
Appl Math Optim
DOI 10.1007/s00245-008-9039-8

A Penalization Approach for Tomographic
Reconstruction of Binary Axially Symmetric Objects

R. Abraham · M. Bergounioux · E. Trélat

© Springer Science+Business Media, LLC 2008

Abstract We propose a variational method for tomographic reconstruction of blurred
and noised binary images based on a penalization process of a minimization prob-
lem settled in the space of bounded variation functions. We prove existence and/or
uniqueness results and derive a penalized optimality system. Numerical simulations
are provided to demonstrate the relevance of the approach.
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1 Introduction

In this article, we focus on a specific application of tomographic reconstruction for a
physical experiment whose goal is to study the behavior of a material under a shock.
The experiment, depicted on Fig. 1, consists in causing the implosion of the hull of
some material (usually, a metal) whose features are well known, using surrounding
explosives. The problem is to determine the shape of the interior interface at a specific
moment of the implosion. For this purpose, a single X-ray radiography is performed,
and the shape of the object must then be reconstructed using a tomographic approach.

When enough projections of the object, taken from different angles, are available,
several techniques exist for tomographic reconstruction, providing an analytic for-
mula for the solution (see for instance [15] or [12]). There is a huge literature about
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Fig. 1 Experimental setup

theoretical and practical aspects of the problem of reconstruction from projections,
the applications of which concern medicine, optics, material science, astronomy, geo-
physics, and magnetic resonance imaging (see [6]). An important application is the
problem of medical transmission X-ray tomography (see [16]), in which X-rays are
fired from many angles through a single cross section of the body, measuring line
integrals of the linear attenuation coefficient of the object. The resulting collection of
projections then permits to reconstruct the 3D body.

When only few projections are known, these methods cannot be used directly, and
some alternative methods have been proposed to reconstruct partially the densities
(see for instance [11]). In our experiment, all components of the initial physical setup
(object, hull, explosives, etc.) are assumed to be axially symmetric, and are assumed
to remain as such during the implosion process. High speed image capture provides
a snapshot of the deformation of an object by X-ray radiography. Since this object is
assumed to be axially symmetric, a single radiograph of the cross section suffices in
theory to reconstruct the 3D object. For objects having nearly circular symmetry, such
an approach, using a single radiograph taken with a radiographic axis perpendicular
to the symmetry axis of the object, offers significant benefits as an image analysis
tool, and has been applied to many problems in industrial tomography (see [14]) or
in astronomy (see [18]).

As in any tomographic reconstruction process, this problem leads to an ill-posed
inverse problem. Since we only have one radiograph at our disposal, data are not
redundant and the ill-posed character is even more accurate. Moreover, the flash has
to be very brief (several nanoseconds) due to the imploding movement of the hull.
Such X-rays cannot be provided by standard sources, and hence numerous drawbacks
appear, for instance the X-rays beam is not well focused and the X-rays source is not
punctual. This causes a blur on the radiograph. Furthermore, contrarily to medical
radiography where photons are absorbed by bones, here X-rays must cross a very
dense object and therefore must be of high energy. Most of the photons are actually
absorbed by the object and only a few number of them arrive at the detector. It is
therefore necessary to add some amplification devices and very sensitive detectors,
which cause a high noise level and another blur.

In our experiment, X-rays are assumed to be parallel, “horizontal” slices of the
object are independent and are treated separately. Hence, usual regularization tech-
niques for tomography (such as filtered backprojection) are not adapted, since they
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Fig. 2 Working example. (a) Slice of a binary axially symmetric object by a plane containing the sym-
metry axis. (b) Zoom on the interior of the object of (a); the homogeneous material is drawn in black and
the holes in white

deal with one particular slice. Here, because of the axial symmetry, slices are com-
posed of concentric annulii and do not need any regularization. At the contrary, some
regularity between the different slices is required, and only few results in that direc-
tion are known (see [8, 11]).

Another difficulty is that we deal with binary objects composed of one homoge-
neous material (drawn in black) and of some holes (in white). Our working example,
drawn on Fig. 2, represents a synthetic object containing all standard difficulties that
may appear, such as:

• several disconnected holes;
• a small hole located on the symmetry axis (where details are expected to be difficult

to recover because the noise variance is maximal around the symmetry axis after
reconstruction);

• smaller details on the boundary of the top hole, serving as a test for lower bound
detection.

Figure 2a shapes an object composed of concentric shells of homogeneous mate-
rials (called the “exterior” in what follows) surrounding a ball (called the “interior”)
of another homogeneous material containing empty holes. It can be viewed as the
slice of a axially symmetric 3D object by a plane containing the symmetry axis of
that object. A rotation of the image of Fig. 2a around the z-axis must be performed in
order to recover the 3D-object, in which, for instance, the two white holes generate a
torus. Since the object is mainly featured in the shape of the holes, in the sequel we
will focus on the interior of the object (see Fig. 2b).

Based on a single X-ray radiograph which is at our disposal, it is our aim to per-
form a tomographic reconstruction to reconstruct the whole axially symmetric object.
We propose in this article a variational method adapted to the tomographic recon-
struction of blurred and noised binary images, based on a minimization problem.
Note that our approach is global, contrarily to usual methods of reconstruction rather
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dealing with a line-by-line analysis carried out on each line of the radiograph (see
[14]).

The article is structured as follows.
In Sect. 2, the experimental setup described above is modeled mathematically,

the projection operator is defined and some properties are derived. We show that the
method which consists in inverting the projection operator is not suitable.

To deal with this ill-posed problem, we introduce in Sect. 3 a variational approach
for tomographic reconstruction. We define a minimization problem in the space of
bounded variation functions, using the concept of total variation, prove existence and
uniqueness results. The binary structure of the material under consideration is mod-
eled as a binary constraint: the intensity function is either equal to 0 or 255 (normal-
ized to 0 and 1). Due to this binary constraint, deriving an optimality system is not
straightforward, and we propose a penalization method for which we establish some
properties and derive an optimality system.

Section 4 is devoted to the numerical implementation of these conditions. We pro-
pose a fixed-point type algorithm based on a projected gradient method and on an
algorithm of [10] to handle the total variation which is nonsmooth. Simulation re-
sults are provided and commented for several benches of parameters, concerning our
working example of Fig. 2. We do not perform an exhaustive comparison with exist-
ing numerical methods in tomography, however we provide results obtained with the
usual back-filtered projection, which happen to be of bad quality, as expected.

