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a b s t r a c t

We consider a vibrating string that is fixed at one end with Neumann control action at the other end. We
investigate the optimal control problem of steering this system from given initial data to rest, in time T , by
minimizing an objective functional that is the convex sum of the L2-norm of the control and of a boundary
Neumann tracking term.

We provide an explicit solution of this optimal control problem, showing that if the weight of the
tracking term is positive, then the optimal control action is concentrated at the beginning and at the
end of the time interval, and in-between it decays exponentially. We show that the optimal control can
actually be written in that case as the sum of an exponentially decaying term and of an exponentially
increasing term. This implies that, if the time T is large, then the optimal trajectory approximately consists
of three arcs, where the first and the third short-time arcs are transient arcs, and in the middle arc the
optimal control and the corresponding state are exponentially close to 0. This is an example of a turnpike
phenomenon for a problemof optimal boundary control. If T = +∞ (infinite time horizon problem), then
only the exponentially decaying component of the control remains, and the norms of the optimal control
action and of the optimal state decay exponentially in time. In contrast to this situation, if the weight of
the tracking term is zero and only the control cost is minimized, then the optimal control is distributed
uniformly along the whole interval [0, T ] and coincides with the control given by the Hilbert Uniqueness
Method.

In addition, we establish a similarity theorem stating that, for every T > 0, there exists an appropriate
weightλ < 1 forwhich the optimal solutions of the corresponding finite horizon optimal control problem
and of the infinite horizon optimal control problem coincide along the first part of the time interval [0, 2].
We also discuss the turnpike phenomenon from the perspective of a general framework with a strongly
continuous semi-group.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The turnpike property states that, loosely speaking, if the
objective function of an optimal control problem penalizes both
control cost and the difference of the optimal trajectory to a given
desired stationary state, then the optimal controls will steer the
system quickly to the desired stationary state and then the system
will remain on this path most of the time.
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Turnpike theory has originally been discussed in econometry
(see [1]), and then has been developed and generalized in control
theory in more general contexts. For the turnpike phenomenon
for infinite dimensional systems we refer the reader to [2] and to
the many references therein. Recently the turnpike property has
been discussed for the optimal control of linear systems governed
by partial differential equations with distributed control in [3].
The turnpike property in finite dimension has been studied for
example in [4–8]. Zaslavski has contributed to the study of the
turnpike phenomenon for example in [9–12]. In [13] dissipative
discrete time optimal control problems have been considered.
In [3, Section 4], optimal control problems with the wave equation
are considered on a given finite time interval [0, T ]. The control is
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distributed in the interior of the domain and no conditions for the
terminal state at the time T are prescribed.

In this paperwe consider problems of optimal boundary control
of the wave equation. We consider both problems with infinite
time horizon and problems with finite time horizon. For the finite
time problems, we prescribe exact terminal conditions. If the
objective function only penalizes the control cost, for the 1D case
in [14] it has been shown that the optimal controls are periodic,
so in particular they do not have the turnpike structure. This
illustrates that the turnpike property depends on the choice of the
objective function. At least in the absence of constraints it has to
couple the control cost with the penalization of the distance to the
desired state.

We consider a system governed by the one-dimensional wave
equation on a finite space interval, with a homogeneous Dirichlet
boundary condition at one side, and a Neumann boundary control
action at the other:

∂tty(t, x) = ∂xxy(t, x), (t, x) ∈ R × (0, 1),
y(t, 0) = 0, ∂xy(t, 1) = u(t), t ∈ [0, T ],

(1)

where the control u belongs to the class of square-integrable
functions.

Let y0 ∈ H1(0, 1) be such that y0(0) = 0, and let y1 ∈ L2(0, 1)
be arbitrary. For every u ∈ L2(0, +∞), there exists a unique
solution y ∈ C0(0, +∞;H1(0, 1)) ∩ C1(0, +∞; L2(0, 1)) of (1)
such that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·).

As is well known, the system is exactly controllable if and only
if T > 2 (see for example [15]). In this paper, given any λ ∈ [0, 1]
and any T ∈ [0, +∞], we consider the optimal control problem
(OCP)Tλ of finding a control u ∈ L2(0, T ) minimizing the objective
functional

JTλ (u) =

 T

0


(1 − λ) (∂xy(t, 0))2 + λu(t)2


dt, (2)

such that the corresponding solution of (1), with y(0, ·) = y0(·)
and ∂ty(0, ·) = y1(·), satisfies y(T , ·) = ∂ty(T , ·) = 0 at the final
time (exact null controllability problem). If T = +∞, then one can
drop the final constraint requirement, which, by the way, happens
to be automatically satisfied in the sense of a limit, since we are
then within the framework of the well known Riccati theory.

For λ = 1, this classical optimal control problem (minimization
of the L2-norm of the control) has been studied for example in
[16–18] and it turns out that the optimal control is periodic
(see [14]), with a period equal to 4, that is, twice the time needed
by a wave starting at the boundary point where the control acts to
return to that point. Note that, in this case, the optimal control is
as well given by the Hilbert Uniqueness Method (see [17]).

If λ < 1, then the objective functional involves a nontrivial
boundary tracking term. This tracking term may be considered as
a boundary observation of the space derivative of the state at the
uncontrolled end of the string. As we are going to prove, in that
case, the optimal control action is then essentially concentrated
at the beginning and at the end of the time interval [0, T ]. More
precisely, the optimal control can be written as the sum of an
exponentially decaying term and of an exponentially increasing
term.

As a consequence, if T is large then the optimal control, solution
of (OCP)Tλ, approximately consists of three pieces: the first and the
third pieces are in short-time, and are transient arcs; themiddle arc
is in long time, and is exponentially close to 0. This is a turnpike
phenomenon, meaning that the optimal trajectory, starting from
given initial data, very quickly approximately reaches the steady-
state (0, 0) (within exponentially short time, say ε ≪ T ), then
remains exponentially close to that steady-state within long time
(say, over the time interval [ε, T − ε]), and, in the last short-time
part [T − ε, T ], leaves this neighborhood in order to quickly reach
its target.

In this approximate picture, if T = +∞ (infinite horizon),
then the last transient arc does not exist since the infinite-
horizon target is the steady-state (0, 0). In that case, the norm
of the optimal control decays exponentially in time, and the
same is true for the optimal state. Indeed, smallness of the
observation term for a sufficiently long time interval with zero
control implies proportional smallness of the state (this follows
from an observability inequality, see [19, (3.3)]).

