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Carathéodory dynamics on time scales

Loı̈c Bourdina* and Emmanuel Trélatb1
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The aim of this paper was to complete some aspects of the classical Cauchy–Lipschitz
(or Picard–Lindelöf) theory for general nonlinear systems posed on time scales. Despite
a rich literature on Cauchy–Lipschitz type results on time scales, most of the existing
results are concerned with rd-continuous dynamics (andC1

rd-solutions) and do not cover
the framework of general Carathéodory dynamics encountered for instance in control
theory with measurable controls (which are not rd-continuous in general). In this paper,
our main objective was to study D-Cauchy problems with general Carathéodory
dynamics.We introduce the notion of absolutely continuous solution (weaker regularity
than C1

rd) and then the notion of maximal solution. We state and prove a Cauchy–
Lipschitz theorem, providing existence and uniqueness of the maximal solution of a
given D-Cauchy problem under suitable assumptions such as regressivity and local
Lipschitz continuity. Three new related issues are also discussed in this paper: the
boundary value is not necessarily an initial or a final condition, the solutions are
constrained to take their values in a non-empty open subset and the behaviour ofmaximal
solutions at terminal points is studied.
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1. Introduction

The time scale theory was introduced by S. Hilger in his PhD thesis [16] in 1988 in order
to unify discrete and continuous analysis, with the general idea of extending classical
theories on an arbitrary non-empty closed subset T of R. Such a subset T is called a time
scale. The objective is not only to establish the validity of some results both in the
continuous case T ¼ R and in the purely discrete case T ¼ N, but also to treat more
general models of processes involving both continuous and discrete time elements. We
refer the reader, e.g., to [14,28] where the authors study a seasonally breeding population
whose generations do not overlap or to [4] for applications to economy. By considering
T ¼ f0}< lN with 0 , l , 1, the time scale concept also allows to cover quantum
calculus [22]. Since S. Hilger defined the D-derivative and the D-integral on a time scale,
many authors have extended to time scales various results from the continuous or discrete
standard calculus theory (see the surveys [1,2,6,7]). However some items of the basic
nonlinear theory are still to be developed and refined.
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Cauchy–Lipschitz (Picard–Lindelöf) type results on time scales are provided in
[6,12,17,24–26] where the authors prove the existence and uniqueness of solutions for
D-Cauchy problems of the form

qD ¼ f ðq; tÞ; qðt0Þ ¼ q0; ð1Þ

where t0 [ T. Note that papers are devoted to D-Cauchy problems with parameters in [20]
and with time delays in [23]. Many authors are also interested in shifted D-Cauchy
problems

qD ¼ f ðqs; tÞ; qðt0Þ ¼ q0; ð2Þ

where qs ¼ q +s (see further for the precise definition of s). Such shifted problems are
often used as models in the existing literature (see, e.g. [5,19,27], [18, Remark 3.9] and
[20, Remark 3.6]), because they emerge in adjoint equations according to the Leibniz
formula (see [6])

ðq1q2ÞD ¼ qD1 q
s
2 þ q1q

D
2 ¼ qD1 q2 þ qs1q

D
2 : ð3Þ

To the best of our knowledge, most of the existing results are concerned with rd-
continuous dynamics f (andC1

rd-solutions q) (see e.g. the first result on D-Cauchy problems
due to Hilger [17, Section 5], or [6, Section 8.2], [24,26,29] and references therein).
Nevertheless, they do not cover the framework of general Carathéodory dynamics f (not
necessarily rd-continuous but only measurable in its variable t), encountered for instance
in control theory with measurable controls (that are not rd-continuous in general). Our
main objective in this paper is to treat such general Carathéodory dynamics (weaker
regularity than rd-continuity) and to obtain existence and uniqueness results of absolutely
continuous solutions (weaker regularity than C1

rd).
2

Note that the articles [12] and [25], respectively, deal with weak continuous and
Carathéodory dynamics living in a general Banach space. Nevertheless, they only treat
the non-shifted case (1) where q0 is moreover an initial condition, that is solutions are
only defined for t $ t0. In view of considering adjoint equations, it is of interest to
study backward D-Cauchy problems where q0 is a final condition, for which solutions
are defined for t # t0. As is well known in time scale calculus, the solvability of such
backward non-shifted D-Cauchy problems requires a regressivity assumption on the
dynamics (see e.g. [6,17] and [18, Remark 3.8]). This important issue is not addressed
in [12,25]. Another issue that is not addressed in the literature is the fact that the
classical Cauchy–Lipschitz theory (see, e.g. [13,21]) treats Cauchy problems
constraining the solutions to take their values in a non-empty open subset V of Rn.
Finally, to the best of our knowledge, the notion of extension of a solution on time
scales and the behaviour of the maximal solution at terminal points have not been
studied in the literature.

This paper is devoted to fill an existing gap of the literature and to provide a general
Cauchy–Lipschitz theory with Carathéodory dynamics f (only measurable in t) on time
scales, generalizing the basic notions and results of the classical theory surveyed, e.g. in
[13,21]. We first introduce the notion of absolutely continuous solution in the time scale
context. Then we define the concept of extension of a solution and of maximal and global
solutions. We establish a general version of the Cauchy–Lipschitz theorem (existence and
uniqueness of the maximal solution, also referred to as Picard–Lindelöf theorem) under
regressivity and local Lipschitz continuity assumptions for shifted and non-shifted general
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nonlinear D-Cauchy problems. Here we summarize the novelties of this paper:

. the dynamics f is a general D-Carathéodory function (where D-measure mD on a time
scaleT is defined in terms of Carathéodory extension in [7, chapter 5]), in contrast to
the rd-continuity assumed in most of the existing literature. Consequently, the
solutions obtained are absolutely continuous (more general than C1

rd);
. the boundary value q0 is not necessarily an initial or a final condition, i.e. t0 is not

necessarily equal to minT or maxT;
. the solutions are constrained to take their values in a non-empty open subsetV ofRn.
. the behaviour of maximal solutions that are not global is investigated: we prove that

they leave any compact of V.

Remark 1. We stress that, in the absence of a regressivity assumption, a shifted problem
cannot be reduced to an equivalent non-shifted problem in general.3 Therefore our results
are established first for general non-shifted D-Cauchy problems (1) and then, separately,
for shifted D-Cauchy problems (2). Note that analogous results on 7-Cauchy problems
(r-shifted or not) can be derived in a similar way.We refer to the duality principle provided
in [11].

Remark 2. Our study uses the work of Cabada and Vivero [9], who derived a criterion for
absolutely continuous functions written as the D-integral of their D-derivatives. Their
result allows us to give a D-integral characterization of the solutions of D-Cauchy
problems with Carathéodory dynamics which is instrumental in our proofs.

The paper is structured as follows. Section 2 is devoted to recall basic notions of time
scale calculus. In Section 3, we define the notions of a solution, of an extension of a
solution, of a maximal and a global solution for general non-shifted D-Cauchy problems.
Under suitable assumptions on the dynamics, we establish a Cauchy–Lipschitz theorem
and then investigate the behaviour of the maximal solution at its terminal points. Section 4
is devoted to establish similar results for shifted D-Cauchy problems.

2. Preliminaries on time scale calculus

In this section, we recall basic results in time scale calculus. The first part concerns the
structure of time scales and the notion of D-differentiability (see [6]). The second part
concerns the D-Lebesgue measure defined in terms of Carathéodory extension (see [7,15])
and surveys results on D-integrability proved in [10]. The last part gathers the properties of
absolutely continuous functions borrowed from [9].

