, there exist $T > 0$ and $C \geq 0$ such that, for every $y_0 \in X$, there exists $u \in L^2(0; T; U)$ such that
 \[\|y(T; y_0, u)\|_X \leq C\|y_0\|_X \quad \text{and} \quad \|u\|_{L^2(0; T; U)} \leq C\|y_0\|_X. \] (28)

- There exist $\alpha \in (0, 1)$, $T > 0$ and $C \geq 0$ such that, for every $y_0 \in X$, there exists $u \in L^2(0; T; U)$ such that the inequality (28) is satisfied.

- For every $\alpha \in (0, 1)$ (equivalently, there exists $\alpha \in (0, 1)$), there exist $T > 0$ and $C \geq 0$ such that
 \[\|S(T)^\alpha \psi\|_X \leq C\|B^\alpha S(T - \cdot)^\alpha \psi\|_{L^2(0; T; U)} + \alpha\|\psi\|_X \quad \forall \psi \in X. \] (29)

- There exist $\alpha \in (0, 1)$, $T > 0$ and $C \geq 0$ such that the inequality (29) is satisfied.

When one of these items is satisfied, the smallest possible constant C in (8) and in the observability inequality (9) is $C = \mu^\alpha_{\infty}$; moreover, for every $\alpha \in (0, 1)$, the real number $T > 0$ in the second, third and fourth items above can be taken the same.

By inspecting, at the light of Remark 16, the proof of Lemma 4 and in particular (34), we note that, for an admissible control operator B, any of the items of Theorem 3 is equivalent to the following fact:

- For every $\alpha \in (0, 1)$, there exist $T > 0$ and $M = M(\alpha, T) > 0$ such that, for every $y_0 \in X$, there exists $u \in L^2(0; +\infty; U)$ such that $\|y(t; y_0, u)\|_X \leq M\|y_0\|_X e^{\ln \alpha t}$ for every $t \geq 0$.

This is only an open-loop stabilizability property (or asymptotic null controllability), in the sense that the control u, depending on y_0, is not determined by a feedback. The usual concept of stabilizability underlies the existence of a feedback.

Hence, we should now discuss how the concepts of optimizability and of stabilizability are related one to each other. As said above, optimizability is equivalent to exponential stabilizability (defined
in (3)) when the control operator B is bounded. For unbounded admissible control operators, the concept of exponential stabilizability is more difficult to define.

The definition of exponential stabilizability given in [47] is the following. Let $B \in L(U, X_{-1})$. The control system (1) is said to be exponentially stabilizable if B is admissible and if there exists $K \in L(D(A), U)$ such that $\text{id} - K_{\Lambda}(\lambda \text{id} - A)^{-1}B$ is boundedly invertible for $\lambda > 0$ large enough (and the inverse is uniformly bounded) and such that the operator $A + BK_{\Lambda}$, of domain $D(A + BK_{\Lambda}) = \{ y \in D(K_{\Lambda}) \mid (A + BK_{\Lambda})y \in X \}$, generates on X an exponentially stable C_{0} semigroup $(S_{K_{\Lambda}}(t))_{t \geq 0}$. Here, $K_{\Lambda} \in L(D(K_{\Lambda}), U)$ is the Λ-extension (or Yosida extension) of K, defined by $K_{\Lambda}y = \lim_{\lambda \rightarrow +\infty} K\lambda(\lambda \text{id} - A)^{-1}y$ for every $y \in D(K_{\Lambda})$. The domain $D(K_{\Lambda})$ of K_{Λ}, which is the set of all $y \in X$ such that the limit (in X) exists, can be equipped with a norm making it a Banach space, and we have $D(A) \subset D(K_{\Lambda}) \subset X$ with continuous embeddings, and, for every $x \in X$, $S(t)x \in D(K_{\Lambda})$ and $S_{K_{\Lambda}}(t)x \in D(K_{\Lambda})$ for almost every $t \geq 0$. Moreover, we have $S_{K_{\Lambda}}(t)(t) = S(t) + \int_{0}^{t} S(t - s)BK_{\Lambda}S_{K_{\Lambda}}(s) ds$ for every $t \geq 0$, and the control operator B is admissible for the semigroup $(S_{K_{\Lambda}}(t))_{t \geq 0}$.

Exponential stabilizability in the above sense implies optimizability. Indeed, given any $y_{0} \in X$, take $u(t) = K_{\Lambda}S_{K_{\Lambda}}(t)y_{0}$, which is in $L^{2}(0, +\infty; U)$, and note that $y(t; y_{0}, u) = S_{K_{\Lambda}}(t)y_{0} \in L^{2}(0, +\infty; X)$.

The converse statement is more involved: it is true but only in a weaker sense. Assume that the control system (1) is optimizable. It is proved in [47, Propositions 3.2, 3.3 and 3.4] (see also [20, 42, 52]) that, for every $y_{0} \in X$, there exists a unique $\hat{u} \in L^{2}(0, +\infty; U)$ minimizing the functional

$$J(u, y_{0}) = \int_{0}^{+\infty} (\|u(t)\|_{U}^{2} + \|y(t; y_{0}, u)\|_{X}^{2}) \, dt$$

over all possible $u \in L^{2}(0, +\infty; U)$. Moreover, we have $\hat{u}(t) = \hat{K}S(t)y_{0}$ for every $y_{0} \in D(\hat{A})$ and almost every $t \geq 0$, where:

- $(\hat{S}(t))_{t \geq 0}$ is an exponentially stable C_{0} semigroup on X, of infinitesimal generator $\hat{A} : D(\hat{A}) \rightarrow X$, such that $\hat{S}(t)y_{0} = S(t)y_{0} + \int_{0}^{t} S(t - s)B\hat{u}(s) ds$, for every $y_{0} \in X$ and every $t \geq 0$.