2 Modelization and Projection Operator

Radiography measures the attenuation of X-rays through the object. A point on the
radiograph is determined by Cartesian coordinates (y, z), where the z-axis is the sym-
metry axis. Let I0 denote the intensity of the incident X-rays flux. Then, the measured
flux I (y, z) at a point (y, z) is given by

I = I0e
−

∫
µ(r,θ,z)d",

where the integral operates along the ray that reaches the point (y, z) of the detector,
d" is the infinitesimal element of length along the ray, and µ is the linear attenuation
coefficient. Considering the Neperian logarithm of this attenuation permits to deal
rather with linear operators, and the linear mapping

µ "−→
∫

µd"

is called the projection operator.
In practice, the ratio of the diameter of the object by the distance “X-ray source-

object” is less than 1/100, and it is therefore assumed throughout the article, for the
sake of simplicity, that the rays are parallel, and orthogonal to the symmetry axis. It
follows that horizontal slices of the object can be considered separately to perform
the projection. In these conditions, for a 3D object represented by a linear attenuation
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coefficient ũ(x, y, z) (with compact support) in Cartesian coordinates, the projection
operator H0 can be written

(H0ũ)(y, z) =
∫

R
ũ(x, y, z)dx. (1)

Since the objects under study in this article are bounded and axially symmetric, it is
relevant to make use of cylindrical coordinates (r, θ, z), where the z-axis designates
the symmetry axis. Such objects are represented by a linear attenuation coefficient
u(r, z), where u denotes a function of L∞(R+ × R) with compact support. In the
sequel, all such functions are assumed to have a compact support contained in the
subset # = [0, a) × (−a, a) of R2, where a > 0 is fixed.

For a 3D axially symmetric bounded object represented by a function u(r, z) in
cylindrical coordinates, where u denotes a function of L∞(R+ × R) with compact
support contained in #, one defines H0u = H0ũ, where ũ(x, y, z) = u(

√
x2 + y2, z)

for all x, y, z ∈ R, and where H0ũ is defined by (1). An obvious change of variable
leads to

(H0u)(y, z) = 2
∫ +∞

|y|
u(r, z)

r
√

r2 − y2
dr, (2)

for almost all y, z ∈ R.
It is clear that the function H0u is of compact support contained in #̃= (−a, a)2.

In what follows, functions of compact support contained in # (resp., in #̃) and their
restriction to # (resp., in #̃) are denoted similarly.

Lemma 1 The linear operator H0 extends to a linear operator (still denoted H0) on
Lp(#), for every p ∈ [1,+∞]. Moreover,

‖H0u‖Ls(#̃) ≤
(

4
2 − q

) 1
q

a
2
q −1‖u‖Lp(#),

for every u ∈ Lp(#), and all p ∈ [1,+∞], q ∈ [1,2), with s such that 1
p + 1

q = 1+ 1
s .

In particular, H0 : Lp(#) → Ls(#̃) is a continuous linear operator, for every p ∈
[1,+∞] and every s such that s ∈ [p, 2p

2−p ) whenever 1 ≤ p ≤ 2, and s ∈ [p,+∞]
whenever p > 2.

Proof Let u ∈ L∞(#). Note that (H0u)(y, z) = (H0u)(−y, z), for almost all y, z ∈
R, and that (H0u)(y, z) = 0 whenever |y| ≥ a or |z| ≥ a. For y, z ∈ (−a, a), there
holds

|(H0u)(y, z)| ≤ 2
∫ a

|y|
|u(r, z)| r√

r + |y|
1√

r − |y|dr

≤ 2
√

a

∫ a

|y|
|u(r, z)| 1√

r − |y|dr ≤ fz ∗ g(|y|)
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where the (nonnegative) functions fz and g are defined by

fz(r) = 2
√

a|u(r, z)|1(−a,a)(r) and g(r) = 1√−r
1(0,a)(−r),

and where 1A denotes the usual characteristic function of a Borelian subset A ⊂ R,
and fz ∗ g denotes the standard convolution fz ∗ g(y) =

∫
R fz(r)g(y − r)dr. It is

clear that g ∈ Lq(R), for every q ∈ [1,2), and ‖g‖Lq(R) = a
1
q − 1

2 /(1− q
2 )

1
q . Since u ∈

Lp(#) for every p ∈ [1,+∞], it follows from Young’s inequality (see for instance
[3, Corollary 2.25, p. 34] that the function y "→ (H0u)(y, z) belongs to Ls(R) (and,
actually, to Ls(−a, a) since it is of compact support), for every z ∈ (−a, a), where s

is such that 1
p + 1

q = 1 + 1
s , and, moreover,

∫ a

−a

|(H0u)(y, z)|s dy ≤ ‖fz‖s
Lp(R)‖g‖s

Lq(R),

for every z ∈ (−a, a). Integrating with respect to z leads to

‖H0u‖s
Ls(#̃)

≤ (2
√

a)s
a

1
q − 1

2

(1 − q
2 )

1
q

∫ a

−a

(∫ a

0
|u(r, z)|pdr

) s
p

dz.

Using Hölder’s inequality, the right-hand side of this inequality is bounded by

∫ a

−a

(∫ a

0
|u(r, z)|pdr

) s
p

dz ≤ ‖u‖p
Lp(#)(2a)

1− s
p ,

and the conclusion follows. !

In particular, H0 : L2(#) → L2(#̃) is a continuous linear operator. Let H ∗
0 :

L2(#̃) → L2(#) denote the adjoint operator of H0 (i.e., the back-projection opera-
tor), for the pivot space L2, i.e., 〈H0u,v〉L2(#̃) = 〈u,H ∗

0 v〉L2(#), for every u ∈ L2(#)

and every v ∈ L2(#̃). An obvious computation gives

(H ∗
0 v)(r, z) = 2

∫ r

−r
v(y, z)

r
√

r2 − y2
dy, (3)

for every (r, z) ∈ #. As previously, the next lemma holds.

Lemma 2 The operator H ∗
0 extends to a continuous linear operator H ∗

0 : Ls′
(#̃) →

Lp′
(#), for every s′ ∈ [1,+∞] and every p′ such that p′ ∈ [s′, 2s′

2−s′ ) whenever 1 ≤
s′ ≤ 2, and p′ ∈ [s′,+∞] whenever s′ > 2.