Let n [ N*. Throughout, the notation k%k stands for the Euclidean norm of Rn. For
every x [ Rn and every R $ 0, the notation !Bðx;RÞ stands for the closed ball ofRn centred
at x and with radius R.

2.1 Time scale and D-differentiability

Let T be a time scale, that is a non-empty closed subset ofR. We assume that cardðTÞ $ 2.
For every A , R, we denote AT ¼ A> T. An interval of T is defined by IT where I is an
interval of R.

The backward and forward jump operators r;s : T! T are, respectively, defined by

rðtÞ ¼ supfs [ Tjs , t}; sðtÞ ¼ inffs [ Tjs . t};

L. Bourdin and E. Trélat528
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for every t [ T, where rðminTÞ ¼ minT (respectively, sðmaxTÞ ¼ maxT) whenever T
admits a minimum (respectively, a maximum).

A point t [ T is said to be a left-scattered (respectively, right-scattered) point of T if
rðtÞ , t (respectively, sðtÞ . t). A point t [ T is said to be a left-dense (respectively,
right-dense) point of T if t . inf T and rðtÞ ¼ t (respectively, t , supT and sðtÞ ¼ t).
The graininess function m : T! Rþ is defined by mðtÞ ¼ sðtÞ2 t for every t [ T.

We set Tk ¼ TnfmaxT} whenever T admits a left-scattered maximum, and Tk ¼ T
otherwise. A function q : T! Rn is said to be D-differentiable at t [ Tk if the limit

qDðtÞ ¼ lim
s!t
s[T

qsðtÞ2 qðsÞ
sðtÞ2 s

exists in Rn, where qs ¼ q +s. We recall the following well-known results (see [6]):

. if t [ Tk is a right-dense point of T, then q is D-differentiable at t if and only if the
limit

qDðtÞ ¼ lim
s!t
s[T

qðtÞ2 qðsÞ
t2 s

exists in Rn;
. if t [ Tk is a right-scattered point of T and if q is continuous at t, then q is

D-differentiable at t, and

qDðtÞ ¼ qsðtÞ2 qðtÞ
mðtÞ :

2.2 Lebesgue D-measure and Lebesgue D-integrability

Recall that the set of right-scattered points R , T is at most countable (see [10, Lemma
3.1]).

Let mD be the Lebesgue D-measure on T defined in terms of Carathéodory extension in
[7, Chapter 5]. We also refer the reader to [3,10,15] for more details on the mD-measure
theory. In particular, for all elements a, b of T such that a # b, one has
mDð½a; bÞTÞ ¼ b2 a. Recall that A , T is a mD-measurable set of T if and only if A is
an usual mL-measurable set of R, where mL denotes the usual Lebesgue measure (see [10,
Proposition 3.1]). Moreover, if A , TnfsupT}, then

mDðAÞ ¼ mLðAÞ þ
X

r[A>R

mðrÞ:

Let A , T. A property is said to hold D-almost everywhere (shortly D-a.e.) on A if it holds
for every t [ AnA0, where A0 , A is some mD-measurable subset of T satisfying
mDðA0Þ ¼ 0. In particular, since mDðfr}Þ ¼ mðrÞ . 0 for every r [ R, we conclude that if
a property holds D-a.e. on A, then it holds for every r [ A>R.

Let A , TnfsupT} be a mD-measurable set of T. Consider a function q defined D-a.e.
on A with values inRn. Let ~A ¼ A< ðr;sðrÞÞr[A>R, and let ~q be the extension of q defined
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mL-a.e. on ~A by

~qðtÞ ¼
qðtÞ if t [ A;

qðrÞ if t [ ðr;sðrÞÞ for every r [ A>R:

(

We recall that q is mD-measurable on A if and only if ~q is mL-measurable on ~A (see [10,
Proposition 4.1]).

The functional space L1
T ðA;RnÞ is the set of all functions q defined D-a.e. on A, with

values in Rn, which are mD-measurable on A and such that

sup ess
t[A

qðtÞk k , þ1:

Endowed with the norm kqkL1
T ðAÞ ¼ sup esst[AkqðtÞk, it is a Banach space (see [3,

Theorem 2.5]). The functional space L1
TðA;RnÞ is the set of all functions q defined D-a.e.

on A, with values in Rn, which are mD-measurable on A and such that

ð

A

qðtÞk kDt , þ1:

Endowed with the norm kqkL1
T
ðA;RnÞ ¼

Ð
A kqðtÞkDt, it is a Banach space (see [3, Theorem

2.5]). Recall that if q [ L1
TðA;RnÞ then

ð

A

qðtÞDt ¼
ð

~A

~qðtÞ dt ¼
ð

A

qðtÞ dtþ S
r[A>R

mðrÞqðrÞ

(see [10, Theorems 5.1 and 5.2]). Note that if A is bounded then L1
T ðA;RnÞ , L1

TðA;RnÞ.

2.3 Properties of absolutely continuous functions

Let a and b be two elements of T such that a , b. Let Cð½a; b'T;RnÞ denote the space of
continuous functions defined on ½a; b'T with values in Rn. Endowed with its usual norm
k%k1, it is a Banach space. Let ACð½a; b'T;RnÞ denote the subspace of absolutely
continuous functions. We recall the two following results.

Proposition 1. Let t0 [ ½a; b'T and q : ½a; b'T ! Rn. Then q [ ACð½a; b'T;RnÞ if and
only if the two following conditions are satisfied:

1. q is D-differentiable D-a.e. on ½a; bÞT and qD [ L1
Tð½a; bÞT;RnÞ;

2. For every t [ ½a; b'T, there holds

qðtÞ ¼ qðt0Þ þ
ð

½t0;tÞT
qDðtÞDt

whenever t $ t0, and

qðtÞ ¼ qðt0Þ2
ð

½t;t0ÞT
qDðtÞDt

whenever t # t0.
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This result can be easily derived from [9, Theorem 4.1]. By combining Proposition 1
and the usual Lebesgue’s point theory in R, we infer the following result (see also [30] for
a similar result).

Proposition 2. Let t0 [ ½a; b'T and q [ L1
Tð½a; bÞT;RnÞ. Let Q be the function defined on

½a; b'T by

QðtÞ ¼
ð

½t0;tÞT
qðtÞDt

if t $ t0, and by

QðtÞ ¼ 2

ð

½t;t0ÞT
qðtÞDt

if t # t0. Then Q [ ACð½a; b'T;RnÞ and QD ¼ q D-a.e. on ½a; bÞT.
Note that, in the results above, for t $ t0 the integral is taken over ½t0; tÞT (open at t),

whereas for t # t0, the integral is taken over ½t; t0ÞT (closed at t). This will have some
consequences in the forward or backward solvability of a D-Cauchy problem (see the
remark following Lemma 1 further).

3. General non-shifted D-Cauchy problem

Throughout this section we consider the general non-shifted D-Cauchy problem

qDðtÞ ¼ f ðqðtÞ; tÞ; qðt0Þ ¼ q0; ðD-CPÞ

where t0 [ T, q0 [ V, where V is a non-empty open subset of Rn, and f :
V £ TnfsupT}! Rn is a D-Carathéodory function. The notation K stands for the set of
compact subsets of V.

3.1 Preliminaries

In what follows it will be important to distinguish between three cases:

1. t0 ¼ minT;
2. t0 ¼ maxT;
3. t0 – inf T and t0 – supT.