- The feedback operator $\hat{K} \in L(D(\hat{A}), U)$ is defined by $\hat{K} = -B^{*}P$, where $P \in L(X)$ is a positive symmetric definite operator mapping $D(\hat{A})$ to $D(\hat{A}^{*})$, such that $J(\hat{u}, y_{0}) = (Py_{0}, y_{0})_{X}$ for every $y_{0} \in X$. Note that P satisfies a Riccati equation on $D(\hat{A})$ and possibly also another one on $D(A)$ (see [48]).

- We have $\hat{A} = A + B\hat{K}$ on $D(\hat{A})$, where A in this formula stands for the extension $A : X \rightarrow X_{-1}$ of the original infinitesimal operator $A : D(A) \rightarrow X$. Moreover, considering the Λ-extension $\hat{K}_{\Lambda} = \lim_{\lambda \rightarrow +\infty} K\lambda(\lambda \text{id} - A)^{-1}$ of \hat{K}, we have $\hat{u}(t) = \hat{K}_{\Lambda}S(t)y_{0}$ for every $y_{0} \in X$ and almost every $t \geq 0$.

In contrast to the above definition of exponential stabilizability, however, it is not known whether the control operator B is admissible or not for the semigroup $(\hat{S}(t))_{t \geq 0}$.

We may then define the best stabilization decay rate similarly as in (4), but, with the above results, we do not know if the formula (10) remains true. We let this problem as an open question.

3.4 Extension to Banach spaces

Throughout the paper we have assumed that the state space X and the control space U are Hilbert spaces. All our results can be extended without difficulty to the case where X and U are reflexive Banach spaces. One has to be careful to replace, in all observability inequalities, the scalar product $\langle \cdot , \cdot \rangle_{X}$ with the duality bracket $\langle \cdot , \cdot \rangle_{X^{*}, X}$.

15
3.5 Open problems

We end the section with several open issues.

Systems with an observation Throughout the paper we have focused on the control system (1), without observation. We could add to the system an observation $z(t) = Cy(t)$, where $C \in L(X, Y)$ is an observation operator, with Y another Hilbert space. Corresponding notions of controllability and of stabilizability are classically defined as well. Extending our main results to that context is an interesting issue.

Discretization problems. The observability inequality (9) may certainly be exploited to recover results on uniform semi-discretizations (or full discretizations). The problem is the following. Consider a spatial semi-discrete model of (1), written as

$$\dot{y}_N = A_N y_N + B_N u_N$$

with $y_N(t) \in \mathbb{R}^N$ (see [9, 25, 26, 27] for a general framework on discretization issues). Assuming that the control system (1) is exponentially stabilizable (equivalently, that the observability inequality (9) is satisfied), how to ensure that the family of control systems (30) is uniformly exponentially stabilizable? Uniform means here that, for each N, there exists a feedback matrix K_N such that $\|\exp(t(A_N + B_N K_N))\| \leq M e^{\omega t}$ for some $M \geq 1$ and some $\omega < 0$ that are uniform with respect to N.

This problem has been much studied in the literature with various approaches. In [6, 26, 32], the convergence of the Riccati matrix P_N (corresponding to (30)) to the Riccati operator P (corresponding to (1)) is proved in the general parabolic case, even for unbounded control operators, that is, when $A : D(A) \to X$ generates an analytic semigroup, $B \in L(U, D(A^*))$, and (A, B) is exponentially stabilizable. Uniform exponential stability is also proved under uniform Huang-Prüss conditions in [32], allowing to obtain convergence of Riccati operators for second-order systems $\ddot{y} + Ay = Bu$ with $A : D(A) \to X$ positive selfadjoint with compact inverse and B bounded control operator. General conservative equations are treated in [18] where it is proved that adding a viscosity term in the numerical scheme helps to recover a uniform exponential decay, provided a uniform observability inequality holds true for the corresponding conservative equation (see also [3, 4, 43] for equations with nonlinear damping). Of course, given a specific equation, the difficulty is to establish the uniform observability inequality. This is a difficult issue, investigated in some particular cases (see [51] for a survey).

Anyway, the observability inequality (9) is written in the semidiscrte case as

$$\|S_N(T)^* \psi_N\| \leq C \left(\int_0^T \|B_N S(T-t)^* \psi_N\|^2 dt \right)^{1/2} + \alpha \|\psi_N\|$$

with $\alpha \in (0, 1)$ and $C > 0$ uniform with respect to N. Such a uniform inequality is likely to be true in many cases. For instance it is nicely shown in [50, Section 5] that approximate boundary controllability for 1D waves is satisfied, in a uniform way, for finite-difference semi-discretization schemes. This is shown by using a functional similar to the one (31) used here (see also [9, 25] for α-null controllability in the parabolic case where α is a decreasing function of the discretization parameter, and see [10, 11] for more recent results in the semilinear case).

But such considerations go beyond the scope of the present paper. We think that the observability inequalities derived in our main results may be used, at least to recover some known results on uniform convergence, and maybe to establish new ones.
Hautus test. There exist many results with variants of Hautus tests. For instance, when \((S(t))_{t\geq0}\) is a normal \(C_0\) group, the Hautus test property
\[
\exists C > 0 \quad \| (\lambda \id - A^*) \psi \|_X^2 + |\text{Re}(\lambda)| \| B^* \psi \|_X^2 \geq C |\text{Re}(\lambda)|^2 \| \psi \|_X^2 \quad \forall \lambda \in \mathbb{C}_- \quad \forall \psi \in D(A^*)
\]
where \(\mathbb{C}_-\) is the open left complex half-plane, is sufficient to ensure exponential stabilizability (see [22]). It is interesting to investigate the question of how Hautus tests are related to the observability inequalities derived in our paper (see also [47, Proposition 3.5] for an extension of the Hautus test for stabilizability).

Polynomial stabilizability. We have provided in Theorem 1 a characterization of exponential stabilizability. The \(C_0\) semigroup \((S(t))_{t\geq0}\) is said to be polynomially stable when there exist constants \(\gamma, \delta > 0\) such that \(\| S(t)(A - \beta \id)^{-\gamma} \|_{L(X)} \leq M t^{-\delta}\) for every \(t \geq 1\), for some \(M > 0\) and some \(\beta \in \rho(A)\) (see [1, 2, 23] where polynomial stability is compared with observability, see also [8]). Finding a dual characterization of polynomial stabilizability in terms of an observability inequality is an open issue, which may be related to the previous question on Hautus tests.