The operator H0 features the Radon transform of the object. Practically, one radi-
ograph suffices to reconstruct the object. From the theoretical point of view, invert-
ing the operator H0 requires further differentiability. More precisely, the next lemma
holds.
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Lemma 3 Let g ∈ L2(#̃) such that g(y, z) = g(−y, z) for a.e. (y, z) ∈ #̃ and such
that ∂g

∂y exists almost everywhere on #̃ and is measurable and bounded. Then, there
exists a unique u ∈ L∞(#) such that H0u = g, and

u(r, z) = − 1
π

∫ a

r

∂g

∂y
(y, z)

1
√

y2 − r2
dy,

for every (r, z) ∈ #.

Proof Checking this formula is an easy exercise, noticing that, for all real numbers x

and y such that |y| ≤ x,

∫ x

|y|

2r√
x2 − r2

√
r2 − y2

dr =
∫ 1

0

(√
t

1 − t
+

√
1 − t

t

)

dt = π. !

Without any ambiguity, we denote u = H−1
0 g, and this defines the linear operator

H−1
0 . The arguments of the proof of Lemma 1 apply, and it is clear that H−1

0 extends
to a continuous linear operator H−1

0 : W 1,p(#̃) → Ls(#), for every p ∈ [1,+∞]
and every s such that s ∈ [p, 2p

2−p ) whenever 1 ≤ p ≤ 2, and s ∈ [p,+∞] whenever
p > 2.

Because of the derivative term, the operator H−1
0 cannot be extended as a continu-

ous linear operator from Lp(#) to Lq(#) for suitable p and q . Concretely, this means
that a small variation of the measure induces significant errors on the reconstruction.
Since the radiographs at our disposal are strongly perturbed, applying H−1

0 thus pro-
vides a deficient and imperfect reconstruction of the original image. Moreover, due
to the experimental setup, there are two additional main perturbations:

• A blur, due to the detector response and the X-ray source spot size. To simplify, it
is assumed that the effect B of the blur is linear, and writes

Bud = K ∗ ud, (4)

where ∗ is the usual convolution operation, ud is the projected image, and K is a
positive symmetric kernel with compact support and such that

∫
Kdµ = 1.

• A noise, assumed to be an additive Gaussian white noise, denoted τ , of zero mean
and of standard deviation στ .

Others perturbations, such as scattered field or motion blur, are not taken into account
in our study. With these assumptions, the projection of an object u is

vd = BH0u + τ.

A comparison between the theoretical projection BH0u and the perturbed one is pro-
vided on Figs. 3a and 3b. The real object u is drawn on Fig. 3c. The reconstruction
using the inverse operator H−1

0 applied to vd is drawn on Fig. 3d. The purpose of
the experiment is to separate the material from the empty holes and thus to determine
precisely the boundary between the two areas. This task is difficult to perform on the
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Fig. 3 Comparison of u,
BH0u, vd = BH0u + τ ,
H−1

0 vd . (a) Theoretical
projection BH0u of the object
of Fig. 2. (b) Real projection
vd = BH0u + τ of the same
object with realistic noise and
blur. (c) The real object u.
(d) Reconstruction H−1

0 vd

computed with H−1
0 applied to

the real projection
(a) (b)

(c) (d)

reconstruction H−1
0 vd , and an inspection of Fig. 3d shows that the use of the inverse

operator is not suitable.
A useful tool to deal with ill-posed problems is a regularization process based on

optimization methods. In the next section, we propose a variational approach for to-
mographic reconstruction, based on a minimization problem settled in the space of
bounded variation functions. A penalization procedure permits to derive an optimal-
ity system. These conditions are then implemented, and numerical simulations are
provided in Sect. 4.

3 A Variational Approach for Tomographic Reconstruction

3.1 Minimization Problem in BV(#)

The most suitable functional space used in image restoration is the space BV(#) of
bounded variation functions (see [5]), defined by

BV(#) = {u ∈ L1(#) | ((u) < +∞},

where

((u) = sup
{∫

#
u(x)div ξ(x) dx | ξ ∈ C1

c (#), ‖ξ‖∞ ≤ 1
}

. (5)

The space BV(#), endowed with the norm ‖u‖BV(#) = ‖u‖L1 + ((u), is a Ba-
nach space. The derivative in the sense of the distributions of every u ∈ BV(#) is



Appl Math Optim

a bounded Radon measure, denoted Du, and ((u) =
∫
# |Du| is the total variation of

Du. We next recall standard properties of bounded variation functions (see [2, 4]).

Proposition 1 [2, 4] Let # be an open subset of R2 with Lipschitzian boundary.

1. For every u ∈ BV(#), the Radon measure Du can be decomposed into Du =
Dudx + Dsu, where Dudx is the absolutely continuous part of Du with respect
of the Lebesgue measure and Dsu is the singular part.

2. The mapping u "→ ((u) is lower semi-continuous (denoted in short lsc) from
BV(#) to R+ for the L1(#) topology.

3. BV(#) ⊂ L2(#) with continuous embedding.
4. BV(#) ⊂ Lp(#) with compact embedding, for every p ∈ [1,2).

Assume that the kernel K modelling the blur has a compact support contained
in #̃. Then, the operator B defined by (4) is a continuous linear operator from Lp(#̃)
to Lq(2#̃), for all p,q ∈ [1,+∞], where 2#̃= (−2a,2a)2.

Let vd ∈ L2(#̃) be the projected image (observed data), and let α > 0. Define
H = BH0, and consider the minimization problem

(P)






minF(u), with F(u) = 1
2‖Hu − vd‖2

2 + α((u),

u ∈ BV(#),

u(x) ∈ {0,1} a.e. on #,

where ‖ ·‖ 2 stands for the L2(#̃) norm.

Remark 1 A similar problem has been studied in [9] with a smoother projection op-
erator and convex constraints. Here, the pointwise constraint, u(x) ∈ {0,1} a.e. on #,
is a very hard constraint. The constraint set is not convex and its interior is empty for
most usual topologies.

Theorem 1 The minimization problem (P) admits at least a solution.