Indeed, the interval of definition of a solution of (D-CP) will depend on the specific case
under consideration. If t0 ¼ minT, then a solution can only go forward since
ð21; t0ÞT ¼ B. If t0 ¼ maxT, then a solution can only go backward. If t0 – inf T and
t0 – supT, then a solution can go backward and forward.

Definition 1. For all ða; bÞ [ T2, we say that a 4 t0 4 b if

. a ¼ t0 , b in the case t0 ¼ minT;

. a , t0 ¼ b in the case t0 ¼ maxT;

. a , t0 , b in the case t0 – inf T and t0 – supT.
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If a 4 t0 4 b then ½a; b'T is a potential interval of definition for a solution of ðD-CPÞ.
Due to this difference in intervals, it is required to make different assumptions on f
accordingly, whence the following series of definitions.

Definition 2. The function f is said to be locally bounded on V £ TnfsupT} if, for every
K [ K, for all ða; bÞ [ T2 such that a , b, there exists M $ 0 such that

f ðx; tÞk k # M; ðH1Þ

for every x [ K and for D-a.e. t [ ½a; bÞT.
In what follows this property will be referred to as ðH1Þ.

Definition 3. The function f is said to be locally Lipschitz continuous with respect to the
first variable at right-dense points if, for every !x [ V and every right-dense point
!t [ TnfsupT}, there exist R . 0; d . 0 and L $ 0 such that !Bð!x;RÞ , V and !tþ d [ T,
and such that

f ðx1; tÞ2 f ðx2; tÞk k # L x1 2 x2k k; ðHrd
loc-LipÞ

for all x1; x2 [ !Bð!x;RÞ and for D-a.e. t [ ½!t; !tþ dÞT.
In what follows this property will be referred to as ðHrd

loc-LipÞ.

Definition 4. The function f is said to be forward V-stable at right-scattered points if the
mapping

GþðtÞ : V! Rn ðHforw
stab Þ

x 7! xþ mðtÞf ðx; tÞ

takes its values in V, for every t [ R.
In what follows this property will be referred to as ðHforw

stab Þ.

Definition 5. The function f is said to be locally Lipschitz continuous with respect to the
first variable at left-dense points if, for every !x [ V and every left-dense point
!t [ Tnfinf T}, there exist m R . 0; d . 0 and L $ 0 such that !Bð!x;RÞ , V and !t2 d [
T and such that

f ðx1; tÞ2 f ðx2; tÞk k # L x1 2 x2k k; ðHld
loc-LipÞ

for all x1; x2 [ !Bð!x;RÞ and for D-a.e. t [ ½!t2 d; !tÞT.
In what follows this property will be referred to as ðHld

loc-LipÞ.

Definition 6. The function f is said to be backward regressive at right-scattered points if

GþðtÞ is invertible; Hback
regr

# $

for every t [ R.
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D
ow

nl
oa

de
d 

by
 [B

U
PM

C 
- B

ib
lio

th
èq

ue
 U

ni
ve

rs
ita

ire
 P

ie
rre

 e
t M

ar
ie

 C
ur

ie
] a

t 0
0:

08
 3

0 
M

ay
 2

01
4 



In what follows this property will be referred to as ðHback
regr Þ.

Assumption ðH1Þ will be instrumental to provide a D-integral characterization of the
solutions of ðD-CPÞ (see Lemma 1 in Section 5.1). The other assumptions play a role in
order to go forward or backward for a solution of a non-shifted D-Cauchy problem. More
precisely, ðHrd

loc-LipÞ and ðHforw
stab Þ allow to go forward, and ðHld

loc-LipÞ and ðHback
regr Þ allow to go

backward (see the proofs of Propositions 3 and 4 in Section 5.1 for more details).
In view of investigating global solutions, the following definition will also be useful.

Definition 7. The function f is said to be globally Lipschitz continuous in its first variable
if for all ða; bÞ [ T2 such that a , b, there exists L $ 0 such that

f ðx1; tÞ2 f ðx2; tÞk k # L x1 2 x2k k: ðHglob
Lip Þ

For all x1; x2 [ V and for D-a.e. t [ ½a; bÞT. In what follows this property will be referred
to as ðHglob

Lip Þ.

3.2 Definition of a maximal solution

Recall that an interval of T is defined by IT ¼ I > T where I is an interval of R. In view of
defining the notion of a solution of ðD-CPÞ on general intervals of T, we set

I ¼ fITj’a; b [ IT; a 4 t0 4 b}:

I is the set of potential intervals of T for a solution of ðD-CPÞ.

Definition 8. Let IT [ I and let q : IT !V. The couple ðq; ITÞ is said to be a solution of
ðD-CPÞ if qðt0Þ ¼ q0 and if, for all a; b [ IT satisfying a 4 t0 4 b, q [ ACð½a; b'T;RnÞ and
qDðtÞ ¼ f ðqðtÞ; tÞ for D-a.e. t [ ½a; bÞT.

Note that, if ðq; I1TÞ is a solution of ðD-CPÞ, then ðq; ITÞ is as well a solution of ðD-CPÞ
for all IT [ I such that IT , I1T. Finally, we define the notion of maximal solution.

Definition 9. Let ðq; ITÞ and ðq1; I1TÞ be two solutions of ðD-CPÞ. The solution ðq1; I1TÞ is
said to be an extension of the solution ðq; ITÞ if IT , I1T and q1 ¼ q on IT. A solution ðq; ITÞ
of ðD-CPÞ is said to be maximal if, for every extension ðq1; I1TÞ of ðq; ITÞ, there holds
I1T ¼ IT. A solution ðq; ITÞ of ðD-CPÞ is said to be global if IT ¼ T.

Note that, if ðq; ITÞ is a global solution of ðD-CPÞ, then ðq; ITÞ is a maximal solution of
ðD-CPÞ.

3.3 Main results

Recall that we consider the general non-shifted D-Cauchy problem

qDðtÞ ¼ f ðqðtÞ; tÞ; qðt0Þ ¼ q0; ðD-CPÞ

where t0 [ T, q0 [ V, where V is a non-empty open subset of Rn, and f :
V £ TnfsupT}! Rn is a D-Carathéodory function. We have the following general
Cauchy–Lipschitz result.
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Theorem 1. We make the following assumptions on the dynamics f, depending on t0.

1. If t0 ¼ minT, then we assume that
. f satisfies ðH1Þ, that is f is locally bounded on V £ TnfsupT};
. f satisfies ðHrd

loc-LipÞ, that is f is locally Lipschitz continuous with respect to the
first variable at right-dense points;

. f satisfies ðHforw
stab Þ, that is f is forward V-stable at right-scattered points.

2. If t0 ¼ maxT, then we assume that
. f satisfies ðH1Þ, that is f is locally bounded on V £ TnfsupT};
. f satisfies ðHld

loc-LipÞ, that is f is locally Lipschitz continuous with respect to the
first variable at left-dense points;

. f satisfies
%
Hback

regr

&
, that is f is backward regressive in right-scattered points.

3. If t0 – inf T and t0 – supT, then we assume that
. f satisfies ðH1Þ, that is f is locally bounded on V £ TnfsupT};
. f satisfies ðHrd

loc-LipÞ, that is f is locally Lipschitz continuous with respect to the
first variable at right-dense points;

. f satisfies ðHforw
stab Þ, that is f is forward V-stable at right-scattered points;

. f satisfies ðHld
loc-LipÞ, that is f is locally Lipschitz continuous with respect to the

first variable at left-dense points;
. f satisfies ðHback

regr Þ, that is f is backward regressive in right-scattered points.