Shape optimization. Let \(T > 0\) and \(\alpha \geq 0\) be arbitrary. The observability inequality (13) characterizes cost-uniform \(\alpha\)-null controllability in time \(T\), and we have seen that, when \(\alpha \in (0, 1)\), it also characterizes exponential stabilizability. The best constant in the inequality (13) is \(\mu_\alpha^T\), which, as already said, quantifies the \(\alpha\)-null controllability or the stabilizability property. One can then address the problem of optimizing this constant, by choosing an adequate control operator \(B\) in a certain class. Let us give an example of such a problem.

The Dirichlet wave equation in a \(C^2\) bounded open subset \(\Omega \subset \mathbb{R}^n\) with internal control
\[
\partial_{tt} y = \Delta y + \chi_O u, \quad y|_{\partial \Omega} = 0
\]
where \(O\) is a measurable subset of \(\Omega\), is well known to be exponentially stabilizable as soon as \(O\) is an open subset satisfying the Geometric Control Condition (see [7, 28]). Here, the control operator is \(B = \chi_O\), and the constant \(\mu_\alpha^T\) depends on \(O\). Following [37, 38], fixing some \(L \in (0, 1)\) and defining \(U_L\) as the set of all measurable subsets \(O\) of \(\Omega\) of Lebesgue measure \(|O| = L|\Omega|\), one can consider the problem
\[
\inf_{O \in U_L} \mu_\alpha^T(O)
\]
i.e., the problem of searching the best possible subdomain that minimizes \(\mu_\alpha^T(O)\) over all possible measurable subdomains \(O\) of \(\Omega\) of Lebesgue measure \(L|\Omega|\). We mention [36] for a similar problem consisting of maximizing the exponential decay rate.

Such shape optimization issues may also be raised in the abovementioned context of polynomial stabilizability. We are not aware of any existing results in this direction.

4 Proofs

In this section, we provide proofs of Propositions 1, 2 and 3 and of Theorem 1, following Fenchel duality arguments. In turn, we establish intermediate results which may have interest in themselves for other purposes.

We recall that the Gramian operator \(G_T \in L(X)\) is the symmetric positive semidefinite operator defined by
\[
G_T = \int_0^T S(T - t)BB^* S(T - t)^* \, dt.
\]
We note that \(\langle G_T \psi, \psi \rangle_X = \| G_T^{1/2} \psi \|_X^2 = \int_0^T \| B^* S(T - t)^* \psi \|_U^2 \, dt\).
4.1 Fenchel duality arguments

We start our analysis by considering the \(\alpha \)-null controllability problem or the approximate null controllability problem for the control system (1). What is written hereafter in this first subsection essentially follows the classical analysis by Fenchel duality done in [30] (see also [21]), but is written in a more general framework.

Let \(\alpha \geq 0 \), let \(T > 0 \) and let \(y_0 \in X \) be arbitrary. Let \(B \) be the closed unit ball in \(X \). We consider the \(\alpha \)-null controllability problem from \(y_0 \) in time \(T \), i.e., the problem of steering the control system (1) from \(y_0 \) to \(\alpha \|y_0\|_X B \) in time \(T \), meaning that

\[
\|y(T; y_0, u)\|_X \leq \alpha \|y_0\|_X.
\]

When the control system (1) is \(\alpha \)-null controllable from \(y_0 \) in time \(T \), we search the control of minimal \(L^2 \) norm (which is unique by strict convexity). We set

\[
S^T_{y_0, \alpha} = \inf \left\{ \frac{1}{2} \|u\|^2_{L^2(0,T;U)} \mid y(T; y_0, u) \in \alpha \|y_0\|_X B \right\}
\]

with the convention that \(S^T_{y_0, \alpha} = +\infty \) whenever \(\alpha \|y_0\|_X B \) is not reachable from \(y_0 \) in time \(T \).

The following lemma is obvious.

Lemma 1. Let \(y_0 \in X \) and \(T > 0 \) be arbitrary.

- Given some \(\alpha \geq 0 \), the control system (1) is \(\alpha \)-null controllable from \(y_0 \) in time \(T \) if and only if \(S^T_{y_0, \alpha} < +\infty \).
- The control system (1) is approximately null controllable from \(y_0 \) in time \(T \) if and only if \(S^T_{y_0, \alpha} < +\infty \) for every \(\alpha > 0 \).

4.1.1 Application of Fenchel duality

Following [30], we define the convex and lower semi-continuous functions \(F : L^2(0,T;U) \rightarrow [0, +\infty) \) and \(G : X \rightarrow [0, +\infty] \) by

\[
F(u) = \frac{1}{2} \|u\|^2_{L^2(0,T;U)}
\]

and

\[
G(\varphi) = \begin{cases}
0 & \text{if } \varphi \in -S(T)y_0 + \alpha \|y_0\|_X B \\
+\infty & \text{otherwise}
\end{cases}
\]

and we note that

\[
S^T_{y_0, \alpha} = \inf_{u \in L^2(0,T;U)} (F(u) + G(\mathbb{L}_T u)).
\]