Proof The proof is straightforward. Let (un) be a minimizing sequence of BV(#),
satisfying un(x) ∈ {0,1} a.e. on #. Then, the sequence (((un)) is bounded. Due to
the constraint, and since # is bounded, it follows that the sequence (un) is bounded
in BV(#), and hence, up to a subsequence, it converges to some u ∈ BV(#) for the
weak-star topology. The compact embedding property recalled in Proposition 1 im-
plies that the sequence (un) converges strongly to u in Lp(#), for every p ∈ [1,2).
It follows from Lemma 1 that H : L3/2(#) → L2(2#̃) is continuous, and hence the
sequence (Hun) converges strongly to Hu in L2(2#̃). Moreover, since (un) con-
verges strongly to u in L1(#) and since ( is lsc with respect to the L1(#) topology,
it follows that

((u) ≤ lim inf
n→∞ ((un).

Hence,

infF = lim
n→+∞

(
1
2
‖Hun − vd‖2

L2 + α((un)

)
≥ ‖Hu − vd‖2

L2 + α((u) = F(u).
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Finally, (un) converges to u in L1(#), and thus, converges almost everywhere (up to
a subsequence) to u. Hence, the pointwise constraint u(x) ∈ {0,1} is satisfied almost
everywhere, and therefore u is a solution of (P). !

3.2 Penalization of the Minimization Problem (P)

To deal with the binarity constraint, we use a penalization method. Let ε > 0, β ≥ 0,
and let ū be a solution of (P). Define

Jε(u) = 1
2
‖Hu − vd‖2

2 + 1
2ε

‖u − u2‖2
2 + β

2
‖u − ū‖2

2,

and

Fε(u) = F(u) + 1
2ε

‖u − u2‖2
2 + β

2
‖u − ū‖2

2.

Remark 2 The term β‖u− ū‖2
2 is an additional penalization term permitting to focus

on a particular solution ū of (P). In practice, the solution ū is of course not known
and we choose β = 0.

It follows from Lemma 1 that Hu ∈ L2(2#̃) whenever u ∈ L1+s(#), for every
s > 0. In addition, for Fε(u) to be well defined, it is required that u ∈ L4(#). We
consider the penalized problem

(Pε)

{
minFε(u),

u ∈ BV(#) ∩BR

where R > 1 is a fixed real number, and

BR = {u ∈ L∞(#) | ‖u‖∞ ≤ R}.

In the sequel we do not mention the dependence of (Pε) with respect to the real num-
ber R that can be chosen as large as desired but is fixed. A contrario the parameter ε
will tend to 0. Note that the constraint u ∈ BR is required theoretically to ensure con-
vergence properties, however it does not affect the numerical process. The following
lemma will be useful.

Lemma 4 Let (un)n∈N be a bounded sequence of BV(#) ∩ BR . Then, there exist
u∗ ∈ BV(#) ∩ BR and a subsequence of (un)n∈N converging to u∗ for the strong
Lp(#) topology, for every p ∈ [1,+∞).

Proof Since the sequence (un)n∈N is bounded in BV(#), it converges, up to a sub-
sequence, to some u∗ ∈ BV(#) for the weak-star topology, and hence for the strong
L1(#) topology. Since it is moreover bounded (by R) in L∞(#), the conclusion fol-
lows from the Lebesgue dominated convergence theorem. In addition, BR is compact
for the L∞ weak star topology, hence u∗ ∈ BR . !

Theorem 2 The minimization problem (Pε) has at least a solution uε ∈ BV(#)∩BR .
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Proof To prove existence, consider a minimizing sequence (un)n of BV(#) ∩ BR .
Lemma 4 yields that (un) converges (up to a subsequence) to some ũ ∈ BV(#) ∩
BR , weakly in BV(#) and strongly in Lp(#) for every p ∈ [1,+∞). Since Jε is
continuous for the L2 topology, and ( is lsc for the L1 topology, one gets

Fε(ũ) ≤ lim inf
n

Fε(un) ≤ infFε,

and the conclusion follows. !

Theorem 3

1. Every cluster point u∗ in BV(#) ∩ Lp(#) (for p ∈ [1,+∞)) of the family (uε) at
ε = 0 is a solution of (P). If moreover β > 0 then u∗ = ū.

2. There holds limε→0 Fε(uε) = infF , and limε→0
∫
# |Duε| =

∫
# |Du|.

Proof Since ū ∈ BV(#) is a solution of (P), one has

Fε(uε) ≤ Fε(ū) = F(ū) = infF,

for every ε > 0. Therefore, the family (uε) is bounded in BV(#) ∩ BR , and ‖uε −
u2
ε‖2 → 0. Let u∗ be a (strong) cluster point of (uε) in Lp(#) (for p ∈ [1,+∞)).

Then,

‖u∗ − u∗2‖2 ≤ lim inf
ε→0

‖uε − u2
ε‖2 = 0,

so that u∗(1 − u∗) = 0 a.e. on #. Since

F(uε) + β‖uε − ū‖2
2 ≤ Fε(uε) ≤ infF,

one gets

F(u∗) ≤ F(u∗) + β‖u∗ − ū‖2
2 ≤ infF.

Therefore u∗ is a solution of (P). In addition, if β > 0, then u∗ = ū. Finally, since

infF = F(u∗) ≤ Fε(u
∗) ≤ lim infFε(uε) ≤ infF,

and Fε(uε) ≤ infF , it follows that limε→0 Fε(uε) = infF . Moreover, writing

lim infF(uε) + lim sup
1
ε
‖uε − u2

ε‖2
2 ≤ lim

(
F(uε) + 1

ε
‖uε − u2

ε‖2
2

)

= F(u∗) ≤ lim infF(uε),

it follows that

lim
ε→0

1
ε
‖uε − u2

ε‖2
2 = 0,

and then that

lim
ε→0

F(uε) = F(u∗).

The conclusion follows then from the continuity properties of H . !
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3.3 Optimality System of the Penalized Minimization Problem (Pε)

We first recall a result of [9] useful to derive optimality conditions for the penalized
problem (Pε).