Then, the non-shifted D-Cauchy problem ðD-CPÞ has a unique maximal solution ðq; ITÞ.
Moreover, ðq; ITÞ is the maximal extension of any other solution of ðD-CPÞ.

This theorem is proved in Section 5.1. The following result gives information on the
behaviour of a maximal solution at its terminal points.

Theorem 2.Under the assumptions of Theorem 1, let ðq; ITÞ be the maximal solution of the
non-shifted D-Cauchy problem ðD-CPÞ. Then either IT ¼ T, that is the maximal solution
ðq; ITÞ is global, or the maximal solution is not global and then

1. if t0 ¼ minT then IT ¼ ½t0; bÞT where b [ ðt0;þ1ÞT is a left-dense point of T;
2. if t0 ¼ maxT then IT ¼ ða; t0'T where a [ ð21; t0ÞT is a right-dense point of T;
3. if t0 – inf T and t0 – supT then IT ¼ ða;þ1ÞT or IT ¼ ð21; bÞT or IT ¼ ða; bÞT,

where a [ ð21; t0ÞT is a right-dense point of T and b [ ðt0;þ1ÞT is a left-dense
point of T;

and moreover, for every K [ K there exists t [ IT (close to a or b depending on the cases
listed above) such that qðtÞ [ VnK.

This theorem is proved in Section 5.2. It states that the maximal solution must go out of
any compact of V near its terminal points whenever it is not global.

The following last result states that, under global Lipschitz assumption, the maximal
solution is global.

Theorem 3. If t0 ¼ minT, V ¼ Rn, if f satisfies ðH1Þ, that is f is locally bounded on
Rn £ TnfsupT}, and if f satisfies ðHglob

Lip Þ, that is f is globally Lipschitz continuous in its
first variable, then the non-shifted D-Cauchy problem ðD-CPÞ has a unique maximal
solution ðq; ITÞ, which is moreover global.

The proof is done in Section 5.3.
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Remark 3. As an application of Theorem 3, we recover the well-known fact that, in the
linear case

qDðtÞ ¼ hðtÞ £ qðtÞ;

where h : TnfsupT}! Rn£n such that h [ L1
T ð½a; bÞT;Rn£nÞ for all ða; bÞ [ T2 with

a , b, solutions are global.

3.4 Further comments

In this section, we provide simple examples (in the one-dimensional case) showing the
sharpness of the assumptions made in Theorem 1. Indeed, if one of these assumptions is
not satisfied, then the existence or the uniqueness of the maximal solution is no more
guaranteed.

Example 1. (Lack of Assumption ðHrd
loc-LipÞ in the first case). Let T ¼ ½0;þ1½, V ¼ R,

t0 ¼ 0, q0 ¼ 0 and f : R £ T! R be defined by f ðx; tÞ ¼ 2
ffiffiffiffiffi
jxj

p
. The function f obviously

satisfies ðHforw
stab Þ since R ¼ B; however, it does not satisfy ðHrd

loc-LipÞ. The corresponding
D-Cauchy problem ðD-CPÞ has two global solutions q1 and q2 given by q1ðtÞ ¼ 0 and
q2ðtÞ ¼ t 2, for every t [ T.

This example shows that, in the absence of Assumption ðHrd
loc-LipÞ, the uniqueness of the

maximal solution is not guaranteed.

Example 2. (Lack of Assumption ðHforw
stab Þ in the first case). Let T ¼ f0; 1}, V ¼ ð21; 1Þ,

t0 ¼ 0, q0 ¼ 0 and f : V £ f0}! R be defined by f ðx; tÞ ¼ 1. The function f obviously
satisfies ðHrd

loc-LipÞ since TnfsupT} ¼ f0} does not admit any right-dense point of T
however, it does not satisfy ðHforw

stab Þ since xþ 1 ! V for x [ ½0; 1Þ. Since qð0Þ ¼ 0 and
qð1Þ ¼ qð0Þ þ mð0Þf ðqð0Þ; 0Þ imply qð1Þ ¼ 1 ! V, we conclude that ðD-CPÞ does not
admit any solution.

Therefore, in the absence of Assumption ðHforw
stab Þ, ðD-CPÞ may fail to have a solution.

Example 3. (Lack of Assumption ðHrd
loc-LipÞ in the second case). Let T ¼ ð21; 0', V ¼ R,

t0 ¼ 0, q0 ¼ 0 and f : R £ T! R be defined by f ðx; tÞ ¼ 22
ffiffiffiffiffi
jxj

p
. The function f

obviously satisfies ðHback
regr Þ since R ¼ B; however, it does not satisfy ðHrd

loc-LipÞ. The
corresponding D-Cauchy problem ðD-CPÞ has two global solutions q1 and q2 given by
q1ðtÞ ¼ 0 and q2ðtÞ ¼ t 2 for every t [ T.

This example shows that, in the absence of Assumption ðHrd
loc-LipÞ, the uniqueness of the

maximal solution is not guaranteed.

Example 4. (Lack of Assumption ðHback
regr Þ in the second case). Let T ¼ f0; 1}, V ¼ R,

t0 ¼ 1, q0 [ R and f : R £ f0}! R be defined by f ðx; tÞ ¼ 2x. The function f obviously
satisfies ðHrd

loc-LipÞ since Tnfinf T} ¼ f1} does not admit any left-dense point of T however,
it does not satisfy ðHback

regr Þ since Gþð0Þ ¼ 0. As a consequence, if q0 – 0, ðD-CPÞ does not
admit any solution. Indeed, qð1Þ ¼ q0 and qð1Þ ¼ qð0Þ þ mð0Þf ðqð0Þ; 0Þ imply qð1Þ ¼ 0,
which is a contradiction. If q0 ¼ 0, we obtain an infinite number of global solutions.
Indeed, any function q defined on T with qð1Þ ¼ 0 is then a global solution of ðD-CPÞ.
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4. General shifted D-Cauchy problem

Throughout this section we consider the general shifted D-Cauchy problem

qDðtÞ ¼ f ðqsðtÞ; tÞ; qðt0Þ ¼ q0; ðD-CPsÞ

where t0 [ T, q0 [ V, where V is a non-empty open subset of Rn and f :
V £ TnfsupT}! Rn is a D-Carathéodory function.

The results of the section follow the same lines as in the previous section. Therefore we
do not give any proof nor counterexamples as above. Some comments are however done in
Section 5.4.

4.1 Preliminaries

As in Section 3.1, it will be important to distinguish between three cases:

1. t0 ¼ minT;
2. t0 ¼ maxT;
3. t0 – inf T and t0 – supT.

With respect to Section 3.1, we introduce two additional concepts.

Definition 10. The function f is said to be backward V-stable at right-scattered points if
the mapping

G2ðtÞ : V! Rn ðHback
stab Þ

x 7! x2 mðtÞf ðx; tÞ

takes its values in V, for every t [ R.
In what follows this property will be referred to as ðHback

stab Þ.

Definition 11. The function f is said to be forward regressive at right-scattered points if

G2ðtÞ : V! Rn is invertible; ðHforw
regr Þ

For every t [ R.
In what follows this property will be referred to as ðHforw

regr Þ.
These above assumptions play a role in order to go forward or backward for a solution

of a shifted D-Cauchy problem. Precisely, ðHrd
loc-LipÞ and ðHforw

regr Þ allow to go forward.
Similarly, ðHrd

loc-LipÞ and ðHback
stab Þ allow to go backward.