The Fenchel conjugates \(F^* : L^2(0,T;U) \rightarrow [0, +\infty) \) and \(G^* : X \rightarrow [0, +\infty] \) are given by

\[
F^*(v) = \sup_{u \in L^2(0,T;U)} ((v, u)_X - F(u)) = \frac{1}{2} \|v\|^2_{L^2(0,T;U)} = F(v)
\]

and

\[
G^*(\psi) = \sup_{\varphi \in X} ((\varphi, \psi)_X - G(\varphi)) = \sup_{\varphi \in -S(T)y_0 + \alpha \|y_0\|_X B} (\varphi, \psi)_X = -(\psi, S(T)y_0)X + \alpha \|y_0\|_X \|\psi\|_X
\]

where the latter equality is obtained by applying the Cauchy-Schwarz inequality.
Noting that $L_T \text{dom}(F) = \text{Ran}(L_T)$ intersects the set of points at which G is continuous when (1) is either α-null controllable in time T (with $\alpha > 0$ fixed) or approximately null controllable in time T, we infer from the Fenchel-Rockafellar duality theorem (see [19, 16, 39]) that

$$S^T_{y_0,\alpha} = - \inf_{\psi \in X} (F^*(L_T^*\psi) + G^*(\psi)) = - \inf_{\psi \in X} J^T_{y_0,\alpha}(\psi)$$

where we have set

$$J^T_{y_0,\alpha}(\psi) = F^*(L_T^*\psi) + G^*(\psi) = \frac{1}{2} (\mathcal{G}_T^*(\psi), \psi)_X - (\psi, S(T)y_0)_X + \alpha \|y_0\|_X \|\psi\|_X$$

for every $\psi \in X$. Note that $J^T_{y_0,\alpha}$ is differentiable except at $\psi = 0$.

This result is still valid for $\alpha = 0$ but is not a consequence of the Fenchel-Rockafellar duality theorem (because we have used in a critical way that $\alpha > 0$): for $\alpha = 0$ this is the usual procedure in the Hilbert Uniqueness Method (see [21, 29]).

4.1.2 Computation of the minimizer

As said above, when $S^T_{y_0,\alpha} < +\infty$, there is a unique minimizer $\bar{u}_{y_0,\alpha} \in L^2(0,T;U)$ and there is also a unique minimizer $\bar{\psi}_{y_0,\alpha} \in X$ of $J^T_{y_0,\alpha}$ (this follows from (32) below), and $S^T_{y_0,\alpha} = \frac{1}{2} \|\bar{u}_{y_0,\alpha}\|_{L^2(0,T;U)}^2 = -J^T_{y_0,\alpha}(\bar{\psi}_{y_0,\alpha})$. We have either $\bar{\psi}_{y_0,\alpha} = 0$ and then $\bar{u}_{y_0,\alpha} = 0$ and $S^T_{y_0,\alpha} = 0$, or $\bar{\psi}_{y_0,\alpha} \neq 0$ and then $\nabla J^T_{y_0,\alpha}(\bar{\psi}_{y_0,\alpha}) = 0$, which gives

$$\mathcal{G}_T^* \bar{\psi}_{y_0,\alpha} - S(T)y_0 + \alpha \|y_0\|_X (\bar{\psi}_{y_0,\alpha})_X = 0.$$ (32)

Given any $\psi \in X$, we set $\psi = r\sigma$ with $r = \|\psi\|_X$ and $\sigma \in X$ of norm 1 (polar coordinates). For the minimizer $\bar{\psi}_{y_0,\alpha} = \bar{r}_{y_0,\alpha} \bar{\sigma}_{y_0,\alpha}$, we infer from (32) that

$$\bar{r}_{y_0,\alpha} = \langle S(T)y_0, \bar{\sigma}_{y_0,\alpha} \rangle X - \alpha \|y_0\|_X \bar{\psi}_{y_0,\alpha} X \frac{\bar{\psi}_{y_0,\alpha}}{\|\bar{\psi}_{y_0,\alpha}\|_X}, \quad \bar{\sigma}_{y_0,\alpha} = (\bar{r}_{y_0,\alpha} \mathcal{G}_T + \alpha \|y_0\|_X)^{-1} S(T)y_0.$$

Here, we used the facts that $\langle \mathcal{G}_T \bar{\sigma}_{y_0,\alpha}, \bar{\sigma}_{y_0,\alpha} \rangle X \neq 0$ (which follows from (32)) and that $\bar{u}_{y_0,\alpha} \neq 0$. Note that, necessarily, $\langle S(T)y_0, \bar{\sigma}_{y_0,\alpha} \rangle X - \alpha \|y_0\|_X \geq 0$.

Note also that, in the Fenchel duality argument, the optimal control $\bar{u}_{y_0,\alpha}$ is given in function of $\bar{\psi}_{y_0,\alpha}$ by

$$\bar{u}_{y_0,\alpha}(t) = (L_T^* \bar{\psi}_{y_0,\alpha})(t) = B^* S(T - t)^* \bar{\psi}_{y_0,\alpha}.$$

Until that step, there is nothing new with respect to the existing literature. Up to our knowledge, the novelty is in the next step, with a simple remark leading to an observability inequality.

4.1.3 An alternative optimization problem

Following the above arguments, we first note that

$$J^T_{y_0,\alpha}(\psi) = J^T_{y_0,\alpha}(r\sigma) = \frac{1}{2} r^2 (\mathcal{G}_T \sigma, \sigma)_X - r \langle \sigma, S(T)y_0 \rangle X - \alpha \|y_0\|_X$$

and that $J^T_{y_0,\alpha}(0) = 0$, and hence\(^4\), for any fixed $\sigma \in X$,

$$\inf_{r > 0} J^T_{y_0,\alpha}(r\sigma) = \begin{cases} 0 & \text{if } \langle \sigma, S(T)y_0 \rangle X - \alpha \|y_0\|_X \leq 0, \\ -\frac{1}{2} \langle \mathcal{G}_T \sigma, \sigma \rangle X & \text{if } \mathcal{G}_T \sigma \neq 0 \text{ and } \langle \sigma, S(T)y_0 \rangle X - \alpha \|y_0\|_X > 0, \\ -\infty & \text{if } \mathcal{G}_T \sigma = 0 \text{ and } \langle \sigma, S(T)y_0 \rangle X - \alpha \|y_0\|_X > 0. \end{cases}$$

