Stochastic processes on surfaces in 3D contact sub-Riemannian manifolds

Talk by Karen Habermann on joint work with Davide Barilari, Ugo Boscain and Daniele Cannarsa

SRGI conference: Sub-Riemannian Geometry and Interactions
9 September 2020
Setting

three-dimensional smooth manifold, \((D, g)\) sub-Riemannian structure on \(M\), contact structure on \(M\), that is, \(D = \ker \omega\) for one-form \(\omega\) on \(M\) with \(\omega \wedge d\omega \neq 0\). Orientable surface embedded in \(x, y, z\).
Setting

- M three-dimensional smooth manifold,
Setting
- M three-dimensional smooth manifold,
- (D, g) sub-Riemannian structure on M,

...
Setting

- M three-dimensional smooth manifold,
- (D, g) sub-Riemannian structure on M,
- D contact structure on M.

Wikipedia
Setting

- M three-dimensional smooth manifold,
- (D, g) sub-Riemannian structure on M,
- D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge d\omega \neq 0$
Setting

- M three-dimensional smooth manifold,
- (D, g) sub-Riemannian structure on M,
- D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge d\omega \neq 0$
Setting

- M three-dimensional smooth manifold,
- (D, g) sub-Riemannian structure on M,
- D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge d\omega \neq 0$
- S orientable surface embedded in M
Adjusted setting (for notational convenience)
- M three-dimensional smooth manifold,
- \mathcal{D} distribution spanned by X_1 and X_2,
- g given by requiring (X_1, X_2) to be an orthonormal frame,
- X_0 the unique vector field on M such that $[X_1, X_2] = X_0 + c_{12} X_1 + c_{21} X_2$,
- X_0 the Reeb vector field for the contact form ω normalised such that $\delta\omega|_{\mathcal{D}} = -\text{vol}_g$,
- S embedded surface in M given by $S = \{ x \in M : u(x) = 0 \}$ for $u \in C^2(M)$ with $\delta u \neq 0$ on S.
Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - D distribution spanned by X_1 and X_2,
- X_0 the Reeb vector field for the contact form ω normalised such that $d\omega|_D = -\text{vol}_g$,
- S embedded surface in M given by $S = \{x \in M : u(x) = 0\}$ for $u \in C^2(M)$ with $du \neq 0$ on S.
Adjusted setting (for notational convenience)

- \(M \) three-dimensional smooth manifold,
- \(X_1 \) and \(X_2 \) two smooth vector fields on \(M \) such that \(X_1, X_2, [X_1, X_2] \) are linearly independent everywhere,
 - \(D \) distribution spanned by \(X_1 \) and \(X_2 \),
 - \(g \) given by requiring \((X_1, X_2) \) to be an orthonormal frame,
Adjusted setting (for notational convenience)

- M, three-dimensional smooth manifold,
- X_1 and X_2, two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - D, distribution spanned by X_1 and X_2,
 - g, given by requiring (X_1, X_2) to be an orthonormal frame,
- X_0, the unique vector field on M such that

\[
[X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2
\]
Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - D distribution spanned by X_1 and X_2,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,
- X_0 the unique vector field on M such that
 \[
 [X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2
 \]
 - X_0 the Reeb vector field for the contact form ω normalised such that $d\omega|_D = -\text{vol}_g$,
Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - D distribution spanned by X_1 and X_2,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,
- X_0 the unique vector field on M such that
 \[[X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2 \]
 - X_0 the Reeb vector field for the contact form ω normalised such that $d\omega|_D = -\text{vol}_g$,
- S embedded surface in M given by
 \[S = \{ x \in M : u(x) = 0 \} \text{ for } u \in C^2(M) \text{ with } du \neq 0 \text{ on } S \]
Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - D distribution spanned by X_1 and X_2,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,
- X_0 the unique vector field on M such that
 \[
 [X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2
 \]
 - X_0 the Reeb vector field for the contact form ω normalised such that $d\omega|_D = -\text{vol}_g$,
- S embedded surface in M given by
 \[
 S = \{ x \in M : u(x) = 0 \} \text{ for } u \in C^2(M) \text{ with } du \neq 0 \text{ on } S
Definition

Set $\Gamma(S)$ of characteristic points on S

$$x \in \Gamma(S) \text{ if and only if } (X_1 u)(x) = (X_2 u)(x) = 0$$
Definition