Another possible picture illustrating the turnpike behavior
is the following. For T large, the optimal trajectory of (OCP)Tλ
approximately consists of three arcs: the first arc is the solution of
(OCP)∞λ (infinite horizon problem), forward in time, and converges
exponentially to 0. The second arc, occupying the main (middle)
part of the time interval, is the steady-state 0. The third arc is the
solution of (OCP)∞λ , but backward in time. Note that the optimal
control problem (OCP)∞λ fits into the well known Linear Quadratic
Riccati theory.

In all cases, wewill provide completely explicit formulas for the
optimal controls, which explain and imply the turnpike behavior
observed for λ < 1. This is in contrast with the case λ = 1
for which the control action is distributed uniformly along the
time interval [0, T ]. In addition, we will also establish a similarity
theorem showing that, for every T > 2 there exists an appropriate
weight λ(T ) < 1 for which the optimal solutions of (OCP)T1 and
of (OCP)∞λ(T) coincide along the first part of the time interval [0, 2].
This result justifies a receding horizon control strategy, where the
first part of a finite horizon optimal control is used and then the
procedure is updated in order to control the systemover an infinite
time horizon.

This paper has the following structure. In Section 2 we present
the main results about the Neumann-boundary control of the
vibrating string. In 2.4, some numerical illustrations are presented.
Section 3 contains the proofs for the results from Section 2.
In Section 4, we consider the turnpike phenomenon from a
more general viewpoint for an optimal control problem with an
evolution that is governed by a strongly continuous semigroup.

2. The main results

Nowwe come to our results about optimal control problems for
a system governed by (1). Let y0 ∈ H1(0, 1) be such that y0(0) = 0,
and let y1 ∈ L2(0, 1) be arbitrary.

2.1. Explicit optimal controls

We have the following result, giving the explicit solution of
(OCP)Tλ, for any λ ∈ [0, 1] and any T ∈ [2, +∞]. Note that, when
T = +∞, we have to assume that λ < 1 to ensurewell-posedness.

Theorem 1. For every T ∈ [2, +∞] and every λ ∈ [0, 1], the
problem (OCP)Tλ has a unique optimal control solution denoted by uT

λ .

1. We assume that T is finite. Define

K(T ) = max {n ∈ {1, 2, 3, . . .} : 2n 6 T }

and

∆(T ) = T − 2 K(T ).

For t ∈ [0, 2), let

d(t) =


K(T ) + 1 t ∈ [0, ∆(T )),

K(T ), t ∈ [∆(T ), 2).

If λ < 1, then the optimal control solution of (OCP)Tλ is the
sum of an exponentially decaying term and of an exponentially
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increasing one. More precisely, defining the real number zλ ∈

(−1, 0) by

zλ =
−λ

2 − λ + 2
√
1 − λ

, (3)

we have

uT
λ(t + 2k) = zkλf+(t) +

1
zkλ

f−(t), (4)

for every t ∈ (0, 2) and every k ∈ N such that t + 2k 6 T , where

f+(t) =
1 + zλ

1 − z2 d(t)
λ

F(t − 1),

f−(t) =
1 +

1
zλ

1 −
1

z2 d(t)
λ

F(t − 1),
(5)

with F ∈ L2(−1, 1) defined by

F(t) =


1
2


y′

0(−t) − y1(−t)

, t ∈ (−1, 0),

1
2


y′

0(t) + y1(t)

, t ∈ [0, 1).

(6)

2. We assume that T = +∞ and that λ < 1.
If λ = 0, then the optimal control u∞

0 , solution of (OCP)∞0 ,
coincides along the time interval [0, 2] with the optimal control
u2
1, solution of (OCP)21.
If 0 < λ < 1, the optimal control u∞

λ , solution of (OCP)∞λ , is
given along the time interval [0, 2] by

u∞

λ (t) =


1 + zλ

2


y′

0(1 − t) − y1(1 − t)

, t ∈ (0, 1),

1 + zλ
2


y′

0(t − 1) + y1(t − 1)

, t ∈ (1, 2),

(7)

and moreover, we have

u∞

λ (t + 2k) = zkλu
∞

λ (t), (8)

for every t ∈ (0, 2) and every k ∈ {1, 2, 3, . . .}.
The corresponding optimal state y∞

λ decays exponentially, in
the sense that there exists C0 > 0 such that 1

0


∂xy∞

λ (t + 2 k, x)
2

+

∂ty∞

λ (t + 2 k, x)
2 dx

6 C0|zλ|2k
 1

0


y′

0(x)
2
+ y1(x)2


dx, (9)

for every t ∈ (0, 2) and every k ∈ N∗.

Theorem 1 is proved in Section 3.2.
For λ = 1, that is, when there is no tracking term in the

objective functional, the explicit solution of (OCP)T1 given above
has already been computed in [14, Theorem 2.1], see also [20]
(which does not provide any results on the turnpike phenomenon).
In this case, the problem consists of minimizing the L2-norm of the
(Neumann) control. The optimal control uT

1 , whose explicit formula
is given above, can also be characterized as well with the famous
Hilbert Uniqueness Method (see [17]) and is then often referred to
as the HUM control.

Here, there is no dissipation induced by the objective functional
(no tracking term), the optimal control is periodic, and is uniformly
distributed over the time interval [0, T ], in the sense that there is
no energy decay.

In contrast, if λ < 1, the control is the sum of two terms,
one of which is exponentially decreasing, and the other being
exponentially increasing. For T large enough, this implies the
turnpike phenomenon, stated in details in Section 2.2.
In fact in Theorem 1 the turnpike is the zero state: Starting from
the initial state, the system approaches this turnpike exponentially
fast. In order to reach the zero state exactly at the final time T ,
that is to satisfy the terminal conditions, additional control effort is
necessary close to the final time. The exponential decay depends on
the size of zλ (that is on the decay of (zkλ)k), which depends in turn
continuously on λ. In this sense, the decay depends continuously
on λ. Since limλ→1 zλ = −1, as λ approaches 1 the exponential
decay becomes slower until it vanishes for λ = 1.

Remark 1. For λ = 0, the solution of (OCP)∞0 coincides with the
solution of the problemof optimal feedback control studied in [21].

Remark 2. The estimate (9) is clearly equivalent to 1

0


∂xy∞

λ (t, x)
2

+

∂ty∞

λ (t, x)
2 dx

6 C1e−µt
 1

0


y′

0(x)
2
+ y1(x)2


dx,

for every time t > 0, for some positive constants C1 and µ not
depending on the initial state (see also [22, Lemma 2]).