\(^4\)Given $a \geq 0$ and $b \in \mathbb{R}$, we have $\inf_{r > 0} (ar^2 - br) = \begin{cases} 0 & \text{if } b \leq 0, \\ -\frac{b^2}{4a} & \text{if } a = 0 \text{ and } b > 0, \text{ reached at } r = \frac{b}{2a}. \end{cases}$
Besides, by the definition (5) of $\mu_{y_0,\alpha}^T$, we have

$$
\mu_{y_0,\alpha}^T = \sup_{\psi \in X} \begin{cases}
0 & \text{if } \langle \psi, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\psi\|_X \leq 0, \\
\frac{\langle \psi, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\psi\|_X}{\|G_T^{1/2} \psi\|_X} & \text{if } G_T \psi \neq 0 \text{ and } \langle \psi, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\psi\|_X > 0, \\
+\infty & \text{if } G_T \psi = 0 \text{ and } \langle \psi, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\psi\|_X > 0.
\end{cases}
$$

It follows that

$$
S_{y_0,\alpha}^T = -\inf_{\psi \in X} J_{y_0,\alpha}^T(\psi) = -\inf_{\|\sigma\|_X = 1} \inf_{r > 0} J_{y_0,\alpha}^T(r\sigma) = \frac{1}{2} \left(\mu_{y_0,\alpha}^T \right)^2.
$$

Note that, when $0 < \mu_{y_0,\alpha}^T < +\infty$, we have

$$
\mu_{y_0,\alpha}^T = \|\bar{u}_{y_0,\alpha}\|_{L^2(0,T;U)} = \frac{\langle \bar{\psi}_{y_0,\alpha}, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\bar{\psi}_{y_0,\alpha}\|_X}{\|G_T^{1/2} \bar{\psi}_{y_0,\alpha}\|_X}.
$$

Remark 15. According to the above discussion, when $\mu_{y_0,\alpha}^T < +\infty$, it is the smallest constant $C \in [0, +\infty)$ such that there exists $u \in L^2(0,T;U)$ such that $\|y(T; y_0, u)\|_X \leq \alpha \|y_0\|_X$ and $\|u\|_{L^2(0,T;U)} \leq C$. When $C = \mu_{y_0,\alpha}^T$, one has $u = \bar{u}_{y_0,\alpha}$.

4.1.4 Proofs of Propositions 1 and 3

Propositions 1 and 3 follow, using Lemma 1 and the fact that $S_{y_0,\alpha}^T = \frac{1}{2} (\mu_{y_0,\alpha}^T)^2$.

4.2 Fenchel dualization of the exponential stabilization property

4.2.1 Proof of (7)

Lemma 2. Given $\alpha > 0$ and $T > 0$, μ_{α}^T is the smallest possible $C \in [0, +\infty)$ such that the following weak observability inequality is satisfied:

$$
\|S(T)^* \psi\|_X - \alpha \|\psi\|_X \leq C \|G_T^{1/2} \psi\|_X \quad \forall \psi \in X
$$

and this, independently on the sign of $\|S(T)^* \psi\|_X - \alpha \|\psi\|_X$. Moreover, when $\mu_{\alpha}^T < +\infty$, it is the smallest constant $C \in [0, +\infty)$ such that the above weak observability inequality holds.

Proof. Using (5), we have

$$
\mu_{y_0,\alpha}^T = \sup_{\psi \in X} F_{\alpha}^T (y_0, \psi)
$$

where

$$
F_{\alpha}^T (y_0, \psi) = \begin{cases}
\max \left(\frac{\langle \psi, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\psi\|_X}{\|G_T^{1/2} \psi\|_X}, 0 \right) & \text{if } (y_0, \psi) \in D_1, \\
+\infty & \text{if } (y_0, \psi) \in D_2, \\
0 & \text{if } (y_0, \psi) \in D_3,
\end{cases}
$$

with

$$
D_1 = \{ (y_0, \psi) \in X \times X \mid G_T \psi \neq 0 \}, \\
D_2 = \{ (y_0, \psi) \in X \times X \mid G_T \psi = 0 \text{ and } \langle \psi, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\psi\|_X > 0 \}, \\
D_3 = \{ (y_0, \psi) \in X \times X \mid G_T \psi = 0 \text{ and } \langle \psi, S(T)y_0 \rangle_X - \alpha \|y_0\|_X \|\psi\|_X \leq 0 \}.
$$
Since
\[\sup_{\|y_0\|_X=1} \sup_{\psi \in X} F^T_{\alpha}(y_0, \psi) = \sup_{\psi \in X} \sup_{\|y_0\|_X=1} F^T_{\alpha}(y_0, \psi) \]
and
\[\sup_{\|y_0\|_X=1} F^T_{\alpha}(y_0, \psi) = \begin{cases} \max \left(\frac{\| S(T)^* \psi \|_X - \alpha \| \psi \|_X}{\| G^T \psi \|_X}, 0 \right) & \text{if } G_T \psi \neq 0, \\ +\infty & \text{if } G_T \psi = 0, \exists y_0 \text{ s.t. } (y_0, \psi) \in D_2, \\ 0 & \text{if } G_T \psi = 0, \exists y_0 \text{ s.t. } (y_0, \psi) \in D_2, \end{cases} \]
we derive the desired result from (6) and (33).

\[\square \]

4.2.2 Another interpretation of \(\mu^T_\alpha \)

We now give another interpretation of \(\mu^T_\alpha \), useful to address exponential stabilizability.

Lemma 3. Let \(\alpha > 0 \) and \(T > 0 \) be such that \(\mu^T_\alpha < +\infty \). Then \(\mu^T_\alpha \) is the smallest constant \(C \geq 0 \) such that, for every \(y_0 \in X \), there exists \(u \in L^2(0, T; U) \) such that \(\|y(T; y_0, u)\|_X \leq \alpha \|y_0\|_X \) and \(\|u\|_{L^2(0, T; U)} \leq C \|y_0\|_X \).

Proof. The result follows from the facts that \(S^T_{y_0, \alpha} = \frac{1}{2} (\mu^T_{y_0, \alpha})^2 = \frac{1}{2} \|a_{y_0, \alpha}\|_{\mathcal{L}^2(0, T; U)}^2 \), that \(\mu^T_{y_0, \alpha} = \mu^T_{y_0, \alpha} \|y_0\|_X \leq \mu^T_{y_0, \alpha} \|y_0\|_X \) and from Remark 15.