Theorem 4 [9, Theorem 2.3] Let # be a Borelian subset of Rn. Let ū ∈ K ∩ BV(#)

be the solution of
{

minJ (u) + α
∫
# |Du|,

u ∈ K ∩ BV(#),

where K is a closed convex subset of Lp(#) and J is continuous and Gâteaux differ-
entiable from Lp(#) to R (1 ≤ p < +∞), and either K is bounded or J is coercive.
Then, there exists λ̄ ∈ (M(#)n)′ (the dual space of Radon measures) such that

∀u ∈ K ∩ BV(#)
〈
J ′(ū) − α div λ̄, u − ū

〉
≥ 0, (6)

∀µ ∈ (M(#))n
〈
λ̄,µ − Dū

〉
+

∫

#
|Dū| ≤

∫

#
|µ|, (7)

where D : BV(#) → (M(#))n and

∀u ∈ BV(#)
〈
div λ̄, u

〉
= −

〈
λ̄,Du

〉
. (8)

This result cannot be applied to the original problem since the constraints set is
not convex, but can be used to handle the penalized problem. It yields the existence
of λε ∈ (M(#)2)′ such that

∀u ∈ BV(#) ∩BR

〈
J ′
ε(uε) − α divλε, u − uε

〉
≥ 0, (9)

and

∀µ ∈ (M(#))2 〈λε,µ − Duε〉 +
∫

#
|Duε| ≤

∫

#
|µ|. (10)

The functional Jε is differentiable in L2(#), and

J ′
ε(uε) = H ∗(Huε − vd) + qε,

where

qε = 1
ε

(2uε − 1)(u2
ε − uε) + β(uε − ū). (11)

Since uε ∈ L∞(#), there holds qε ∈ L∞(#). Considering µ = Dv with v ∈ BV(#)

in (10) leads to

∀v ∈ BV(#) 〈λε,D(v − uε)〉 +
∫

#
|Duε| ≤

∫

#
|Dv|,

i.e.,

∀v ∈ BV(#) ((v) ≥ ((uε) − 〈divλε, v − uε〉,
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which is equivalent to

µε ∈ ∂((uε),

where µε = −divλε .

Theorem 5 Let uε be a solution of (Pε). Then there exist λε ∈ (M(#)2)′, qε ∈
L∞(#) and µε = −divλε such that

∀u ∈ BV(#) ∩BR 〈H ∗(Huε − vd) + qε + αµε, u − uε〉 ≥ 0, (12a)

µε ∈ ∂((uε). (12b)

3.4 Optimality System of the Minimization Problem (P)

In order to derive an optimality system for the minimization problem (P), it is natural
to attempt to pass to the limit in (12a)–(12b). There is however a difficulty explained
next.

Let u∗ be a cluster point in BV(#) ∩ Lp(#) (for p ∈ [1,+∞)) of the family (uε)
at ε = 0. From Theorem 3, u∗ is a solution of (P).

The family (λε) shares nice asymptotic properties, as shown in the following
lemma.

Lemma 5 The family (λε) is uniformly bounded in (BV(#) ∩ Lr(#))2 with respect
to ε, for every r ∈ [1,+∞]. The family (divλε) is uniformly bounded in (BV(#))′

(and thus in H−1(#)) with respect to ε. Moreover, for every weak cluster point λ∗ of
(λε) at ε = 0 in (BV(#) ∩ Lr(#))2, divλ∗ is a weak star cluster point of (divλε) at
ε = 0 in (BV(#))′ (and in H−1(#)).

Proof Let v ∈ BV(#) and µ = D(v + uε) ∈ M(#)2. From (10), we infer that

〈λε,Dv〉 +
∫

#
|Duε| ≤

∫

#
|Dv| +

∫

#
|Duε|,

and thus, −〈divλε, v〉 ≤
∫
# |Dv| ≤‖ v‖BV(#). It follows that

sup
v∈BV(#), ‖v‖BV(#)≤1

〈divλε, v〉 ≤ 1.

Therefore, (divλε) is uniformly bounded in the dual of BV(#) and (λε) is uniformly
bounded in (BV(#))2 with respect to ε.

Now, let r ∈ (1,+∞], and let ϕ ∈ (Lr ′
)2 with r ′ = r

r−1 ∈ [1,+∞). Choose v =
ϕ + Duε ∈ M(#)2. Then, we infer from (10) that

〈λε,ϕ〉r,r ′ ≤ ‖ϕ‖1 ≤ C‖ϕ‖r ′,

and hence (λε) is uniformly bounded in Lr(#)2. In particular it is bounded in L1(#).
Finally, it follows from the relation

∀u ∈ BV(#) 〈divλε, u〉 = −〈λε,Du〉,
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that, if λ∗ is a weak cluster point of (λε) at ε = 0 in (BV(#) ∩ Lr(#))2, then divλ∗

is a weak star cluster point of (divλε) at ε = 0 in (BV(#))′ (and in H−1(#)). !

The difficulty is that it is not possible to bound the family (qε) uniformly (in
H−1(#)) with respect to ε. Indeed if it were possible then one would be able to
derive a “classical” optimality system, formally written as

u∗(x) ∈ {0,1} a.e. in #, (13a)

H ∗(Hu∗ − vd) + (2u∗ − 1)s∗ − α divλ∗ = 0 in H−1(#), (13b)

∀µ ∈ (M(#))2 〈
λ∗,µ − Du∗〉 +

∫

#
|Du∗| ≤

∫

#
|µ|. (13c)

In particular, s∗ := q∗
2u∗−1 would be a Lagrange multiplier associated to the constraint

u∗(x) ∈ {0,1}. This is not possible since no qualification condition is available for
this kind of constraints (see [7] where counterexamples are provided).

Nevertheless, though it would be theoretically satisfying to get such a limit opti-
mality system, it is not directly useful from the numerical point of view and we use
the penalized one.

4 Numerical Simulations

4.1 Resolution of the Penalized Minimization Problem (Pε)

We use the penalized optimality system (12a)–(12b), and have to deal with two pa-
rameters ε and α. Since the solution of (P) is unknown, we choose β = 0. Noticing
that equation (12a) is formally equivalent to

uε = PBR
(uε − H ∗(Huε − vd) − qε − αµε),

where PK is a projection on K (with respect to a topology to be precised), we propose
the following fixed-point type algorithm.

Algorithm (ε fixed)

1. Initialization: n = 0, choose u0.
2. Solve the variational inequality (12b) to find µn+1 ∈ ∂((un).
3. Solve

un+1 = PBR
(un − H ∗(Hun − vd) − q(un) + αµn+1),

with

q(u) = 1
ε

(2u − 1)(u2 − u).