4.2 Definition of a maximal solution

Definition 12. Let IT [ I and let q : IT !V. The couple ðq; ITÞ is said to be a solution of
ðD-CPsÞ if qðt0Þ ¼ q0 and if, for all a; b [ IT satisfying a 4 t0 4 b, q [ ACð½a; b'T;RnÞ
and qDðtÞ ¼ f ðqsðtÞ; tÞ for D-a.e. t [ ½a; bÞT.
Definition 13. Let ðq; ITÞ and ðq1; I1TÞ be two solutions of ðD-CPsÞ. The solution ðq1; I1TÞ is
said to be an extension of the solution ðq; ITÞ if IT , I1T and q1 ¼ q on IT. A solution ðq; ITÞ
of ðD-CPsÞ is said to be maximal if, for every extension ðq1; I1TÞ of ðq; ITÞ, there holds
I1T ¼ IT. A solution ðq; ITÞ of ðD-CPsÞ is said to be global if IT ¼ T.
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4.3 Main results

Recall that we consider the general shifted D-Cauchy problem

qDðtÞ ¼ f ðqsðtÞ; tÞ; qðt0Þ ¼ q0; ðD-CPsÞ

where t0 [ T, q0 [ V where V is a non-empty open subset of Rn and f :
V £ TnfsupT}! Rn is a D-Carathéodory function.

Theorem 4. We make the following assumptions on the dynamics f, depending on t0.

1. If t0 ¼ minT, then we assume that
. f satisfies ðH1Þ, that is f is locally bounded on V £ TnfsupT};
. f satisfies ðHrd

loc-LipÞ, that is f is locally Lipschitz continuous with respect to the
first variable at right-dense points;

. f satisfies ðHforw
regr Þ, that is f is forward regressive in right-scattered points.

2. If t0 ¼ maxT, then we assume that
. f satisfies ðH1Þ, that is f is locally bounded on V £ TnfsupT};
. f satisfies ðHrd

loc-LipÞ, that is f is locally Lipschitz continuous with respect to the
first variable at left-dense points;

. f satisfies ðHback
stab Þ, that is f is backward V-stable in right-scattered points.

3. If t0 – inf T and t0 – supT, then we assume that
. f satisfies ðH1Þ, that is f is locally bounded on V £ TnfsupT};
. f satisfies ðHrd

loc-LipÞ, that is f is locally Lipschitz continuous with respect to the
first variable at right-dense points;

. f satisfies ðHforw
regr Þ, that is f is forward regressive at right-scattered points;

. f satisfies ðHrd
loc-LipÞ, that is f is locally Lipschitz continuous with respect to the

first variable at left-dense points;
. f satisfies ðHback

stab Þ, that is f is backward V-stable at right-scattered points.

Then the shifted D-Cauchy problem ðD-CPsÞ has a unique maximal solution ðq; ITÞ.
Moreover, ðq; ITÞ is the maximal extension of any other solution of ðD-CPsÞ.

Theorem 5.Under the assumptions of Theorem 4, let ðq; ITÞ be the maximal solution of the
shifted D-Cauchy problem ðD-CPsÞ. Then either IT ¼ T, that is the maximal solution
ðq; ITÞ is global, or the maximal solution is not global and then

1. if t0 ¼ minT then IT ¼ ½t0; bÞT where b [ ðt0;þ1ÞT is a left-dense point of T;
2. if t0 ¼ maxT then IT ¼ ða; t0'T where a [ ð21; t0ÞT is a right-dense point of T;
3. if t0 – inf T and t0 – supT then IT ¼ ða;þ1ÞT or IT ¼ ð21; bÞT or IT ¼ ða; bÞT

where a [ ð21; t0ÞT is a right-dense point of T and b [ ðt0;þ1ÞT is a left-dense
point of T;

and moreover, for every K [ K there exists t [ IT (close to a or b depending on the cases
listed above) such that qðtÞ [ VnK.
Theorem 6. If t0 ¼ maxT, V ¼ Rn, if f satisfies ðH1Þ, that is f is locally bounded on
Rn £ TnfsupT}, and if f satisfies ðHglob

Lip Þ, that is f is globally Lipschitz continuous in its
first variable, then the shifted D-Cauchy problem ðD-CPsÞ has a unique maximal solution
ðq; ITÞ, which is moreover global.
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Remark 4. As in Remark 3, in the linear case the maximal solution of any shifted
D-Cauchy problem is automatically global.

5. Proofs of the results

5.1 Proof of Theorem 1

If f satisfies ðH1Þ, then for all ða; bÞ [ T2 such that a , b, there holds

f ðq; tÞ [ L1
T ð½a; bÞT;RnÞ , L1

Tð½a; bÞT;RnÞ; ð4Þ

for every q [ Cð½a; b'T;RnÞ. Then, from Section 2.3, we have the following D-integral
characterization of the solutions of ðD-CPÞ.

Lemma 1. Let IT [ I and let q : IT !V. If f satisfies ðH1Þ, then the couple ðq; ITÞ is a
solution of ðD-CPÞ if and only if for all a; b [ IT satisfying a 4 t0 4 b, one has q [
Cð½a; b'T;RnÞ and

qðtÞ ¼
q0 þ

Ð
½t0;tÞT f ðqðtÞ; tÞDt if t $ t0;

q0 2
Ð
½t;t0ÞT f ðqðtÞ; tÞDt if t # t0:

8
<

:

for every t [ ½a; b'T.
Note that, if t , t0 is right-scattered, then qðtÞ appears in the two sides of the above

equation. Therefore this equation is implicit in qðtÞ and a regressivity assumption is then
required to ensure the existence of a solution.

The characterization of the solutions given by Lemma 1 allows one to prove the
following result.

Lemma 2. If f satisfies ðH1Þ, then every solution of ðD-CPÞ can be extended to a maximal
solution.

Proof. Let ðq; ITÞ be a solution of ðD-CPÞ. Let us define the non-empty setF of extensions
of ðq; ITÞ. The set F is ordered by

q1; I
1
T

% &
# q2; I

2
T

% &
if and only if q2; I

2
T

% &
is an extension of q1; I

1
T

% &
:

Let us prove that F is inductive. Let G ¼ <p[Pfðqp; IpTÞ} be a non-empty totally ordered
subset of F. Let us prove that G admits an upper bound.

Let us define !I ¼ <p[PI
p. This is an interval of R, since t0 [ >p[PI

p. Then
!IT ¼ <p[PI

p
T [ I. For every t [ !IT, there exists p [ P such that t [ IpT and, since G is

totally ordered, if t [ Ip1T > Ip2T then qp1 ðtÞ ¼ qp2 ðtÞ. Consequently, we can define !q by

;t [ !IT; !qðtÞ ¼ qpðtÞ [ V where t [ IpT: ð5Þ

Our aim is to prove that ð!q; !ITÞ is a solution of ðD-CPÞ. Let a; b [ !IT satisfying a 4 t0 4 b.
Since G is totally ordered, there exists p [ P such that ½a; b'T , IpT and !q ¼ qp on ½a; b'T.
Since ðqp; IpTÞ is a solution of ðD-CPÞ, we obtain that qp satisfies the necessary and
sufficient condition of Lemma 1 on ½a; b'T. Consequently, this holds true as well for !q on
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½a; b'T. Finally, since this last sentence is true for all a; b [ !IT satisfying a 4 t0 4 b, we
infer from Lemma 1 that ð!q; !ITÞ is a solution of ðD-CPÞ. Since ð!q; !ITÞ is obviously an
extension of any element of G, we obtain that G admits an upper bound and then, F is
inductive.