Lemma 3 is closely related to exponential stabilizability when \(\alpha < 1 \). We indeed have the following result (easy consequence of well known results, however we provide a proof).

Lemma 4. The control system (1) is exponentially stabilizable if and only if, for every \(\alpha \in (0, 1) \) (equivalently, there exists \(\alpha \in (0.1) \), there exist \(T > 0 \) and \(C > 0 \) such that, for every \(y_0 \in X \), there exists \(u \in L^2(0, T; U) \) such that \(\|y(T; y_0, u)\|_X \leq \alpha \|y_0\|_X \) and \(\|u\|_{L^2(0, T; U)} \leq C \|y_0\|_X \).

When this is satisfied, the best stabilization decay rate \(\omega^* \) is the infimum of \(\frac{\ln \alpha}{\tau} \) over all possible couples \((T, \alpha)\) for which the above inequalities are satisfied for some constant \(C > 0 \).

Proof. Assume that the control system (1) is exponentially stabilizable. Then there exists \(K \in L(X, U) \) such that \(\|S_K(t)\|_{L(X)} \leq M e^{\omega_K t} \) for every \(t \geq 0 \), with \(M \geq 1 \) and \(\omega_K < 0 \). Let \(y_0 \in X \). We set \(u(t) = KS_K(t)y_0 \) and \(y(t) = S_K(t)y_0 \). We have \(\|y(T; y_0, u)\|_X = \|S_K(T)y_0\|_X \leq \|K\|_{L(X, U)} M \|y_0\|_X \).

Conversely, we proceed by iteration. For the initial condition \(y_0 \), there exists a control \(u_0 \in L^2(0, T; U) \) such that \(\|y(T; y_0, u_0)\|_X \leq \alpha \|y_0\|_X \) and \(\|u_0\|_{L^2(0, T; U)} \leq C \|y_0\|_X \). We set \(y_1 = y(T; y_0, u_0) \) and we repeat the argument for this new initial condition \(y_1 \), and then we iterate, obtaining that \(\|y_j\|_X \leq \|y((j+1)T; y_j, u_j)\|_X \leq \alpha \|y_j\|_X \) and \(\|u_j\|_{L^2(0, T; U)} \leq C \|y_j\|_X \). The control \(u \) defined as the concatenation of the controls \(u_j \in L^2(jT; (j+1)T; U) \) generates the trajectory \(y(\cdot; y_0, u) \) satisfying, at time \(kT \), \(\|y(kT; y_0, u)\|_X \leq \alpha^k \|y_0\|_X \), and
\[\|u\|_{L^2(0, +\infty; U)}^2 \leq \sum_{j=0}^{+\infty} C^2 \|y(jT; y_0, u)\|_X^2 \leq C^2 \sum_{j=0}^{+\infty} \alpha^{2j} \|y_0\|_X^2 = C^2 \frac{1 - \alpha^2}{1 - \alpha^2} \|y_0\|_X^2. \]

Let us prove that \(\|y(t; y_0, u)\|_X \) decreases exponentially. The argument is standard. Taking \(t \geq 0 \) such that \(kT \leq t < (k+1)T \) for some \(k \in \mathbb{N} \), we have
\[y(t; y_0, u) = S(t - kT)y(kT) + \int_{kT}^t S(t - s)Bu_k(s) \, ds. \]
The semigroup \((S(t))_{t \geq 0}\) satisfies \(\|S(t)\|_{L(X)} \leq M\) for every \(t \in [0, T]\) for some \(M \geq 1\). Therefore

\[
\|y(t; y_0, u)\|_X \leq M \left(1 + \|B\|_{L(U, X)} \sqrt{T}\right) C\|y_0\|_X \leq \frac{M}{\alpha} \left(1 + \|B\|_{L(U, X)} \sqrt{T}\right) C\alpha^{k+1}\|y_0\|_X
\]

and since \(\alpha^{k+1} = e^{(k+1)\ln \alpha} \leq \alpha^{\ln \alpha}t\) we infer that

\[
\|y(t; y_0, u)\|_X \leq \frac{M}{\alpha} \left(1 + \|B\|_{L(U, X)} \sqrt{T}\right) C\|y_0\|_X e^{\ln \alpha t} \quad \forall t > 0. \tag{34}
\]

We have therefore found a control \(u \in L^2(0, +\infty; U)\) such that

\[
\int_0^{+\infty} \left(\|u(t)\|^2_U + \|y(t; y_0, u)\|_X^2\right) dt < +\infty. \tag{35}
\]

Hence, by the classical Riccati theory (see [49, Theorem 4.3 page 240]), the control system (1) is exponentially stabilizable.

The first equality in (10) concerning the best stabilization rate is obvious by inspecting the above argument, and in particular (34).

\[\square\]

Remark 16. To prove Theorems 2 and 3 in Section 3.3, we note that all arguments in the above proof still work (before the final step where Riccati theory is invoked) for an unbounded admissible control operator \(B\), because the operators \(L_t = \int_0^t S(t-s)Bu(s)\,ds\) are bounded in \(X\) and we can write

\[
\left\| \int_{kT}^{t} S(t-s)Bu_k(s)\,ds \right\|_X = \left\| \int_{0}^{t-kT} S(t-kT-s)Bu_k(s+kT)\,ds \right\|_X
\]

\[
= \left\| L_{t-kT}Bu_k(kT + \cdot) \right\|_X \leq C\|u_k\|_{L^2(kT,(k+1)T; U)}
\]

and the rest is unchanged: we find \(u\) satisfying (35), i.e., the finite-cost condition (optimizability; see Section 3.3).

In other words, we obtain that, for an admissible control operator \(B\), the control system (1) is optimizable if and only if, for every \(\alpha \in (0, 1)\) (equivalently, there exists \(\alpha \in (0, 1)\)), there exist \(T > 0\) and \(C > 0\) such that, for every \(y_0 \in X\), there exists \(u \in L^2(0, T; U)\) such that \(\|y(T; y_0, u)\|_X \leq \alpha\|y_0\|_X\) and \(\|u\|_{L^2(0,T;U)} \leq C\|y_0\|_X\).