Remark 3. It iswell known that the solution of the infinite horizon
problem (OCP)∞λ can also be expressed in feedback form (Linear
Quadratic Riccati theory, see for example [23]). Hence, in the case
T = +∞, our result is certainly not new but can rather be seen as a
reinterpretation of the well known results coming from the Riccati
theory. More precisely, the velocity feedback

∂xy(t, 1) =
zλ + 1
zλ − 1

∂ty(t, 1)

generates the same state as the one generated by the optimal
control u∞

λ . We stress however that our point of view is different
and that we provide explicit formulas that express the optimal
control in terms of the initial state.

Remark 4. In the above results, we considered only the null
steady-state, but we can easily replace it with any other steady-
state that is compatible with the boundary condition y(t, 0) = 0
as follows. Any such steady-state of (1) is given by ȳ(x) = σ x,
for some σ ∈ R. The corresponding optimal boundary control
problem for the finite time horizon T > 0 is

min
 T

0


(1 − λ) (∂xy(t, 0) − σ)2 + λu(t)


dt

subject to
y(0, x) = σ x + y0(x), ∂ty(T , x) = y1(x), x ∈ (0, 1),
y(t, 0) = 0, ∂xy(t, 1) = σ + u(t), t ∈ (0, T ),
∂tty(t, x) = ∂xxy(t, x), (t, x) ∈ (0, T ) × (0, 1),
y(T , x) = σ x, ∂ty(T , x) = 0, x ∈ (0, 1).

(10)

The corresponding optimal control is the same as in Theorem 1.
The transformation for the infinite horizon case is similar.

In the finite horizon case in our system the time-direction can
be reversed, so if the control is transformed accordingly, it can be
used to control the system froma stationary state (σ x, 0) to (y0, y1)
in an optimal way.

Remark 5. In Theorem 1 we present the optimal controls as
functions of the initial states. In the control of engineering systems,
the initial state are usually not known exactly. However, often the
initial state can be estimated using observations from the past. Let
us illustrate this for the finite time horizon case. Our results in
Theorem 1 imply that for every T > 0 the optimal control u ∈
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L2(0, T ) is given as the image of a linearmap of y′

0 and y1 ∈ L2(0, 1)
that is continuous in the sense that T

0
u(τ )2 dτ 6 C2

r

 1

0
(y′

0(x))
2
+ y1(x)2 dx

with a constant Cr that does not depend on y′

0 and y1. In this sense
the control is stable with respect to the L2-norm. The application
of a control that is optimal for an estimated initial state (yest0 , yest1 )

steers the system to a state with an L2-norm of the order of the L2-
error of the estimation of the initial state. The reason is the well-
known fact thatwith zero control, our system conserves the energy 1
0 (∂xy(t, x))2+(∂ty(t, x))2 dx (see for example [20, Theorem2.4]).

So with the optimal control for (yest0 , yest1 ) applied to the system
with the initial state (y0, y1), at the time T the state of the system
will have the same energy as the error (y0 −yest0 , y1 −yest1 ). In order
to steer this state to rest, the feedback control from Remark 3 can
be used.

2.2. Consequence: the turnpike behavior

FromTheorem1 and from the previous discussions,we infer the
following consequence on the qualitative behavior of the optimal
solution.

Corollary 1. For every λ ∈ [0, 1), then there exist C1 > 0 and
µ > 0 such that, for every T > 2, for all initial conditions (y0, y1) ∈

H1(0, 1) × L2(0, 1) with y0(0) = 0, the optimal solution of (OCP)Tλ
satisfies the estimate 1

0


∂xyTλ(t, x)

2
+

∂tyTλ(t, x)

2
dx

6 C1e−µt(T−t)
 1

0


y′

0(x)
2
+ y1(x)2


dx, (11)

for every t ∈ [0, T ].

In the estimate (11), what is important to see is that the term
e−µt(T−t) is equal to 1 at times t = 0 and t = T , but it is
exponentially small in the middle of the interval. It becomes even
smaller and smaller when T is taken larger. This estimate implies
the turnpike behavior described previously: short-time arcs at the
beginning and at the end of the interval are devoted to satisfy
the terminal constraints, and in-between, the trajectory remains
essentially close to rest.

2.3. Similarity result

We next state the following similarity result: for any final time
T > 2 that is a positive even integer, there exists a weight λ such
that the optimal solutions of (OCP)∞1 and (OCP)∞λ coincide along
the subinterval [0, 2] of [0, T ]. More generally, for any real number
T > 2, there exists a weight λ such that the optimal solutions of
(OCP)∞1 and (OCP)∞λ coincide along the subinterval [0, ∆(T )] of
[0, T ].

Theorem 2. Given any T ∈ {2, 4, 6, . . .} we choose λ > 0 such
that

zλ =
2
T

− 1. (12)

Then we have

uT
1(t) = u∞

λ (t), for all t ∈ (0, 2), (13)
anduT
1(·) − u∞

λ (·)

L2(2k,2k+2) 6


1 − |zλ|k

 2
T

×

∥y′

0∥L2(0,1) + ∥y1∥L2(0,1)

. (14)

for every k ∈ {0, 1, . . . , (T − 2)/2}.
Given any T > 2, T ∉ {2, 4, 6, . . .} we choose λ > 0 such that

zλ =
1

K(T ) + 1
− 1. (15)

Then we have

uT
1(t) = u∞

λ (t), for all t ∈ (0, ∆(T )). (16)

Remark 6. Note that for the case that T is an even integer the
length of the intervals where the optimal controls coincide is
maximal.

The proof of Theorem 2 is done in Section 3.3.

2.4. Numerical illustration

We set y0(x) = 4 sin(πx/2) and y1(x) = 0, for every x ∈ [0, 1].
From Theorem 1, if 0 < λ < 1 then the optimal control solution of
(OCP)∞λ is given by

u∞

λ (t + 2k) = |zλ|k (1 + zλ) π sin
π

2
(t + 2k)


,

for t ∈ (0, 2) and k ∈ N.
The graphof ∂xy∞

λ (t, x) is provided on Fig. 1, on the time interval
[0, 20] with λ = 24/25 on Fig. 1(a) and λ = 99/100 on Fig. 1(b).
The control u∞

λ (t) = ∂xy∞

λ (t, 1) is the boundary trace at the back.
These figures illustrate that the norm of the optimal state

decays faster if λ is smaller, as expected. However, smaller values
of λ cause larger oscillations. Note that zλ = −2/3 if λ = 24/25,
and zλ = −9/11 if λ = 99/100.Moreover, as pointed out in [14], if
T ∈ 2N∗ then uT

1(t +2k) =
2
T π sin


π
2 (t + 2k)


, for all t and k such

that t + 2k ∈ [0, T ] (see also [14, Figure 4] for the corresponding
optimal state, with T = 10, up to the factor 2π ).