Set $\Gamma(S)$ of characteristic points on S

$$x \in \Gamma(S) \quad \text{if and only if} \quad (X_1 u)(x) = (X_2 u)(x) = 0$$

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$
Definition

Set $\Gamma(S)$ of characteristic points on S

$$x \in \Gamma(S) \text{ if and only if } (X_1 u)(x) = (X_2 u)(x) = 0$$

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$

- family of Riemannian manifolds (S, g_ε), for $\varepsilon > 0$, induced by the Riemannian approximations obtained through requiring $(X_1, X_2, \sqrt{\varepsilon}X_0)$ to be a global orthonormal frame,
Definition
Set $\Gamma(S)$ of characteristic points on S

$$x \in \Gamma(S) \text{ if and only if } (X_1 u)(x) = (X_2 u)(x) = 0$$

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$

- family of Riemannian manifolds (S, g_ε), for $\varepsilon > 0$, induced by the Riemannian approximations obtained through requiring $(X_1, X_2, \sqrt{\varepsilon}X_0)$ to be a global orthonormal frame,
- family of Laplace–Beltrami operators Δ_ε
Definition

Set $\Gamma(S)$ of characteristic points on S

\[x \in \Gamma(S) \text{ if and only if } (X_1u)(x) = (X_2u)(x) = 0 \]

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$

- family of Riemannian manifolds (S, g_ε), for $\varepsilon > 0$, induced by the Riemannian approximations obtained through requiring $(X_1, X_2, \sqrt{\varepsilon}X_0)$ to be a global orthonormal frame,

- family of Laplace–Beltrami operators Δ_ε

Theorem (Barilari, Boscain, Cannarsa, H)

For $f \in C^2_c(S \setminus \Gamma(S))$, we have

\[\Delta_\varepsilon f \to \Delta_0 f \]

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

Theorem (Barilari, Boscain, Cannarsa, H)

For $f \in C^2_c(S \setminus \Gamma(S))$, we have

$$\Delta_\varepsilon f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.
Theorem (Barilari, Boscain, Cannarsa, H)

For $f \in C^2_c(S \setminus \Gamma(S))$, we have

$$\Delta_{\varepsilon} f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

The limiting operator is given by

$$\Delta_0 = \hat{X}_S^2 + b\hat{X}_S ,$$
Theorem (Barilari, Boscain, Cannarsa, H)

For \(f \in C_c^2(S \setminus \Gamma(S)) \), we have

\[
\Delta_{\varepsilon} f \to \Delta_0 f
\]

uniformly on \(S \setminus \Gamma(S) \) as \(\varepsilon \to 0 \).

The limiting operator is given by

\[
\Delta_0 = \hat{X}_S^2 + b\hat{X}_S,
\]

where

\[
\hat{X}_S = \frac{(X_2 u)X_1 - (X_1 u)X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}}
\]
Theorem (Barilari, Boscain, Cannarsa, H)

For \(f \in C^2_c(S \setminus \Gamma(S)) \), we have

\[
\Delta_\varepsilon f \to \Delta_0 f
\]

uniformly on \(S \setminus \Gamma(S) \) as \(\varepsilon \to 0 \).

The limiting operator is given by

\[
\Delta_0 = \hat{X}_S^2 + b \hat{X}_S,
\]

where

\[
\hat{X}_S = \frac{(X_2 u) X_1 - (X_1 u) X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \quad \text{and} \quad b = \frac{X_0 u}{\sqrt{(X_1 u)^2 + (X_2 u)^2}}.
\]
Theorem (Barilari, Boscain, Cannarsa, H)

For $f \in C^2_c(S \setminus \Gamma(S))$, we have

$$\Delta_\varepsilon f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

The limiting operator is given by

$$\Delta_0 = \hat{X}_S^2 + b\hat{X}_S,$$

where

$$\hat{X}_S = \frac{(X_2u)X_1 - (X_1u)X_2}{\sqrt{(X_1u)^2 + (X_2u)^2}} \quad \text{and} \quad b = \frac{X_0u}{\sqrt{(X_1u)^2 + (X_2u)^2}}.$$

Note that $b\hat{X}_S^\perp - X_0$ is a vector field on $S \setminus \Gamma(S)$.
Sketch of the proof:

Consider vector fields on $S \setminus \Gamma(S)$ given by

$$F_1 = (X_2 u)X_1 - (X_1 u)X_2 \sqrt{(X_1 u)^2 + (X_2 u)^2} + (X_2 u)^2$$

and

$$F_2 = (X_0 u)(X_1 u)X_1 + (X_0 u)(X_2 u)X_2 \sqrt{(X_1 u)^2 + (X_2 u)^2} - X_0.$$

They satisfy $g_\varepsilon(F_1, F_2) = 0$ with

$$g_\varepsilon(F_1, F_1) = 1$$

and

$$g_\varepsilon(F_2, F_2) = (X_0 u)^2 (X_1 u)^2 + (X_2 u)^2 + 1.$$

Proposition (Barilari, Boscain, Cannarsa, H)

We have

$$K_0 := \lim_{\varepsilon \to 0} K_\varepsilon = -\hat{X}_S(b) - b^2$$

uniformly on compact subsets of $S \setminus \Gamma(S)$.
Sketch of the proof: Consider vector fields on $S \setminus \Gamma(S)$ given by

$F_1 = \frac{X_2u \cdot X_1 - (X_1u) \cdot X_2}{\sqrt{(X_1u)^2 + (X_2u)^2}}$ and

$F_2 = \frac{X_0u \cdot (X_1u) \cdot X_1 + (X_0u) \cdot (X_2u) \cdot X_2}{(X_1u)^2 + (X_2u)^2} - X_0$.
Sketch of the proof: Consider vector fields on \(S \setminus \Gamma(S) \) given by

\[
F_1 = \frac{(X_2u)X_1 - (X_1u)X_2}{\sqrt{(X_1u)^2 + (X_2u)^2}}
\]

and

\[
F_2 = \frac{(X_0u)(X_1u)X_1 + (X_0u)(X_2u)X_2}{(X_1u)^2 + (X_2u)^2} - X_0.
\]

They satisfy

\[
g_\varepsilon(F_1, F_2) = 0
\]
Sketch of the proof: Consider vector fields on $S \setminus \Gamma(S)$ given by

$$F_1 = \frac{(X_2 u)X_1 - (X_1 u)X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}}$$

and

$$F_2 = \frac{(X_0 u)(X_1 u)X_1 + (X_0 u)(X_2 u)X_2}{(X_1 u)^2 + (X_2 u)^2} - X_0 .$$

They satisfy

$$g_\varepsilon(F_1, F_2) = 0$$

with $g_\varepsilon(F_1, F_1) = 1$ and $g_\varepsilon(F_2, F_2) = \frac{(X_0 u)^2}{(X_1 u)^2 + (X_2 u)^2} + \frac{1}{\varepsilon}$.
Sketch of the proof: Consider vector fields on $S \setminus \Gamma(S)$ given by

\[F_1 = \frac{(X_2u)X_1 - (X_1u)X_2}{\sqrt{(X_1u)^2 + (X_2u)^2}} \quad \text{and} \]
\[F_2 = \frac{(X_0u)(X_1u)X_1 + (X_0u)(X_2u)X_2}{(X_1u)^2 + (X_2u)^2} - X_0. \]

They satisfy

\[g_\varepsilon(F_1, F_2) = 0 \]

with $g_\varepsilon(F_1, F_1) = 1$ and $g_\varepsilon(F_2, F_2) = \frac{(X_0u)^2}{(X_1u)^2 + (X_2u)^2} + \frac{1}{\varepsilon}.$

Proposition (Barilari, Boscain, Cannarsa, H)

We have

\[K_0 := \lim_{\varepsilon \to 0} K_\varepsilon = -\hat{X}_S(b) - b^2 \]

uniformly on compact subsets of $S \setminus \Gamma(S)$.
Example: Paraboloid \(z = a \left(x^2 + y^2 \right) \) in the Heisenberg group
Example: Paraboloid \(z = a \left(x^2 + y^2 \right) \) in the Heisenberg group