4.2.3 Proofs of Proposition 2 and of Theorem 1.

Proposition 2 follows from Lemmas 2 and 3. We note that in Lemma 2 (resp., in Lemma 3), for every \(\alpha \in (0, 1)\), the time \(T\) in Items 2 and 4 (resp., Items 2 and 3) of Theorem 1 can be taken the same. Hence, Theorem 1 follows from Proposition 2 and Lemma 4, except the second equality in (10), which we prove next.

4.3 Proof of (10)

To establish the second equality of (10), one way would consist of modifying the statement of Lemma 4 and to observe that, in this lemma, one can moreover choose \(T \geq 1\). Anyway, we provide hereafter another argument of proof, which is, we believe, of independent interest.

The proof goes in two steps.

Step 1: We prove that if \((\alpha, T) \in \mathcal{A}\), then \((\alpha^n, nT) \in \mathcal{A}\) for any \(n \in \mathbb{N}^+\).

Let \((\alpha, T) \in \mathcal{A}\). By (11), the fact that \(\mu_{\alpha}^T < +\infty\) is equivalent to exponential stabilizability (see the two first items of Theorem 1). Using the equivalence of the second and of the fourth items...
of the theorem and the fact that for every \(\alpha \in (0, 1) \) the time \(T \) in those items can be taken the same, there exists \(C \geq 0 \) such that
\[
\|S(T)^\ast \psi\|_X \leq C \|B^* S(T - \cdot)^\ast \psi\|_{L^2(0,T;U)} + \alpha \|\psi\|_X \quad \forall \psi \in X.
\] (36)

For every \(n \in \mathbb{N}^+ \), we set \(\hat{T}_n = nT \), \(\hat{\alpha}_n = \alpha^n \) and \(\hat{C}_n = \sum_{j=0}^{n-1} C^2 \alpha^{2j} \). We claim that
\[
\|S(\hat{T}_n)^\ast \xi\|_X \leq \hat{C}_n \|B^* S(\hat{T}_n - \cdot)^\ast \xi\|_{L^2(0,\hat{T}_n;U)} + \hat{\alpha}_n \|\xi\|_X \quad \forall \xi \in X.
\] (37)

Indeed, for an arbitrarily fixed \(\xi \in X \), we use (36) with \(\psi \) equal, respectively, to \(\xi \), \(S(T)^\ast \xi \), \ldots, \((S(T)^\ast)^{n-1} \xi \), and we find that
\[
\|S(\hat{T}_n)^\ast \xi\|_X = \left\| S(T)^\ast (S(T)^\ast)^n \xi \right\|_X
\leq C \left\| S(T)^\ast (S(T)^\ast)^{n-1} \xi \right\|_{L^2(0,T;U)} + \alpha \| (S(T)^\ast)^{n-1} \xi \|_X
\leq C \left\| S(T)^\ast (S(T)^\ast)^{n-1} \xi \right\|_{L^2(0,T;U)} + C\alpha \| B^* S(T - \cdot)^\ast (S(T)^\ast)^{n-2} \xi \|_{L^2(0,T;U)}
+ \alpha^2 \| (S(T)^\ast)^{n-2} \xi \|_X
\leq \cdots
\leq \sum_{j=0}^{n-1} C\alpha^j \left\| B^* S(T - \cdot)^\ast (S(T)^\ast)^{n-j-1} \xi \right\|_{L^2(0,T;U)} + \alpha^n \|\xi\|_X.
\]

By the Cauchy-Schwarz inequality, we have
\[
\sum_{j=0}^{n-1} C\alpha^j \left\| B^* S(T - \cdot)^\ast (S(T)^\ast)^{n-j-1} \xi \right\|_{L^2(0,T;U)}
\leq \left(\sum_{j=0}^{n-1} C^2 \alpha^{2j} \sum_{j=0}^{n-1} \left\| B^* S(T - \cdot)^\ast (S(T)^\ast)^{n-j-1} \xi \right\|_{L^2(0,T;U)}^2 \right)^{1/2}
= \left(\sum_{j=0}^{n-1} C^2 \alpha^{2j} \right)^{1/2} \left\| B^* S(nT - \cdot)^\ast \xi \right\|_{L^2(0,nT;U)} = \hat{C}_n \left\| B^* S(\hat{T}_n - \cdot)^\ast \xi \right\|_{L^2(0,\hat{T}_n;U)}.
\]

The previous inequality leads to (37). Hence \((\alpha^n, nT) \in \mathcal{A} \) for every \(n \in \mathbb{N}^+ \).

\textit{Step 2: We prove the second equality in (10).}

Take an arbitrary \((\alpha_0, T_0) \in \mathcal{A} \). By Step 1, we have \((\alpha_0^n, nT_0) \in \mathcal{A} \). Besides, for every \(\alpha \in (0, \alpha_0) \), there exists \(n = n(\alpha) \in \mathbb{N}^+ \) such that \(\alpha_0^n \leq \alpha < \alpha_0^{n-1} \). Hence \(\mu_{\alpha_0}^{nT_0} \leq \mu_{\alpha_0}^{nT_0} < +\infty \) and thus \((\alpha, nT_0) \in \mathcal{A} \). Therefore, for every \(\alpha \in (0, \alpha_0) \), we have
\[
\inf \left\{ \frac{\ln \alpha}{T} \mid T \in \mathcal{T}(\alpha) \right\} \leq \frac{\ln \alpha}{nT_0} \leq \frac{\ln(\alpha_0^{n-1})}{nT_0} = \frac{n-1}{n} \frac{\ln \alpha_0}{T_0}
\]
and hence
\[
\limsup_{\alpha \to 0^+} \inf \left\{ \frac{\ln \alpha}{T} \mid T \in \mathcal{T}(\alpha) \right\} \leq \frac{\ln \alpha_0}{T_0}.
\] (38)
Since \((\alpha_0, T_0)\) was taken arbitrarily in \(A\), we infer from (38) that
\[
\limsup_{\alpha \to 0^+} \inf \left\{ \frac{\ln \alpha}{T} \mid (\alpha, T) \in A \right\} \leq \inf \left\{ \frac{\ln \alpha}{T} \mid (\alpha, T) \in A \right\}.
\]
(39)