3. Proofs

3.1. Well-posedness of the initial–boundary value problem

Let y0 ∈ H1(0, 1) be such that y0(0) = 0, and let y1 ∈ L2(0, 1)
be arbitrary. Let T > 2, and let u ∈ L2(0, T ) be fixed. As a prelim-
inary result, we study the well-posedness of the initial–boundary
value problem (1) for a fixed control u, and with the fixed initial
data (y0, y1). The analysis is similar to the one done in [22]. For this
purpose we choose T̄ ∈ {2, 4, 6, . . .} such that T 6 T̄ . Moreover,
we extend our control function by zero to a control in L2(0, T̄ ).
Thenwe show that the solution of the initial–boundary value prob-
lem (1) exists on (0, T̄ ).

We search a solution given as the sum of two traveling waves,
i.e.,

y(t, x) = α(x + t) + β(x − t),

where the functions α and β are to be determined from the initial
data and from the boundary data. First of all, to match the initial
conditions, we must have

α(t) =
1
2


y0(t) +

 t

0
y1(s) ds


+ C0, (17)

β(t) =
1
2


y0(t) −

 t

0
y1(s) ds


− C0, (18)
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(a) λ = 24/25 and T = 20. (b) λ = 99/100 and T = 20.

Fig. 1. Plot of ∂xy(t, x).
where C0 is a real number. Besides, the boundary condition
y(t, 0) = 0 implies that

β(−s) = −α(s), (19)

for almost every s > 0. The boundary condition at x = 1 leads to
α′(1 + t) = u(t) − β ′(1 − t), and integrating in time, we get

α(t + 1) = β(1 − t) +

 t

0
u(s) ds + α(1) − β(1).

Using (17) and (18), we have α(1)−β(1) =
 1
0 y1(s) ds+ 2C0, and

therefore, choosing C0 = −
1
2

 1
0 y1(s) ds, we get α(1) − β(1) = 0

and

α(t + 1) = β(1 − t) +

 t

0
u(s) ds. (20)

Using (19), the values of α for t ∈ (0, 1), given by (17), determine
those of β for t ∈ (−1, 0). The values of β for t ∈ (0, 1) are given
by (18). Now, knowing β on the interval (−1, 1), we deduce from
(20) the values of α on the interval (1, 3).

Using (19), we get α(t + 1) = −α(t − 1)+
 t
0 u(s) ds, for t > 1,

or equivalently,

α(t + 2) = −α(t) +

 t+1

0
u(s) ds, (21)

for t > 0.
Using (21) enables us to determine α iteratively: starting with

α on the interval (1, 3), the values of u(t) yield those of α on (3, 5),
and then using (21), we determine α on (7, 9), etc.

In order to express everything in terms of α only (without using
β), we extend the domain of α so that it contains (−1, 0). We get
the values of α on (−1, 0) by using (19) for s ∈ (0, 1), which yields
α(t) = −β(−t) for t ∈ (−1, 0)with the values ofβ on (0, 1) given
by (18). Then, using (20), we get α(t + 2) = −α(t) +

 t+1
0 u(s) ds

for t ∈ (−1, 0). We have the following lemma.

Lemma 1. Let y0 ∈ H1(0, 1) be such that y0(0) = 0, and let
y1 ∈ L2(0, 1) be arbitrary. We set

C0 = −
1
2

 1

0
y1(s) ds, (22)

and we define α ∈ L2(−1, 1) by

α(t) =


1
2


−y0(−t) +


−t

0
y1(s) ds


+ C0 if t ∈ (−1, 0),

1
2


y0(t) +

 t

0
y1(s) ds


+ C0 if t ∈ [0, 1).

(23)
Let T̄ ∈ {2, 4, 6, . . .}, and let u ∈ L2(0, T̄ ) be fixed.
The function α, defined by iteration according to

α(t + 2k) = −α(t + 2(k − 1)) +

 t+2k−1

0
u(s) ds, (24)

for every t ∈ (−1, 1) and every k ∈ N such that t < T̄+1−2k, is well
defined on the interval (−1, T̄ + 1), and belongs to H1(−1, T̄ + 1).

Proof. From the construction, it is clear that α|(k−1,k) ∈ H1(k, k +

1), for every k ∈ N. To prove that α ∈ H1(−1, T̄ + 1), it suffices
to prove that α is continuous. Since α(0+) = α(0−) = C0, α is
continuous at t = 0. Using (23), α is continuous as well on (−1, 1).

At t = 1, using (22) we get α(1+) = α(1−) =
1
2y0(1), and

henceα is continuous at t = 1. Then, at this step, we have obtained
that α is continuous on (−1, 3).

We then proceed by induction. Let k ∈ N∗. We assume that α is
continuous on the interval (−1, 1 + 2k). Then α((−1 + 2k)−) =

α((−1 + 2k)+). Using (24), we have

α((1 + 2k)−) = −α((1 + 2(k − 1))−) +

 2k

0
u(s) ds

= −α((−1 + 2k)−) +

 2k

0
u(s) ds

= −α((−1 + 2k)+) +

 2k

0
u(s) ds

= α((−1 + 2(k + 1))+)

= α((1 + 2k)+).

Sinceα is defined by (23), we infer thatα is continuous on (−1, 1+

2(k + 1)) for k + 1 6 T̄/2. Lemma 1 is proved. �

Using Lemma 1, we are now in a position to compute the solu-
tion of the initial–boundary value problem under consideration in
this subsection.

Proposition 1. Let y0 ∈ H1(0, 1) be such that y0(0) = 0, and let
y1 ∈ L2(0, 1) be arbitrary. Let T̄ ∈ {2, 4, 6, . . .}, and let u ∈ L2(0, T̄ )
be fixed. We consider the function α defined in Lemma 1 by (23). Then
the solution of (1), associated with the control u and with the initial
data (y0, y1), is given by

y(t, x) = α(t + x) − α(t − x), (25)

for all (t, x) ∈ (0, T̄ ) × (0, 1).

Proof. The construction ofα implies that y, defined by (25), is a so-
lution of the initial–boundary value problem under consideration.
We conclude by Cauchy uniqueness. �
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3.2. Proof of Theorem 1

In this section we prove Theorem 1 using the representation of
the state presented in Section 3.1.

3.2.1. The Case T < ∞

Define T̄ = 2K(T )+ 2. The control uT
λ defined in the theorem is

in L2(0, T ). Let yTλ be the state generated by uT
λ .