Characteristic foliation described by logarithmic spirals
Example: Paraboloid \(z = a \left(x^2 + y^2 \right) \) in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates \((s, \psi)\) with \(s > 0\) and \(\psi \in [0, 2\pi)\) on \(S \setminus \Gamma(S)\)

\[
\hat{X}_S = \frac{\partial}{\partial s} \quad \text{and} \quad b(s, \psi) = \frac{2}{s},
\]
Example: Paraboloid $z = a \left(x^2 + y^2\right)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s, ψ) with $s > 0$ and $\psi \in [0, 2\pi)$ on $S \setminus \Gamma(S)$

$$\hat{X}_S = \frac{\partial}{\partial s} \quad \text{and} \quad b(s, \psi) = \frac{2}{s},$$

so

$$\Delta_0 = \frac{\partial^2}{\partial s^2} + \frac{2}{s} \frac{\partial}{\partial s}.$$
Example: Paraboloid $z = a \left(x^2 + y^2\right)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s, ψ) with $s > 0$ and $\psi \in [0, 2\pi)$ on $S \setminus \Gamma(S)$

$$\hat{X}_S = \frac{\partial}{\partial s} \quad \text{and} \quad b(s, \psi) = \frac{2}{s},$$

so

$$\frac{1}{2} \Delta_0 = \frac{1}{2} \frac{\partial^2}{\partial s^2} + \frac{1}{s} \frac{\partial}{\partial s}.$$
Example: Sphere \(x^2 + y^2 + z^2 = a^2 \) in the Heisenberg group
Example: Sphere $x^2 + y^2 + z^2 = a^2$ in the Heisenberg group

Characteristic foliation described by loxodromes
Example: Sphere $x^2 + y^2 + z^2 = a^2$ in the Heisenberg group

Characteristic foliation described by loxodromes

In coordinates (s, φ) on $S \setminus \Gamma(S)$

$$\frac{1}{2} \Delta_0 = \frac{1}{2} \frac{\partial^2}{\partial s^2} + \left(\cot (\theta(s)) \frac{d\theta}{ds} \right) \frac{\partial}{\partial s},$$

where $\varphi \in [0, 2\pi)$ and s is given in terms of the polar angle θ as a multiple of an elliptic integral of the second kind.
Example: Canonical surfaces in Heisenberg, SU(2) and SL(2, \(\mathbb{R} \))
Example: Canonical surfaces in Heisenberg, SU(2) and SL(2, \mathbb{R})

With $\kappa = 0$ in Heisenberg, $\kappa > 0$ in SU(2) and $\kappa < 0$ in SL(2, \mathbb{R})

$$[X_1, X_2] = X_0, \quad [X_0, X_1] = \kappa X_2, \quad [X_0, X_2] = -\kappa X_1.$$
Example: Canonical surfaces in Heisenberg, $SU(2)$ and $SL(2, \mathbb{R})$

With $\kappa = 0$ in Heisenberg, $\kappa > 0$ in $SU(2)$ and $\kappa < 0$ in $SL(2, \mathbb{R})$

$$[X_1, X_2] = X_0, \quad [X_0, X_1] = \kappa X_2, \quad [X_0, X_2] = -\kappa X_1.$$

Theorem (Barilari, Boscain, Cannarsa, H)

Let $k \geq 0$ be such that $|\kappa| = 4k^2$.

Example: Canonical surfaces in Heisenberg, $SU(2)$ and $SL(2, \mathbb{R})$

With $\kappa = 0$ in Heisenberg, $\kappa > 0$ in $SU(2)$ and $\kappa < 0$ in $SL(2, \mathbb{R})$

\[[X_1, X_2] = X_0, \quad [X_0, X_1] = \kappa X_2, \quad [X_0, X_2] = -\kappa X_1. \]

Theorem (Barilari, Boscain, Cannarsa, H)

Let $k \geq 0$ be such that $|\kappa| = 4k^2$. Set $I = (0, \frac{\pi}{k})$ if $\kappa > 0$ and $I = (0, \infty)$ otherwise.
Example: Canonical surfaces in Heisenberg, SU(2) and SL(2, \mathbb{R})

With \(\kappa = 0 \) in Heisenberg, \(\kappa > 0 \) in SU(2) and \(\kappa < 0 \) in SL(2, \mathbb{R})

\[
[X_1, X_2] = X_0, \quad [X_0, X_1] = \kappa X_2, \quad [X_0, X_2] = -\kappa X_1.
\]

Theorem (Barilari, Boscain, Cannarsa, H)