4. Stopping criterion: stop or set n = n + 1 and goto 2.
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The discretization process is standard (see for instance [5]). The discretized image
is represented by a N × N array identified with a N2 vector. Due to the symmetry,
it suffices to deal with half an image (of size N × N/2). Denote X = RN×N and
Y = X × X, endowed with the usual scalar product (u, v)X = ∑

1≤i,j≤N uij vij . For
g = (g1, g2) ∈ Y , denote

|gi,j | =
√

(g1
i,j )

2 + (g2
i,j )

2.

The Radon measure Du is approximated as follows. For u ∈ X, Du is identified with
a vector of Y of coordinates (Du)i,j = ((Du)1

i,j , (Du)2
i,j ) defined by

(Du)1
i,j =

{
ui+1,j − ui,j , if i < N,

0, if i = N,
(Du)2

i,j =
{

u1,j+1 − ui,j , if j < N,

0, if j = N.

The total variation is then approximated by ((u) = ∑
1≤i,j≤N |(Du)i,j |.

Concerning the divergence operator div = −D∗, where D∗ is the adjoint operator
of D, one has

∀p ∈ Y,∀u ∈ X (−divp,u)X = (p,Du)Y = (p1,D1u)X + (p2,D2u)X.

It is standard to discretize divp with

(divp)i,j =






p1
i,j − p1

i−1,j , if 1 < i < N,

p1
i,j , if i = 1,

−p1
i−1,j , if i = N,

+






p2
i,j − p2

i,j−1, if 1 < j < N,

p2
i,j , if j = 1,

−p2
i,j−1, if j = N.

Resolution of Step 2 The choice of µ ∈ ∂((u) follows Chambolle’s method (see
[10]). It is known that the Fenchel-Legendre conjugate function (∗ of ( is the indi-
catrix function 1K of

K = {divg | g ∈ Y, |gi,j | ≤ 1, ∀i, j}.
Moreover,

µ ∈ ∂((u) ⇐⇒ u ∈ ∂1K(µ) ⇐⇒ µ = /K(µ + u)

(see for instance [10]), where /K denotes the orthogonal projection on K. Therefore,
µ can be computed with the successive approximation process

µk = /K(µk−1 + u),

or with a semi-smooth Newton method. The projected element

/K(v) = argmin{‖divp − v‖2
X | pi,j ≤ 1, i, j = 1, . . . ,N},

can be computed as in [10], using the iteration process

pn+1
i,j =

pn
i,j + ρ(D(divpn − v))i,j

1 + ρ|(D(divpn − v))i,j |
.

If ρ ≤ 1/8 then div pn → /K(v).
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Resolution of Step 3 Newton methods are not adapted to solve Step 3. Indeed, the
matrix H ∗H is ill conditioned and the polynomial function

ψ : t "→ (2t − 1)(t2 − t) (14)

has an attractive zero at t = 0.5 that must be avoided. We rather use a projected
gradient method, which is however quite slow. The use of an optimal step strategy
does not seem to improve significantly the results. In addition we note that un should
converge to the solution which is “close” to 0 or 1, so that the projection inequality
of Step 3 is expected to be an equality. We use the following algorithm where the
projection step is decomposed.

Algorithm (ε fixed)

1. Initialization: n = 0, choose u0 = H−1(vd).
2. Find µn+1 ∈ ∂((un).
3. Set qn+1 = −H ∗(Hun − vd) − αµn+1.
4. Solve ψ(ũn) = εqn+1 and set un+1 = P[0,1](ũn) as the solution, with a projected

gradient method, where ψ is given by (14).
5. Stopping criterion: stop or set n = n + 1 and goto 2.

We did not perform any convergence analysis of this algorithm, neither within
the continuous framework nor in the discrete one. This issue will be investigated in
some future work. Denoting similarly the discretized and the continuous unknowns,
we provide below an elementary result asserting that, if the discretization algorithm
converges, then the limit is the optimal solution.

Lemma 6 Let ε > 0 fixed. If the sequence (un) of the above algorithm converges to
some uε ∈ RN , then uε is solution of the discretized optimality system of (Pε).

Proof Assume that (un) converges to uε in RN (where N is the dimension of the
discretization space, i.e., the size of the image). From the projection step, one has 0 ≤
uε ≤ 1. By continuity of ψ and Step 3, qn converges to some qε such that ψ(uε) =
εqε . Similarly, Step 2 yields the convergence of µn to µε such that qε = −H ∗(Huε−
vd) − αµε . Since

µn+1 ∈ ∂((un) ⇐⇒ µn+1 = /K(µn+1 + un),

passing to the limit as n → +∞ yields µε = /K(µε + uε), i.e., µε ∈ ∂((uε), with
H ∗(Huε − vd) + αµε + qε = 0. !

4.2 Numerical Results

We present numerical results in two cases:

• first case: with no blur, B = I ;
• second case: there is a blur, modeled by a centered Gaussian filter with standard

deviation σ = 3.



Appl Math Optim

In both cases, the projected image (observed data) is perturbed with a Gaussian noise
τ with standard deviation στ = 0.2 (the image has been rescaled between 0 and 1),

τ (x) = 1√
2πστ

e
− |x|2

2σ2
τ .

In the second case, the projected image is moreover perturbed with a Gaussian blur
with standard deviation σB = 3, so that the observed data is

vd = (K ∗ H0)(uorig) + τ,

where

K(x) = Ce
− |x|2

2σ2
B 1#̃(x),

where C is a normalizing constant so that
∫

Kdµ = 1.
The polynomial function ψ has three zeros 0, 1/2, and 1 which have the same

multiplicity. However this function is quite “flat” so that the Newton method fails but
the projected gradient method works well with a small descent step. This part of our
algorithm may however be improved.

The descent step of the gradient method was set to 10−5. With this value, it hap-
pens that convergence occurs in our numerical tests for any α and ε. The step is
small, in accordance with the constraint u ∈ [0,1]. Numerical refinements such as
the determination of an optimal step do not seem to improve significantly the results.

The gradient algorithm was limited to itmax = 2000 iterations. The convergence
is quite slow and it is necessary to perform enough iterations. Nevertheless it is not
necessary to compute the exact solution at each step. Table 3 provides some numer-
ical results with several values of the step ρ of the gradient method. The algorithm
consists in two imbricated loops: the main loop consists in computing un, and the
inside loop concerns the gradient method (with at most itmax iterations) in Step 4.