Let us first prove that yTλ satisfies the terminal constraints

yTλ(T , ·) = 0, ∂tyTλ(T , ·) = 0. (26)

It suffices to prove that α′

λ(z) = 0, for z ∈ (T − 1, T + 1). From
(25), we have yTλ(t, x) = αλ(t + x) − αλ(t − x), with αλ defined by
(23). The definition (6) implies that F(t) = α′

λ(t). Hence, we have

α′

λ(t − 1) =
1 − z2 d(t)

λ

1 − z2 d(t)
λ

F(t − 1)

=


1

1 − z2 d(t)
λ

+
z2 d(t)
λ

z2 d(t)
λ − 1


F(t − 1)

=


1

1 − z2 d(t)
λ

+
1

1 − z−2 d(t)
λ


F(t − 1)

=
1

1 + zλ
f+(t) +

1
1 +

1
zλ

f−(t),

where the last equality follows from (5).
By (24) we have

α′

λ(t + 1) = −α′

λ(t − 1) + uT
λ(t), (27)

for t ∈ (0, 2). Using (4), this yields α′

λ(t + 1) = −α′

λ(t − 1) +

f+(t) + f−(t), for t ∈ (0, 2), and then, using (5),

α′

λ(t + 1) =
zλ

1 + zλ
f+(t) +

1
zλ

1 +
1
zλ

f−(t).

By induction, thanks to (27) and (4), this implies that

α′

λ(t − 1 + 2k) =
zkλ

1 + zλ
f+(t) +

1
zkλ

1 +
1
zλ

f−(t), (28)

for every t ∈ (0, 2) and every k ∈ N such that t + 2 k 6 T + 2.
Taking k = K(T ), we get

α′

λ(t − 1 + 2 K(T )) =
zK(T )
λ

1 + zλ
f+(t) +

1
zK(T )
λ

1 +
1
zλ

f−(t). (29)

Moreover, since T = 2 K(T )+∆(T ), for t ∈ [0, ∆(T ))we can take
k = K(T ) + 1 and get

α′

λ(t + 1 + 2 K(T )) =
zK(T )+1
λ

1 + zλ
f+(t) +

1
zK(T )+1
λ

1 +
1
zλ

f−(t). (30)

Considering the cases t ∈ (0, ∆(T )) and t ∈ [∆(T ), 2)
separately, using (5), we infer that

α′

λ(t − 1 + T ) =

 zd(t)λ

1 − z2 d(t)
λ

+

1
zd(t)λ

1 −
1

z2 d(t)
λ

 F(t − 1) = 0, (31)

and hence the state yTλ satisfies the terminal conditions (26).
For a control of the form u = uT

λ + h, the generated state is y =

yTλ +yh, where yh is the state generated by the perturbation control
h, with the boundary conditions yh(t, 0) = 0, ∂xyh(t, 1) = h(t),
and null initial conditions. We only consider variations h for which
the terminal conditions yh(T , ·) = 0 and ∂tyh(T , ·) = 0 hold. Using
(25), we have
yh(t, x) = αh(t + x) − αh(t − x).
Due to this representation of yh, the initial conditions yh(0, ·) =

∂tyh(0, ·) = 0 imply that for t ∈ (−1, 1) we have α′

h(t) = 0.
Moreover, owing to the terminal constraints, wemust have α′

h = 0
along (T − 1, T + 1).

The value of the objective functional of (OCP)Tλ is T

0


(1 − λ)(∂xy(t, 0))2 + λu(t)2


dt

=

 T

0


(1 − λ)


(∂xyTλ(t, 0))

2

+ (∂xyh(t, 0))2 + 2 ∂xyTλ(t, 0) ∂xyh(t, 0)


+ λ

uT

λ(t)
2
+ h(t)2 + 2uT

λ(t)h(t)


dt.

We consider the linear part

Lλ(h) = 2
 T

0


(1 − λ)∂xyTλ(t, 0)∂xyh(t, 0) + λuT

λ(t)h(t)

dt.

Since ∂xyTλ(t, 0) = 2α′

λ(t), ∂xyh(t, 0) = 2α′

h(t), and

uT
λ(t) = ∂xyTλ(t, 1) = α′

λ(t + 1) + α′

λ(t − 1),

h(t) = ∂xyh(t, 1) = α′

h(t + 1) + α′

h(t − 1),

we get

Lλ(h) =

 T

0


8(1 − λ)α′

λ(t)α
′

h(t)

+ 2λ

α′

λ(t + 1) + α′

λ(t − 1)


×

α′

h(t + 1) + α′

h(t − 1)


dt.

We extend the domain of the function α′

h and α′

λ to the interval
(0, ∞) by defining α′

h(t) = 0 and α′

λ(t) = 0 for t > T + 1. Then
we have

Lλ(h) =


∞

0


8(1 − λ)α′

λ(t)α
′

h(t)

+ 2λ

α′

λ(t + 1) + α′

λ(t − 1)


×

α′

h(t + 1) + α′

h(t − 1)


dt

=

∞
j=0

 1

0


8(1 − λ)α′

λ(t + j)α′

h(t + j)

+ 2λ

α′

λ(t + 1 + j) + α′

λ(t − 1 + j)


×

α′

h(t + 1 + j) + α′

h(t − 1 + j)


dt

= 8(1 − λ)

∞
j=1

 1

0
α′

h(t + j)α′

λ(t + j) dt

+ 2λ
∞
j=1

 1

0
α′

h(t + j)

α′

λ(t + 2 + j) + α′

λ(t + j)

dt

+ 2λ
∞
j=1

 1

0
α′

h(t + j)

α′

λ(t + j) + α′

λ(t − 2 + j)

dt.

Since the infinite series in the last equation are in fact finite sums,
we can exchange them with the integral and get

Lλ(h) = 2
 1

0

∞
j=1

α′

h(t + j)

4(1 − λ)α′

λ(t + j)

+ λ

α′

λ(t + 2 + j) + α′

λ(t − 2 + j) + 2α′

λ(t + j)


dt.
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Defining the characteristic polynomial by

pλ(z) = λ z2 + (4 − 2λ) z + λ, (32)

we have pλ(zλ) = 0 and pλ(1/zλ) = 0. Using (28), we have

λ α′

λ(t + 2 + j) + (4 − 2λ) α′

λ(t + j) + λ α′

λ(t − 2 + j) = 0,

for every t ∈ (0, 1) and every j ∈ {1, 2, 3, . . . , }with t + j 6 T −1.
This implies that Lλ(h) = 0. Now, concerning the value of the
objective functional of (OCP)Tλ, for any h such that yh(T , ·) = 0
and ∂tyh(T , ·) = 0, we infer that T

0


(1 − λ) (∂xy(t, 0))2 + λu(t)2


dt

>

 T

0


(1 − λ)


∂xyTλ(t, 0)

2
+ λuT

λ(t)
2

dt,

with a strict inequality whenever h ≠ 0. It follows that uT
λ is the

unique optimal solution of (OCP)Tλ, as soon as λ > 0. If λ = 0, then
the result also follows from the representation of L0(h). However,
in this case the characteristic polynomial p0(z) = 4z has only one
root given by z0 = 0. Theorem 1 is proved for T < +∞.