On the other hand, one can easily check that
\[
\inf \left\{ \frac{\ln \alpha}{T} \mid (\alpha, T) \in A \right\} \leq \liminf_{\alpha \to 0^+} \inf \left\{ \frac{\ln \alpha}{T} \mid T \in T(\alpha) \right\}.
\]
(40)

Finally, from (39) and (40), it follows that
\[
\inf \left\{ \frac{\ln \alpha}{T} \mid (\alpha, T) \in A \right\} = \lim_{\alpha \to 0^+} \inf \left\{ \frac{\ln \alpha}{T} \mid T \in T(\alpha) \right\}
\]
which leads to the second equality of (10).

A Appendix

A.1 Exact null controllability implies complete stabilizability (proof of Proposition 4)

Let us prove Proposition 4, i.e., if the control system (1) is exactly null controllable in some time \(T > 0\) then it is completely stabilizable.

Proof of Proposition 4. We first note that \((A, B)\) is exactly controllable in time \(T\) if and only if \((A + \omega \mathrm{id}, B)\) is exactly controllable in time \(T\), for any \(\omega \in \mathbb{R}\). This follows straightforwardly by using the equivalence in terms of observability inequality and the fact that \(S_{A+\omega \mathrm{id}}(t) = e^{\omega t} S_A(t)\) (with obvious notations).

Now, let \(\omega > 0\) be arbitrary. Since \((A + \omega \mathrm{id}, B)\) is exactly controllable in time \(T\), there exists \(K_\omega \in L(X, U)\) such that \(A + \omega \mathrm{id} + BK_\omega\) generates the exponentially stable semigroup \(S_{A+\omega \mathrm{id}+BK_\omega}(t) = e^{\omega t} S_{A+BK_\omega}(t)\), and thus \(\|S_{A+BK_\omega}(t)\|_{L(X)} \leq M e^{-\omega t}\) for some \(M \geq 1\). The result follows.

Surprisingly, we have not found this result explicitly stated in the existing literature (except, in a rather indirect way, in [15, Exercise 6.18 page 312], as kindly indicated to us by Guillaume Olive). What can usually be found is that exact null controllability in some time \(T\) implies exponential stabilizability (see, e.g., [49]) and that, when \((S(t))_{t \geq 0}\) is a group, exact null controllability in some time \(T\) implies complete stabilizability (see [41]) and the converse is true (see [49]).

A.2 The case of a group (proof of Proposition 5, using Theorem 1)

Let us prove Proposition 5, i.e., when \((S(t))_{t \geq 0}\) is a group, we have equivalence of: exact controllability in some time \(T\); exact null controllability in some time \(T\); complete stabilizability.

Proof of Proposition 5. Since \((S(t))_{t \geq 0}\) is a group, we have (i) \(\iff\) (ii). By Proposition 4, we have (ii) \(\Rightarrow\) (iii).

Let us now prove that (iii) \(\Rightarrow\) (ii), by using Theorem 1. Since \((S(t))_{t \geq 0}\) is a group, there exists \(M \geq 1\) and \(\omega \geq 0\) such that \(\|S(t)\|_{L(X)} \leq M e^{\omega |t|}\) for every \(t \in \mathbb{R}\), hence
\[
\|\psi\|_X \leq \|S(-T)\|_{L(X)} \|S(T)^*\psi\|_X \leq M e^{\omega T} \|S(T)^*\psi\|_X \quad \forall \psi \in X \quad \forall T > 0.
\]
(41)
We set $\alpha_n = \frac{1}{n}$, for every $n \in \mathbb{N}^*$. Since the control system (1) is completely stabilizable, by using the equivalence of Items 1 and 2 in Theorem 1, for every $n \in \mathbb{N}^*$ there exists $T_n > 0$ such that $\mu_n < +\infty$ and such that, setting $\beta_n = \frac{\ln n}{T_n}$, we have $\beta_n \to +\infty$ as $n \to +\infty$. Hence

$$\lim_{n \to +\infty} \frac{Me^{\omega T_n}}{n} = M \lim_{n \to +\infty} \frac{e^{\ln n/\beta_n}}{n} = M \lim_{n \to +\infty} \frac{(e^{\ln n})^{\omega/\beta_n}}{n} = M \lim_{n \to +\infty} n^{\omega/\beta_n - 1} = 0$$

and therefore there exists $N \in \mathbb{N}^*$ such that

$$\frac{Me^{\omega T_N}}{\alpha_N} \leq \frac{1}{2}. \tag{42}$$

Now, for every $n \in \mathbb{N}^*$, since $\mu_{n}^{T_n} < +\infty$, using the equivalence of Items 2 and 4 of Theorem 1 and the fact that for every $\alpha \in (0, 1)$, the time T in those items can be taken the same, there exists $C_n > 0$ such that

$$\|S(T_n)^*\psi\|_X \leq C_n\|B^*S(T_n - \cdot)^*\psi\|_{L^2(0,T_n;U)} + \frac{1}{n}\|\psi\|_X \quad \forall \psi \in X. \tag{43}$$

We infer from (41) and (43) that

$$\|S(T_n)^*\psi\|_X \leq C_n\|B^*S(T_n - \cdot)^*\psi\|_{L^2(0,T_n;U)} + \frac{Me^{\omega T_n}}{n}\|S(T_n)^*\psi\|_X \quad \forall \psi \in X$$

and then, taking $n = N$ and using (42), we find that

$$\|S(T_N)^*\psi\|_X \leq 2C_N\|B^*S(T_N - \cdot)^*\psi\|_{L^2(0,T_N;U)} \quad \forall \psi \in X$$

which implies that the control system (1) is exactly null controllable in time T_N. \qed

References