Finally, F is a non-empty ordered inductive set and consequently, from Zorn’s
lemma, admits a maximal element. The proof is complete. A

Proposition 3. (Existence of a local solution). There exist a; b [ T satisfying
a 4 t0 4 b and q : ½a; b'T !V such that ðq; ½a; b'TÞ is a solution of ðD-CPÞ.

Proof. We only prove this proposition in the third case of Theorem 1 (the two first cases
are derived similarly) for which t0 – inf T and t0 – supT. We distinguish between four
situations.

First case. t0 is a left- and a right-scattered point of T. In this case, it is sufficient to
consider a ¼ rðt0Þ [ ð21; t0ÞT, b ¼ sðt0Þ [ ðt0;þ1ÞT and the function q defined on
½a; b'T ¼ fa; t0; b} with values in V by qðaÞ ¼ GþðaÞ21ðq0Þ, qðt0Þ ¼ q0 and
qðbÞ ¼ Gþðt0Þðq0Þ. We note that qðaÞ is well defined in V from ðHback

regr Þ and qðbÞ [ V
from ðHforw

stab Þ.
Second case. t0 is a left- and a right-dense point of T. Let R0, d0 and L0 associated with

q0 and t0 in ðHrd
loc-LipÞ and let R00, d00 and L00 associated with q0 and t0 in ðHrd

loc-LipÞ. We define
R ¼ minðR0;R00Þ . 0 and L ¼ maxðL0; L00Þ $ 0. Let M associated with !Bðq0;RÞ [ K
and ½t0 2 d0; t0 þ d00ÞT in ðH1Þ. Consider 0 , d1 # d0 and 0 , d2 # d00 such that
a ¼ t0 2 d1 [ ð21; t0ÞT, b ¼ t0 þ d2 [ ðt0;þ1ÞT and d1 and d2 are sufficiently small in
order to have maxðd1; d2ÞM # R and maxðd1; d2ÞL , 1. Then, we can construct the
maxðd1; d2ÞL-contraction map with respect to the norm k%k1

F : Cð½a; b'T; !Bðq0;RÞÞ! Cð½a; b'T; !Bðq0;RÞÞ q 7! FðqÞ;

with

FðqÞ : ½a; b'T ! !Bðq0;RÞ t 7!
q0 þ

Ð
½t0;tÞT f ðqðtÞ; tÞDt if t $ t0;

q0 2
Ð
½t;t0ÞT f ðqðtÞ; tÞDt if t # t0:

8
<

:

It follows from the Banach fixed-point theorem that F has a unique fixed point denoted by
q, and then ðq; ½a; b'TÞ is a solution of ðD-CPÞ.

Third case. t0 is a left-scattered and a right-dense point of T. Let R, d and L associated
with q0 and t0 in ðHrd

loc-LipÞ. Let M associated with !Bðq0;RÞ [ K and ½t0; t0 þ dÞT in ðH1Þ.
Consider 0 , d1 # d such that b ¼ t0 þ d1 [ ðt0;þ1ÞT and d1 is sufficiently small in
order to have d1M # R and d1L , 1. Then, we can construct the d1L-contraction map with
respect to the norm k%k1

F : Cð½t0; b'T; !Bðq0;RÞÞ! Cð½t0; b'T; !Bðq0;RÞÞ q 7! FðqÞ

with

FðqÞ : ½t0; b'T ! !Bðq0;RÞ t 7! q0 þ
ð

½t0;tÞT
f ðqðtÞ; tÞDt:
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It follows from the Banach fixed-point theorem that F has a unique fixed point denoted by
q defined on ½t0; b'T. Finally, since t0 is a left-scattered point of T and from ðHback

regr Þ, we
define a ¼ rðt0Þ [ ð21; t0ÞT and qðaÞ ¼ GþðaÞ21ðq0Þ [ V. We have thus obtained a
solution ðq; ½a; b'TÞ of ðD-CPÞ.

Fourth case. t0 is a left-dense and a right-scattered point of T. Let R, d and L associated
with q0 and t0 in ðHrd

loc-LipÞ. Let M associated with !Bðq0;RÞ [ K and ½t0 2 d; t0ÞT in ðH1Þ.
Consider 0 , d1 # d such that a ¼ t0 2 d1 [ ð21; t0ÞT and d1 is sufficiently small in
order to have d1M # R and d1L , 1. Then, we can construct the d1L-contraction map with
respect to the norm k%k1

F : Cð½a; t0'T; !Bðq0;RÞÞ! Cð½a; t0'T; !Bðq0;RÞÞ q 7! FðqÞ

with

FðqÞ : ½a; t0'T ! !Bðq0;RÞ t 7! q0 2

ð

½t;t0ÞT
f ðqðtÞ; tÞDt:

It follows from the Banach fixed-point theorem that F admits a unique fixed point denoted
by q defined on ½a; t0'T. Since t0 is a right-scattered point of T, and from ðHforw

stab Þ, we define
b ¼ sðt0Þ [ ðt0;þ1ÞT and qðbÞ ¼ Gþðt0Þðq0Þ [ V. We have thus obtained a solution
ðq; ½a; b'TÞ of ðD-CPÞ. A

From Lemma 2, we can extend the solution given in Proposition 3 and we obtain the
existence of a maximal solution. The following result proves that it is unique.

Proposition 4. (Local uniqueness of a solution). Let ðq1; I1TÞ and ðq2; I2TÞ be two
solutions of ðD-CPÞ. Then, q1 ¼ q2 on I1T > I2T.

Proof. As before, we only prove this proposition in the third case of Theorem 1. We denote
by I ¼ I 1 > I 2 (interval of R). One can easily prove that IT ¼ I1T > I2T [ I. It is sufficient
to prove that q1 ¼ q2 on ½a; b'T for all a; b [ IT satisfying a 4 t0 4 b. Let a; b [ IT
satisfying a 4 t0 4 b. Set

A ¼ ft [ ½a; t0'T; q1ðtÞ – q2ðtÞ};

and

B ¼ ft [ ½t0; b'T; q1ðtÞ – q2ðtÞ}:

Let us prove by contradiction that A< B ¼ B. Assume that A – B and let !t ¼ supA.
Note that !t [ ½a; t0'T (since T is closed) and that q1 ¼ q2 on '!t; t0'T. In order to raise a
contradiction, we first derive the four following facts.

1. Fact 1: !t , t0. If t0 is a left-scattered point of T, this claim is obvious since
q1ðt0Þ ¼ q2ðt0Þ ¼ q0 and q1ðrðt0ÞÞ ¼ q2ðrðt0ÞÞ ¼ Gþðrðt0ÞÞ21ðq0Þ from ðHback

regr Þ. If t0
is a left-dense point of T, let R, d and L associated with q0 and t0 in ðHrd

loc-LipÞ. LetM
associated with !Bðq0;RÞ [ K and ½t0 2 d; t0ÞT in ðH1Þ. Consider 0 , d1 # d such
that c ¼ t0 2 d1 [ ½a; t0ÞT and d1 is sufficiently small in order to have d1M # R,
d1L , 1 and q1, q2 [ Cð½c; t0'T; !Bðq0;RÞÞ. Since q1 and q2 are solutions of ðD-CPÞ
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on ½a; b'T, they are in particular fixed points of the d1L-contraction map

F : Cð½c; t0'T; !Bðq0;RÞÞ! Cð½c; t0'T; !Bðq0;RÞÞ q 7! FðqÞ

with

FðqÞ : ½c; t0'T ! !Bðq0;RÞ t 7! q0 2

ð

½t;t0ÞT
f ðqðtÞ; tÞDt:

Since F has a unique fixed point from the Banach fixed-point theorem, we conclude
that q1 ¼ q2 on ½c; t0'T. Hence !t , t0.