3.2.2. The case T = ∞

We are going to use the previously established well-posedness
results.

Let y∞

λ be the state generated by the control u∞

λ defined in the
theorem. For a control of the form u = u∞

λ +h, the generated state
is y = y∞

λ + yh, where yh is the state generated by the control
h, with null initial conditions and with the boundary conditions
yh(t, 0) = 0 and ∂xyh(t, 1) = h(t). The value of the objective
functional of (OCP)∞λ is

+∞

0


(1 − λ)(∂xy(t, 0))2 + λu(t)2


dt

=


+∞

0


(1 − λ)


(∂xyTλ(t, 0))

2

+ (∂xyh(t, 0))2 + 2∂xy∞

λ (t, 0)∂xyh(t, 0)


+ λ

u∞

λ (t)2 + h(t)2 + 2u∞

λ (t)h(t)


dt.

We consider the linear part

Lλ(h) = 2


+∞

0


(1 − λ)∂xy∞

λ (t, 0)∂xyh(t, 0) + λu∞

λ (t)h(t)

dt.

Using (25), we have y∞

λ (t, x) = αλ(t+x)−αλ(t−x) and yh(t, x) =

αh(t+x)−αh(t−x), with αλ given by (23), and αh = 0 on (−1, 1).
It follows that ∂xy∞

λ (t, 0) = 2α′

λ(t), ∂xyh(t, 0) = 2α′

h(t), and

u∞

λ (t) = ∂xy∞

λ (t, 1) = α′

λ(t + 1) + α′

λ(t − 1),

h(t) = ∂xyh(t, 1) = α′

h(t + 1) + α′

h(t − 1),

and therefore,

Lλ(h) =


+∞

0


8(1 − λ)α′

λ(t)α
′

h(t) + 2λ

α′

λ(t + 1) + α′

λ(t − 1)


×

α′

h(t + 1) + α′

h(t − 1)


dt

=

+∞
j=0

 1

0


8(1 − λ)α′

λ(t + j)α′

h(t + j)

+ 2λ

α′

λ(t + 1 + j) + α′

λ(t − 1 + j)


×

α′

h(t + 1 + j) + α′

h(t − 1 + j)


dt

= 2
 1

0


4(1 − λ)α′

h(t)α
′

λ(t)
+ λ

α′

h(t − 1)

α′

λ(t + 1)

+ α′

λ(t − 1)

+ α′

h(t)

α′

λ(t + 2) + α′

λ(t)


dt

+ 2
+∞
j=1

 1

0
α′

h(t + j)

4(1 − λ)α′

λ(t + j)

+ λ

2α′

λ(t + j) + α′

λ(t − 2 + j) + α′

λ(t + 2 + j)


dt.

By Lemma 1, for t ∈ (0, 1) the values of α′

h(t − 1) and α′

h(t) are
determined from the initial data, and since they are equal to zero,
we have α′

h(t − 1) = αh(t) = 0. This yields

Lλ(h) = 2
+∞
k=1

 1

0
α′

h(t + k)

4(1 − λ)α′

λ(t + k)

+ λ

2α′

λ(t + k) + α′

λ(t − 2 + k)

+ α′

λ(t + 2 + k)


dt. (33)

If λ > 0 then the roots of the characteristic polynomial pλ defined
by (32) are zλ and 1

zλ
. In particular, we have pλ(zλ) = 0. Note that,

by Lemma 1, for t ∈ (0, 1) the values of α′

λ(t − 1) and of α′

λ(t) are
determined from the initial data. By (24), we have

α′

λ(t + 1) = −α′

λ(t − 1) + u∞

λ (t), (34)

for t ∈ (0, 2). Using the representation (7) of u∞

λ (t) for t ∈ (0, 1),
and using (23), we infer that α′

λ(t+1) = zλα′

λ(t−1) for t ∈ (0, 1).
Similarly, using (24), we have α′

λ(t + 2) = −α′

λ(t) + u∞

λ (t + 1)
for t ∈ (0, 1). Using the representation (7) of u∞

λ (t) for t ∈ (1, 2),
and using (23), we infer that α′

λ(t + 2) = zλα′

λ(t) for t ∈ (0, 1). It
follows that α′

λ(t + 1) = zλα′

λ(t − 1) for t ∈ (0, 2). By induction,
using (34), (8) and (7), we get that

α′

λ(t − 1 + 2k) = zkλα
′

λ(t − 1), (35)

for every t ∈ (0, 2) and every k ∈ N. Therefore, we have obtained
that

λα′

λ(t + 2 + k) + (4 − 2λ)α′

λ(t + k) + λα′

λ(t − 2 + k)
= pλ(zλ)α′

λ(t − 2 + k) = 0,

for every t ∈ (0, 1) and every k ∈ N∗. We conclude that Lλ(h) = 0.
Concerning the value of the objective functional of (OCP)∞λ , we
infer that

+∞

0


(1 − λ) (∂xy(t, 0))2 + λu(t)2


dt

>


+∞

0


(1 − λ)


∂xy∞

λ (t, 0)
2

+ λu∞

λ (t)2

dt,

with a strict inequality whenever h ≠ 0. It follows that u∞

λ is
the unique optimal solution of (OCP)∞λ for λ > 0. For λ = 0
the result also follows from the representation (33) of L0(h), with
the difference that, in this case, the characteristic polynomial is
p0(z) = z having the unique root z0 = 0.

The inequality (9) follows from (35), since for the optimal state
we have the energy 1

0


∂xy∞

λ (t + 2k, x)
2

+

∂ty∞

λ (t + 2k, x)
2 dx

=

 t+2k+1

t+2k−1
α′

λ(s)
2 ds

=

 t+1

t−1
α′

λ(s + 2k)2 ds = |zλ|2k
 t+1

t−1
α′

λ(s)
2 ds,

for every t ∈ (0, 2) and every k ∈ N. Theorem 1 is proved for
T = +∞.
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Remark 7. The computation of the solutionwith the characteristic
polynomial pλ is related to techniques used for linear difference
equations, or for finite-dimensional linear systemswith tridiagonal
matrices (see [24]).