Concerning the stopping criterion, a first possibility is to stop the algorithm as
soon as ‖un+1 − un‖∞ is small enough. However, the convergence happens to be
nonmonotonic in the sense that ‖un+1 − un‖∞ may oscillate in some cases while the
cost function is decreasing. Therefore, we chose the stopping criterion

δn
ε :=

∣∣∣∣
Fε(u

n+1) − Fε(u
n)

Fε(un)

∣∣∣∣ ≤ tol,

where Fε is the discretized version of Fε , and tol was set to 10−3. This stopping
criterion is based on the relative error between two consecutive values of the cost
functional. Results are provided on Table 2 for different values of tol.

The resolution of our test images was 256 × 256 pixels, and computations were
performed using MATLAB© software on a MAC-G4 computer (1.5 GHz).

Remark 3 It is certainly possible to improve the performances of our algorithm with
numerical refinements. The purpose of this article is however not to provide sharp op-
timized numerical algorithms, but to test an approach based on a penalization method
and investigate its numerical efficiency.
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(a)

(b)

Fig. 4 Case without blur: ε = 0.5, α = 15, tol = 10−4. (a) Cost evolution. (b) Evolution of ‖un+1 − un‖
(log scale)

The algorithm behaves like a descent method (see Figs. 4 and 5), but the conver-
gence of un is not monotonic.

On these figures, one can observe that the functional Fε strongly decreases at small
times and then decreases slowly. Actually, the image is considerably improved after
few iterations, far from the symmetry axis (see Fig. 8). This is due to the fact that
the outermost pixels of the image carry more information than the innermost pixels.
Indeed, since the object is axially symmetric, an outer pixel generates, when rotating
around the symmetry axis z, a torus, which projects onto a strip on a plane containing
the axis z. This strip is of course longer for an outer pixel than for an inner one, thus
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(a)

(b)

Fig. 5 Case with blur: ε = 0.5, α = 30, tol = 10−3. (a) Cost evolution. (b) Evolution of ‖un+1 − un‖
(log scale)

carrying more weight in the functional to be minimized in the iteration process. This
is the reason why the convergence is slow for pixels around the axis, but very fast for
outermost pixels.

Figure 6 represents, in the case without blur, the original image, the observed
image, and the initial point of the gradient method.

Table 1 and Fig. 7 provide different results with respect to ε and α, in the case
without blur.

Table 2 and Fig. 8 provide different results with respect to tol, in the case without
blur.
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(a) Original image (b) Observed image vd (c) Initial point H−1
0 (vd)

Fig. 6 Case without blur: original image, observed image, and initial guess

(a) ε = 0.1, α = 1 (b) ε = 0.1, α = 10 (c) ε = 0.5, α = 1

(d) ε = 0.5, α = 5 (e) ε = 0.5, α = 10 (f) ε = 0.5, α = 20

(g) ε = 1, α = 1 (h) ε = 1, α = 10

Fig. 7 Case without blur, for different values of ε and α
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Table 1 Case without blur: sensitivity with respect to ε and α, with tol = 1e−03 and itmax = 2000

ε α # iterations Fε ‖un+1 − un‖∞ δnε CPU time (s)

0.1 1 16 9.341691e−01 6.277e−02 9.658e−04 1 972

0.1 10 157 1.789839 5.666e−02 9.883e−04 17 580

0.5 1 136 3.733188e−01 1.212e−02 9.903e−04 17 190

0.5 5 259 2.051840e−01 1.444e−02 9.947e−04 26 570

0.5 10 195 2.861554e−01 1.445e−02 9.918e−04 18 060

0.5 20 207 4.128942e−01 1.608e−02 9.955e−04 18 240

1 1 292 1.964433e−01 6.244e−03 9.942e−04 38 990

1 10 184 2.861960e−01 7.003e−03 9.931e−04 14 300

Table 2 Case without blur: sensitivity with respect to tol, with ε = 0.5, α = 15, and itmax = 2000

tol # iterations Fε ‖un+1 − un‖∞ δnε CPU time (s)

1e−01 6 4.852204 7.388e−02 9.952e−02 569

1e−02 56 5.197695e−01 1.453e−02 9.967e−03 4398

1e−03 173 3.659651e−01 1.327e−02 9.930e−04 14 395

1.33e−04 500 3.1302e−01 5.2026e−03 1.3314e−04 50 615

Fig. 8 Case without blur, for
different values of tol, with
ε = 0.5, α = 15, and
itmax = 2000

(a) tol = 1e−01 (b) tol = 1e−02

(c) tol = 1e−03 (d) tol = 1e−04

Table 3 and Fig. 9 provide numerical results in the case without blur, for different
values of the gradient method step ρ.
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Table 3 Case without blur: sensitivity with respect to the gradient method step ρ, with ε = 0.5, α = 15,
tol = 1e−02, and itmax = 2000

ρ # iterations Fε ‖un+1 − un‖∞ δnε CPU time

1e−03 5 1.806698e+01 1 8.636e−03 672

5e−04 6 1.795947e+01 1 8.082e−03 831

1e−04 18 3.129822e+00 1 7.835e−03 2589

5e−05 23 3.839284e−01 7.396e−02 9.695e−03 1834

1e−05 56 5.197695e−01 1.453e−02 9.967e−03 4398

Fig. 9 Case without blur, for
different values of ρ, with
ε = 0.5, α = 15, tol = 1e−02,
and itmax = 2000

(a) ρ = 5e−04 (b) ρ = 1e−04

(c) ρ = 5e−05 (d) ρ = 1e−05

Table 4 reports numerical results in the case without blur, for different values of
the gradient method maximal iteration number itmax. In the simulations, the maximal
number of iterations itmax of the gradient method is always attained. We report in the
table the number of iterations of the main loop.