2. Fact 2: q1ð!tÞ ¼ q2ð!tÞ. If !t is a right-scattered point of T, then sð!tÞ is a left-
scattered point of T and q1ðsð!tÞÞ ¼ q2ðsð!tÞÞ. As a consequence,
q1ð!tÞ ¼ q2ð!tÞ ¼ Gþð!tÞ21ðq1ðsð!tÞÞÞ. If !t is a right-dense point of T, then q1ð!tÞ ¼
q2ð!tÞ from the continuity of q1 and q2 and since q1 ¼ q2 on '!t; t0'T.

3. Fact 3: !t . a. Indeed, if !t ¼ a then A ¼ B since q1ð!tÞ ¼ q2ð!tÞ;
4. Fact 4: !t is a left-dense point of T. Indeed, if !t were to be a left-scattered point of T,

since q1ð!tÞ ¼ q2ð!tÞ, then q1ðrð!tÞÞ ¼ q2ðrð!tÞÞ ¼ Gþðrð!tÞÞ21ðq1ð!tÞÞ and then it would
raise a contradiction with the definition of !t.

Let us denote by !x ¼ q1ð!tÞ ¼ q2ð!tÞ. Let R, d and L associated with !t and !x in ðHrd
loc-LipÞ. Let

M associated with !Bð!x;RÞ [ K and ½!t2 d; !tÞT in ðH1Þ. Consider 0 , d1 # d such that
c0 ¼ !t2 d1 [ ½a; !tÞT and d1 is sufficiently small in order to have d1M # R, d1L , 1 and
q1, q2 [ Cð½c0; !t'T; !Bð!x;RÞÞ. Since q1 and q2 are solutions of ðD-CPÞ on ½a; b'T, they are in
particular fixed points of the d1L-contraction map

F0 : Cð½c0; !t'T; !Bð!x;RÞÞ! Cð½c0; !t'T; !Bð!x;RÞÞ q 7! F0ðqÞ

with

F0ðqÞ : ½c0; !t'T ! !Bð!x;RÞ t 7! !x2

ð

½t;!tÞT
f ðqðtÞ; tÞDt:

Since F0 has a unique fixed point from the Banach fixed-point theorem, we conclude that
q1 ¼ q2 on ½c0; !t'T, and this is a contradiction. Consequently A ¼ B.

In the same way, we prove that B ¼ B and the proof is complete. A

Theorem 1 follows from Lemma 2, Propositions 3 and 4.

5.2 Proof of Theorem 2

Proposition 5.Under the assumptions of Theorem 1, let ðq; ITÞ be the maximal solution of
ðD-CPÞ. Then either IT ¼ T, that is the solution ðq; ITÞ is global, or

1. if t0 ¼ minT then IT ¼ ½t0; bÞT where b [ ðt0;þ1ÞT is a left-dense point of T;
2. if t0 ¼ maxT then IT ¼ ða; t0'T where a [ ð21; t0ÞT is a right-dense point of T;
3. if t0 – inf T and t0 – supT then IT ¼ ða;þ1ÞT or IT ¼ ð21; bÞT or IT ¼ ða; bÞT,

where a [ ð21; t0ÞT is a right-dense point of T and b [ ðt0;þ1ÞT is a left-dense
point of T.

Proof. We only prove this proposition in the first case of Theorem 1 (the other ones are
derived similarly).
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Let us first prove that if IT ¼ ½t0; b'T then b ¼ maxT (and thus IT ¼ T). By
contradiction, assume that IT ¼ ½t0; b'T with b , supT. Consider the D-Cauchy problem

zDðtÞ ¼ f ðzðtÞ; tÞ; zðbÞ ¼ qðbÞ:

As in Proposition 3, we can prove that it has a solution ðz; ½b; b1'TÞ with b1 ['b;þ1ÞT.
Then, we define q1 by

q1ðtÞ ¼
qðtÞ if t [ ½t0; b'T;
zðtÞ if t [ ½b; b1'T;

(

ð6Þ

for every t [ ½t0; b1'T. Then q1 [ Cð½t0; b1'TÞ and one can easily prove that

q1ðtÞ ¼ q0 þ
ð

½t0;tÞT
f ðq1ðtÞ; tÞDt:

for every t [ ½t0; b1'T. It follows from Lemma 1 that ðq1; ½t0; b1'TÞ is a solution of ðD-CPÞ
and is a strict extension of ðq; ½t0; b'TÞ. It is a contradiction with the maximality of
ðq; ½t0; b'TÞ.

If IT ¼ ½t0; bÞT with b a left-scattered point of T, then IT ¼ ½a; rðbÞ'T with rðbÞ ,
supT and we recover to the previous contradiction. A

Lemma 3. Under the assumptions of Theorem 1, let ðq; ITÞ be the maximal solution of
ðD-CPÞ. If ðq; ITÞ is not global, then q cannot be continuously extended with a value inV at
t ¼ a or at t ¼ b (see Proposition 5 for a and b).

Proof. We only prove this lemma in the first case of Theorem 1. By contradiction, let us
assume that q can be continuously extended with a value in V at t ¼ b, that is
limt!b;t[½t0;bÞT qðtÞ ¼ qb [ V. Then, we define q1 by

q1ðtÞ ¼
qðtÞ if t [ ½t0; bÞT;
qb if t ¼ b;

(

for every t [ ½t0; b'T. In particular q1 : ½t0; b'T !V and q1 [ Cð½t0; b'T;RnÞ. Our aim is
to prove that ðq1; ½t0; b'TÞ is a solution of ðD-CPÞ.

Since ðq; ½t0; bÞTÞ is a solution of ðD-CPÞ, it follows from Lemma 1 that

q1ðtÞ ¼ qðtÞ ¼ q0 þ
ð

½t0;tÞT
f ðqðtÞ; tÞDt ¼ q0 þ

ð

½t0;tÞT
f ðq1ðtÞ; tÞDt; ð7Þ

for every b0 [ ðt0; bÞT and every t [ ½t0; b0'T. Since f ðq1; tÞ [ L1
Tð½t0; bÞT;RnÞ (see (4)),

we infer from Lebesgue’s dominated convergence theorem that

q1ðbÞ ¼ qb ¼ q0 þ
ð

½t0;bÞT
f ðq1ðtÞ; tÞDt:

Therefore (7) also holds for b0 ¼ b. It follows from Lemma 1 that ðq1; ½t0; b'TÞ is a solution
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of ðD-CPÞ and is a strict extension of ðq; ½t0; bÞTÞ. It is a contradiction with the maximality
of ðq; ½t0; bÞTÞ. A

Lemma 4. Under the assumptions of Theorem 1, let ðq; ITÞ be the maximal solution of
ðD-CPÞ. If ðq; ITÞ is not global, then for every K [ K there exists t [ IT (close to a or b
depending on the cases listed in the theorem) such that qðtÞ [ VnK.