3.3. Proof of Theorem 2

We assume that T = 2n. Using (12), we have 1
2n =

1+zλ
2 , and

then, using

uT
1(t) =


1

2 d(t)


y′

0(1 − t) − y1(1 − t)

, t ∈ (0, 1),

1
2 d(t)


y′

0(t − 1) + y1(t − 1)

, t ∈ (1, 2)

(36)

and the representation (7) of u∞

λ , we infer (13). We have 2

0
u∞

λ (t)2 dt
1/2

6 (1 + zλ)

∥y′

0∥L2(0,1) + ∥y1∥L2(0,1)

.

The inequality (14) follows similarly, using uT
1(t + 2k) =

(−1)kuT
1(t) and (8), sinceuT

1 − u∞

λ


L2(2k,2k+2) =

1 − |zλ|k
  2

0
u∞

λ (t)2 dt
1/2

.

The proof for the case T ∉ {2, 4, 6, . . .} works analogously.
Theorem 2 is proved.

4. A general perspective

In this section we want to illustrate the generality of the
turnpike phenomenon in the framework of an evolution equation
within the context of semigroup theory. We consider an optimal
control problemwith an objective function that is again the convex
combination of a control cost and a tracking term. In the optimal
control problem for the Neumann control of the vibrating string
that we have considered in the previous sections the tracking term
depends on a boundary observation of the state. In contrast to this
situation, the tracking term in Section 4 contains the full state, thus
the results that we have presented for the vibrating string cannot
be derived easily from the general results given in this section. In
contrast to [3], in the optimal control problem that we consider in
this section, a terminal constraint appears that prescribes exactly
the desired terminal state.

We consider a Hilbert space (X, ⟨, ⟩X ) that contains the states
and another Hilbert space (U, ⟨, ⟩U) that contains the controls.
As in [25] let A : D(A) ⊂ X → X be the generator of
a strongly continuous semigroup (Tt)t>0 (for the definitions see
also for example [26]) and let B denote an admissible control
operator. As stated in [25], B maps U to the space X−1, where
X−1 is defined as the completion of X with respect to the norm
∥z∥−1 = ∥(βI −A)−1z∥X where β ∈ ρ(A) is fixed. In fact the space
X−1 is independent of the choice of β . Let an initial state y0 ∈ X ,
and a time T > 0 be given. As in [25, Proposition 4.2.5] we consider
a system that is governed by the differential equation

y′(t) = A y(t) + B u(t), t ∈ [0, T ]

with the initial condition y(0) = y0 ∈ X . For u ∈ L2((0, T );U) and
t ∈ [0, T ], define

Φt(u) =

 t

0
Tt−σBu(σ ) dσ .

We assume that there exists a time Tmin > 0 such that for all
T > Tmin the considered system is exactly controllable in the sense
that

RanΦT = X .
Let us assume that T > Tmin, then there exists a control function
u ∈ L2((0, T );U) such that the terminal constraint y(T ) = 0 holds.
Let λ ∈ (0, 1) be given. Consider the problem of optimal exact
control

min
 T

0
((1 − λ)⟨y(t), y(t)⟩X + λ⟨u(t), u(t)⟩U) dt

subject to y′(t) = A y(t) + B u(t), t ∈ [0, T ];

y(0) = y0, y(T ) = 0.

(37)

The static optimal control problem corresponding to (37) is
min ((1 − λ) ⟨y, y⟩X + λ ⟨u, u⟩U)
subject to 0 = A y + B u. (38)

It is clear that the solution of (38) is zero. The solution of the static
optimal control problem (38) determines the turnpikewhich in our
case is (utp, ytp) = (0, 0).

Let uλ denote the optimal control and yλ the optimal state for
(37). In order to determine the structure of the optimal control we
look at the necessary optimality conditions for (37).

Let u = uλ + δ1 with a control variation δ1 ∈ L2((0, T );U)
that does not change the terminal state. Let y = yλ + δ2 denote
the corresponding variation of the state, that is we have δ2 ∈

C([0, T ]; X) with δ2(0) = 0, δ2(T ) = 0 and δ′

2 = A δ2 + Bδ1. For
the objective function in (37) we introduce the notation

J(u, y) =

 T

0
((1 − λ)⟨y(t), y(t)⟩X + λ⟨u(t), u(t)⟩U) dt.

Then for all p ∈ C([0, T ]; X) we have J(uλ + δ1, yλ + δ2)

= J(uλ, yλ) + 2
 T

0
λ ⟨u(s), δ1(s)⟩U

+ (1 − λ)⟨y(s), δ2(s)⟩X ds

+ 2(1 − λ)

 T

0
⟨δ′

2(s) − A δ2(s) − B δ1(s), p(s)⟩X ds

+

 T

0
λ ⟨δ1(s), δ1(s)⟩U + (1 − λ)⟨δ2(s), δ2(s)⟩X ds

= J(uλ, yλ)

+ 2
 T

0
⟨λu(s) − (1 − λ)B∗ p, δ1(s)⟩U

+ (1 − λ)⟨−p′
− A∗p + y(s), δ2(s)⟩X ds

+

 T

0
λ ⟨δ1(s), δ1(s)⟩U + (1 − λ)⟨δ2(s), δ2(s)⟩X ds.

Hence uλ can only be an optimal control if there exists a multiplier
pλ ∈ C([0, T ]; X) such that the optimality system

y′

λ = A yλ + B uλ,

p′

λ = −A∗pλ + yλ,

uλ =
1 − λ

λ
B∗ pλ

(39)

with the conditions yλ(0) = y0, yλ(T ) = 0 is satisfied (see also the
Lagrange multiplier rule as e.g. in [27]). By the second equation in
the optimality system (39)we get the equationAyλ = A(p′

λ+A∗pλ).
With the third and the first equation in the optimality system (39)
this yields y′

λ −
1−λ
λ

BB∗ pλ = y′

λ − Buλ = A(p′

λ + A∗pλ). This yields
the second order equation

(p′

λ + A∗pλ)
′
= A(p′

λ + A∗pλ) +
1 − λ

λ
BB∗ pλ. (40)

In the remaining discussion we omit the subscript λ, that is we
write p instead of pλ, u instead of uλ and y instead of yλ.
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4.1. Skew-adjoint operators

Let us assume that A is skew-adjoint, i.e., A∗
= −A. In [3],

turnpike inequalities for the case of thewave equationwhere A∗
=

−A are given in Section 4. Eq. (40) yields

p′′
= L p + 2A p′ (41)

where
L = AA∗

+
1−λ
λ

BB∗.