When adding a Gaussian blur, the observed data is the projected image perturbed
with a Gaussian blur with standard deviation σB = 3 and the previous Gaussian noise
τ with στ = 0.1,

ud = (K ∗ Ho)(uorig) + τ ,

where

K(x) = 1√
2πσB

e
− |x|2

2σ2
B .
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Table 4 Case without blur: sensitivity with respect to the gradient method maximum iteration number
itmax, with ε = 0.5, α = 15, and tol = 1e−02

itmax # iterations Fε ‖un+1 − un‖∞ δnε CPU time

100 2 1.155450e+01 6.817e−03 6.619e−03 220

500 122 9.053952e−01 4.977e−03 9.999e−03 6751

1000 85 6.359336e−01 8.705e−03 9.803e−03 5243

2000 56 5.197695e−01 1.453e−02 9.967e−03 4398

3000 44 4.758873e−01 2.268e−02 9.755e−03 4470

Table 5 Case with blur: sensitivity with respect to α and ε, with tol = 1e−03 and itmax = 2000

ε α # iterations F Fε ‖un+1 − un‖∞ δnε CPU time (s)

0.5 1 170 8.778e−02 1.788e−01 1.331e−02 9.903e−04 16426

0.5 5 235 6.047e−02 1.234e−01 1.208e−02 9.855e−04 21815

0.5 10 125 1.005e−01 2.050e−01 1.097e−02 9.840e−04 10406

0.5 20 108 1.692e−01 3.434e−01 1.651e−02 9.919e−04 7903

0.5 30 114 2.262e−01 4.576e−01 1.485e−02 9.918e−04 7206

0.1 10 163 4.325e−01 8.766e−01 5.488e−02 9.858e−04 17981

0.5 10 125 1.005e−01 2.050e−01 1.097e−02 9.840e−04 10406

1 10 122 8.936e−02 1.823e−01 7.734e−03 9.847e−04 10348

5 10 102 8.102e−02 1.634e−01 4.442e−03 9.466e−04 9612

10 10 100 7.974e−02 1.602e−01 4.207e−03 9.935e−04 9803

The tolerance is 10−3 and the maximal number of gradient iterations is 2000. Results
are reported on Table 5 and Fig. 10.

Our algorithm depends on the parameters ε, α, ρ, tol, itmax. Whereas it is quite
easy and standard to tune adequately the parameters ρ, tol and itmax, we observe on
the above simulations that the results strongly depend on the values chosen for the
parameters ε and α. This is one of the drawbacks of the method to be very sensitive
to parameters adjustment. The parameter α is attached to the total variation. As ex-
pected, if α is too large, the image resulting from the simulation is too smooth, see
e.g. Fig. 10h. At the contrary if α is chosen too small, the algorithm does not permit
to denoise sufficiently the image, see e.g. Figs. 7a, c, g and Fig. 10e. The parameter
ε is the penalization parameter attached to the binary constraint. If ε is chosen too
large, then the binary features of the object are not well recovered and details are too
much smoothened, see e.g. Figs. 10k, l.

For our specific data, in the case with blur (see Fig. 10), it seems that the best
choice corresponds to ε = 0.5 and α = 10 or 20. In the general case the question
of an optimal tuning seems is open. One of our research directions is to investigate,
for α fixed, ways to choose an optimal penalization parameter ε at each step of the
iteration.

As mentioned formerly, at this stage the code is quite basic and one of our next
issues is to improve the performances of the algorithm. In this version, the Step 4
is quite delicate to solve and for the moment time-consuming. Convergence results
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(a) Original image (b) Observed image ud (c) Initial guess H−1
0 (ud)

(d) ε = 0.1, α = 10 (e) ε = 0.5, α = 1 (f) ε = 0.5, α = 5

(g) ε = 0.5, α = 20 (h) ε = 0.5, α = 30 (i) ε = 0.5, α = 10

(j) ε = 1, α = 10 (k) ε = 5, α = 10 (l) ε = 10, α = 10

Fig. 10 Case with blur, for different values of α and ε

and convergence rates are to be derived. Moreover, sharp comparisons with existing
methods must be performed. What can be said however is that the method presented
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(a)

(b)

Fig. 11 Back-filtered projection results. (a) Median line of the object (i = 128). (b) Largest slice of the
binary axially symmetric object by a plane orthogonal to the symmetry axis. (c) Result using the cropped
Ram-Lak filter. (d) Result using the Ram-Lak filter with a Hamming window

here is far more efficient that the method presented in [1], based on a Hamilton-Jacobi
approach applied to the same problem, and which requires far more computation
times. Note that, in our method, we have a well defined stopping criterion, contrarily
to [1].

Finally, Fig. 11 presents numerical results obtained with the back-filtered projec-
tion routine iradon of MATLAB© applied to slices generated by the rotation of object
lines. These results are of bad quality, as expected.
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(c) (d)

Fig. 11 (Continued)

Movies showing the evolution of the image during the execution of the algo-
rithm are available at http://www.univ-orleans.fr/mapmo/membres/maitine/Movies.
The subdirectory Blurred contains movies of cases with blur.

5 Conclusion

In this article, we have described and implemented a variational method for tomo-
graphic reconstruction of blurred and noised binary images, using a minimization
procedure in the space of bounded variation functions. The binary constraint is han-
dled with a penalization process. Our approach is global, contrarily to usual methods
based on a line-by-line analysis of the radiograph.

We proved existence and/or uniqueness results for the minimization problem un-
der consideration, and derived a penalized optimality system. Then, we implemented
the procedure and provided numerical simulations.

Much progress remains to be done, in particular to improve the robustness and
the performances of the algorithm. The main difficulty consists in tuning the parame-
ters of the procedure, in particular, the parameter α, which is the weight of the total
variation in the optimization criterion, and the parameter ε, related to the penaliza-
tion of the binary constraint. An important open question is to develop an automatic
procedure that would permit to tune adequately these parameters. It is all the more
important that our algorithm is very sensitive to parameters adjustment. For instance,
it seems reasonable to try to develop a strategy permitting to choose the parameter ε,
at each step of the iteration, in function of α.

Up to now, no sharp comparisons were led with other existing procedures of to-
mographic reconstruction for binary objects, however our algorithm is clearly more
efficient (in particular, less time-consuming) that the strategy described in [1], based
on a Hamilton-Jacobi approach. Simulations are still quite slow but the algorithm was
not optimized.

Finally, a refined functional analysis of the Radon transform actually permits to
derive stronger regularity properties of the operator H0 defined by (2). From these

http://www.univ-orleans.fr/mapmo/membres/maitine/Movies
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results, knowing precisely the image of the space BV(#) by the operator H , it may
be relevant to consider other norms for the definition of the minimization criterion
F(u) of the problem (P). Here a natural choice was the standard L2 norm, which has
the double advantage of being simple to differentiate (in order to derive the optimality
system) and simple to compute numerically. Other choices are however possible and
it is an open interesting direction to investigate the quality of resulting simulations.
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