Proof. We only prove this lemma in the first case of Theorem 1. By contradiction, assume
that there exists K [ K such that q takes its values in K on IT ¼ ½t0; bÞT with b a left-dense
point of T. Consider M $ 0 associated with K [ K and ½t0; bÞT in ðH1Þ. For all t1 # t2
elements of ½t0; bÞT, one has

kqðt2Þ2 qðt1Þk #

ð

½t1;t2ÞT
kf ðqðtÞ; tÞkDt # Mðt2 2 t1Þ:

Therefore q is Lipschitz continuous and thus uniformly continuous on ½t0; bÞT with b a left-
dense point of T. Hence q can be continuously extended at t ¼ b with a value qb [ Rn.
Moreover, since q takes its values in the compact K , V, it follows that qb [ V. Using
Lemma 3, this raises a contradiction. A

The proof of Theorem 2 follows from Proposition 5 and Lemma 4.

5.3 Proof of Theorem 3

Note that since V ¼ Rn and since f satisfies ðHglob
Lip Þ, f automatically satisfies ðHforw

stab Þ and
ðHrd

loc-LipÞ. Since t0 ¼ minT, ðD-CPÞ admits a unique maximal solution from Theorem 1.
Proving that this maximal solution is global requires the following result.

Lemma 5. If t0 ¼ minT then

ð

½t0;tÞT
ðt2 t0ÞkDt #

ðt2 t0Þkþ1

k þ 1
;

for every k [ N and every t [ T.

Proof. One has

ð

½t0;tÞT
ðt2 t0ÞkDt ¼

ð

½t0;tÞT
ðt2 t0Þk dtþ

X

r[½t0;tÞT>R

mðrÞðr 2 t0Þk;

for every k [ N and every t [ T. Since

X

r[½t0;tÞT>R

mðrÞðr 2 t0Þk ¼
X

r[½t0;tÞT>R

ð

ðr;sðrÞÞ
ðr 2 t0Þk dt #

X

r[½t0;tÞT>R

ð

ðr;sðrÞÞ
ðt2 t0Þk dt;
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it follows that

ð

½t0;tÞT
ðt2 t0ÞkDt #

ð

½t0;tÞ
ðt2 t0Þk dt ¼

ðt2 t0Þkþ1

k þ 1
;

and the proof is complete. A

For every b [ Tnft0}, we define the mapping

Fb : Cð½t0; b'T;RnÞ! Cð½t0; b'T;RnÞ q 7! FðqÞ

with

FbðqÞ : ½t0; b'T ! Rn t 7! q0 þ
ð

½t0;tÞT
f ðqðtÞ; tÞDt:

From Lemma 5 and Assumption ðHglob
Lip Þ, one can easily prove by induction that

Fk
bðq1ÞðtÞ2 Fk

bðq2ÞðtÞ
(( (( #

Lk

k!
kq1 2 q2k1ðt2 t0Þk;

for every k [ N*, all q1; q2 [ Cð½t0; b'T;RnÞ, and every t [ ½t0; b'T. Then,

Fk
bðq1Þ2 Fk

bðq2Þ
(( ((

1#
ðLðb2 t0ÞÞk

k!
kq1 2 q2k1;

for every k [ N*, all q1; q2 [ Cð½t0; b'T;RnÞ. Therefore Fb admits a contraction iterate
and thus has a unique fixed point that is a solution on ½t0; b'T of ðD-CPÞ. In the case of a
bounded time scale T, it suffices to take b ¼ maxT. In the case where T is not bounded,
it suffices to make b tend to þ1. This last comment concludes the proof of Theorem 3.

5.4 Further comments for the shifted case

An important remark in the shifted case is the following. Let ða; bÞ [ T2 satisfying
a 4 t0 4 b and let q : ½a; b'T !V. Since sðtÞ [ ½a; b'T for every t [ ½a; bÞT, qs is well
defined on ½a; bÞT. This remark permits to derive all results of Section 3 in a similar way
since D-integrals are considered on intervals of the form ½a; bÞT.

For example, if f satisfies ðH1Þ, then for all ða; bÞ [ T2 such that a , b,

f ðqs; tÞ [ L1
T ð½a; bÞT;RnÞ , L1

Tð½a; bÞT;RnÞ;

for every q [ Cð½a; b'T;RnÞ. This remark permits to prove (from Section 2.3) the
following D-integral characterization of the solutions of ðD-CPsÞ.

Lemma 6. Let IT [ I and q : IT !V. If f satisfies ðH1Þ, then the couple ðq; ITÞ is a solution
of ðD-CPsÞ if and only if for all a; b [ IT satisfying a 4 t0 4 b, one has q [ Cð½a; b'T;RnÞ
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and

qðtÞ ¼
q0 þ

Ð
½t0;tÞT f ðq

sðtÞ; tÞDt if t $ t0;

q0 2
Ð
½t;t0ÞT f ðq

sðtÞ; tÞDt if t # t0:

8
<

:

for every t [ ½a; b'T.
All results permitting to prove Theorems 4 and 5 can be derived as in Section 5.

Nevertheless, in order to derive Theorem 6, the following result is required.

Lemma 7. If t0 ¼ maxT then

ð

½t;t0ÞT
ðt0 2 sðtÞÞkDt # ðt0 2 tÞkþ1

k þ 1
;

for every k [ N and every t [ T.

Proof. One has

ð

½t;t0ÞT
ðt0 2 sðtÞÞkDt ¼

ð

½t;t0ÞT
ðt0 2 tÞk dtþ

X

r[½t;t0ÞT>R

mðrÞðt0 2 sðrÞÞk;

for every k [ N and every t [ T. Since

X

r[½t;t0ÞT>R

mðrÞðt0 2 sðrÞÞk ¼
X

r[½t;t0ÞT>R

ð

ðr;sðrÞÞ
ðt0 2 sðrÞÞk dt

#
X

r[½t;t0ÞT>R

ð

ðr;sðrÞÞ
ðt0 2 tÞk dt;

we infer that

ð

½t;t0ÞT
ðt0 2 sðtÞÞkDt #

ð

½t;t0Þ
ðt0 2 tÞk dt ¼ ðt0 2 tÞkþ1

k þ 1
;

and the statement follows. A

Notes

1. Email: emmanuel.trelat@upmc.fr
2. Actually, this paper was motivated by the needs of completing the existing results on Cauchy–

Lipschitz theory on time scales, in order to investigate nonlinear control systems with
measurable controls, and finally to derive a strong version of the Pontryagin maximum principle
in optimal control theory on time scales (see [8]).

3. Indeed, in the discrete case and in the case of an initial condition, such an assertion would imply
that an implicit discrete equation is equivalent to an explicit discrete equation. But this is wrong:
an implicit equation does not necessarily admit a solution while an explicit equation always
does. For example, let us consider T ¼ N and t0 ¼ 0. In this case, the non-shifted D-Cauchy
problem qDðtÞ ¼ f ðqðtÞ; tÞ, qð0Þ ¼ 0, has a unique global solution for any function f. At the
opposite, the shifted D-Cauchy problem qeðtÞ ¼ f ðqsðtÞ; tÞ, qð0Þ ¼ 0, has no solution whenever
f ðq; tÞ ¼ qþ 1 for example. Hence, this shifted problem cannot be reduced into an equivalent
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non-shifted problem. It can be noted that the reduction procedure mentioned in [19] is based in a
crucial way on a regressivity assumption (denoted by (A1s) in this paper) on f. We insist that we
do not make such an assumption in our paper.
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Boston, MA. An introduction with applications 2001.

[7] M. Bohner and A. Peterson, Advances in Dynamic Dquations on Time Scales, Birkhäuser
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