Now we assume that A and B B∗ are diagonalizable with the
same sequence of orthonormal eigenfunctions (ϕk)k and that the
eigenvalues of 1−λ

λ
B B∗ are bounded from below by ω2 > 0. Then

(41) yields a sequence of ordinary differential equations for hk(t) =

⟨p(t), ϕk⟩X namely

h′′

k = ⟨ϕk, Lϕk⟩X hk + 2⟨ϕk, Aϕk⟩X h′

k. (42)
The characteristic polynomial is
pk(z) = z2 − 2⟨ϕk, Aϕk⟩X z − ⟨ϕk, Lϕk⟩X

and since ⟨ϕk, Aϕk⟩X is purely imaginary it has roots δ+

k , δ−

k such
that Re(δ+

k ) > ω > 0 and Re(δ−

k ) 6 −ω < 0. Thus get the
solutions
hk(t) = uk exp(δ−

k t) + vk exp(δ+

k t).
The coefficients uk and vk are chosen such that p′(0) = y0 + Ap(0)
and p′(T ) = Ap(T ), because then we have y(0) = y0 and y(T ) = 0.
In fact, this yields a constant Cmin that is independent of y0 and T
such that for all T > Tmin, we have the inequality
k


|uk|

2
+
exp(2 δ+

k T )
 |vk|

2 6 Cmin ∥y0∥2
X .

Using Parseval’s equation from the representation

p(t) =


k

hk(t) ϕk =


k

uk exp(δ−

k t) ϕk



+


k

vk exp(δ+

k t) ϕk


we get the inequality

∥p(t)∥X 6 e−ωt


k

|uk|
2

1/2

+ e−ω(T−t)


k

| exp(2 δ+

k T )| |vk|
2

1/2

(43)

6

e−ωt

+ e−ω(T−t) 2

Cmin ∥y0∥X . (44)

Inequalities (43)–(44) reflect a turnpike inequality for p. They
state that the norm of p(t) is bounded above by a sum of a part
that is exponentially decreasingwith time and a second part that is
exponentially increasing towards T . Due to (39) the optimal control
has the form u =

1−λ
λ

B∗ p, so it also shows a turnpike structure.
Note that the optimal control norms are decreasing with T , hence
they are uniformly bounded.

4.2. Self-adjoint operators

Let us assume that A is self-adjoint. Turnpike inequalities for the
parabolic case where A∗

= A were given in [3, Section 3]. Eq. (40)
yields

p′′
= L p. (45)

Thus we get

p(t) = cosh

t L

1
2


p(0) + L−

1
2 sinh


t L

1
2


p′(0)
with the cosh and sinh operators as defined in [28]. For the optimal
state we have

y = p′
+ A∗p.

The equations y(0) = y0, y(T ) = 0 yield a system of linear
equations for p(0), p′(0). In fact we have p′(0) = y0 − A∗ p(0) and
p′(T ) = −A∗ p(T ).

Now let us assume that L is diagonalizable and the eigenvalues
of L are bounded frombelowbyω2 > 0. Thenwe have the turnpike
inequality

∥p(t)∥ 6
1
2
exp(−ωt)


∥p(0)∥ + ∥L−1/2p′(0)∥


+

1
2
exp(−ω(T − t))


∥ exp(L1/2T ) p(0)∥

+ ∥ exp(L1/2T ) L−1/2 p′(0)∥

.

The optimal control has the form

u(t) =
1 − λ

λ
B∗ cosh(t L

1
2 ) p(0)

+
1 − λ

λ
B∗L−

1
2 sinh(t L

1
2 ) p′(0). (46)

This means that also the optimal control can be represented as
the sum of families of increasing and decreasing exponentials with
rates ω. For the optimal state the equation y = p′

+ Ap yields a
similar representation.

5. Conclusion

We have presented optimal Neumann boundary controls for
the 1D wave equation for finite an infinite horizons and different
weights in the objective function. If the objective function is the
control norm and the terminal state is prescribed exactly, the
control action is distributed periodically over the whole time
horizon and coincides with the control given by the Hilbert
Uniqueness Method. In contrast, if the objective function involves
an additional tracking term the optimal control action is essentially
concentrated at the starting time 0 and at the terminal time T ,
and in-between it is exponentially close to 0. The control is the
sum of an exponentially decreasing term and of an exponentially
increasing one. If the time horizon is infinite only the first term
remains, and the optimal control exponentially stabilizes the
system, according to the classical Riccati theory. The norms of the
control action and of the optimal state decay then exponentially in
time. These results show that as soon as the objective functional of
the optimal control problems for the considered system contains
a nontrivial tracking term, the optimal solution has a special
behavior referred to as the turnpike phenomenon.We have shown
that, if the final time T is a positive even integer, there exists a
weightλ such that the solution of the problemof exact controlwith
minimal control norm coincides with the solution of the infinite
horizon optimal control problem along the time interval [0, 2].
This result justifies a receding horizon control strategy, where the
first part of a finite horizon optimal control is used and then the
procedure is updated in order to control the systemover an infinite
time horizon.

As already said, the turnpike property has been much
investigated in finite dimension (see [8] and references therein
for a general result). In the infinite-dimensional setting, in [3]
distributed control has been considered both for the heat equation
and the wave equation. The turnpike phenomenon put in evidence
in the present paper shows an interesting qualitative bifurcation
of the HUM control as soon as the objective functional involves a
tracking term.

Several open questions are in order. First of all, it makes sense
to consider an objective functional in which the tracking term is
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replaced with a discrepancy between the solution and a time-
independent function, which is not necessarily a steady-state.
According to the results of [8], we expect then that the turnpike
property still holds true, and that, in large time, the optimal
trajectory remains essentially close to the optimal steady-state,
defined as the closest steady-state to the objective. However, in
this case, it might be difficult to derive explicit formulas as done in
the present paper. Moreover, here we only considered a functional
penalizing the normal derivative at x = 0, and then we can only
consider a time-independent function that is a steady-state, as
said in Remark 4. But if instead, we were considering for instance
the full norm in H1(0, 1), then we could consider in the objective
functional a term of the form ∥y(t, ·)− a(·)∥2, where a(·) need not
be a steady-state. Then, what can be expected is that, in large time,
the optimal trajectory remains essentially close to the steady-state
of the form σ x that is the closest possible to the target a(·).

Formore general multi-Dwave equations, the situation is open.
Even if explicit computations can only be done in specific cases, we
expect that the turnpike phenomenon is generic within the class
of optimal control problems for controllable wave equations, and
that HUM controls characterized by the adjoint system develop a
quasi-periodic pattern, but when characterized by a more robust
optimality cost, then, satisfy the turnpike property.

Another open issue is the investigation of semilinear wave
equations (see [29]), for which steady-states may play an impor-
tant role. Of course, in that case, we cannot expect that the turn-
pike property hold globally, but it should also hold as well at least
in some neighborhood of an optimal steady-state (see discussions
in [8]).
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