Let \(\kappa \geq 0 \) be such that \(|\kappa| = 4k^2 \). Set \(I = (0, \pi/k) \) if \(\kappa > 0 \) and \(I = (0, \infty) \) otherwise. For the embedded surface

\[
S = \{ \exp(r \cos \theta X_1 + r \sin \theta X_2) : r \in I \text{ and } \theta \in [0, 2\pi) \},
\]
Example: Canonical surfaces in Heisenberg, SU(2) and SL(2, \mathbb{R})
With \(\kappa = 0 \) in Heisenberg, \(\kappa > 0 \) in SU(2) and \(\kappa < 0 \) in SL(2, \mathbb{R})

\[
[X_1, X_2] = X_0, \quad [X_0, X_1] = \kappa X_2, \quad [X_0, X_2] = -\kappa X_1.
\]

Theorem (Barilari, Boscain, Cannarsa, H)

Let \(k \geq 0 \) be such that \(|\kappa| = 4k^2 \). Set \(I = (0, \frac{\pi}{k}) \) if \(\kappa > 0 \) and \(I = (0, \infty) \) otherwise. For the embedded surface

\[
S = \{\exp(r \cos \theta X_1 + r \sin \theta X_2) : r \in I \text{ and } \theta \in [0, 2\pi)\},
\]

we have \(\Delta_0 = \frac{\partial^2}{\partial r^2} + b(r) \frac{\partial}{\partial r} \), where

\[
b(r) = \begin{cases}
2k \cot(kr) & \text{if } \kappa = 4k^2 \\
\frac{2}{r} & \text{if } \kappa = 0 \\
2k \coth(kr) & \text{if } \kappa = -4k^2
\end{cases}.
\]
This gives rise to three classes of familiar stochastic processes.

- Bessel process of order 3 has generator \(\frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \) for \(r > 0 \).

- Legendre process of order 3 has generator \(\frac{1}{2} \frac{\partial^2}{\partial \theta^2} + k \cot(k \theta) \frac{\partial}{\partial \theta} \) for \(\theta \in (0, \pi/k) \).

- Hyperbolic Bessel process of order 3 has generator \(\frac{1}{2} \frac{\partial^2}{\partial r^2} + k \coth(kr) \frac{\partial}{\partial r} \) for \(r > 0 \).
This gives rise to three classes of familiar stochastic processes.

- Bessel process of order 3 has generator

\[
\frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \quad \text{for } r > 0
\]
This gives rise to three classes of familiar stochastic processes.

- Bessel process of order 3 has generator

\[
\frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \quad \text{for } r > 0
\]

- Legendre process of order 3 has generator

\[
\frac{1}{2} \frac{\partial^2}{\partial \theta^2} + k \cot(k\theta) \frac{\partial}{\partial \theta} \quad \text{for } \theta \in \left(0, \frac{\pi}{k}\right)
\]
This gives rise to three classes of familiar stochastic processes.

- **Bessel process of order 3** has generator
 \[
 \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \quad \text{for } r > 0
 \]

- **Legendre process of order 3** has generator
 \[
 \frac{1}{2} \frac{\partial^2}{\partial \theta^2} + k \cot(k\theta) \frac{\partial}{\partial \theta} \quad \text{for } \theta \in \left(0, \frac{\pi}{k}\right)
 \]

- **hyperbolic Bessel process of order 3** has generator
 \[
 \frac{1}{2} \frac{\partial^2}{\partial r^2} + k \coth(kr) \frac{\partial}{\partial r} \quad \text{for } r > 0
 \]
Criterion for accessibility of characteristic points

Definition

Characteristic point $x \in \Gamma(S)$ is called elliptic if $\det((\text{Hess}u)(x)) > 0$, hyperbolic if $\det((\text{Hess}u)(x)) < 0$.

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator Δ, elliptic characteristic points are inaccessible, while hyperbolic characteristic points are accessible from the separatrices.
Criterion for accessibility of characteristic points in terms of

\[\text{Hess } u = \begin{pmatrix} X_1X_1u & X_1X_2u \\ X_2X_1u & X_2X_2u \end{pmatrix} \]
Criterion for accessibility of characteristic points in terms of

\[\text{Hess } u = \begin{pmatrix} X_1 X_1 u & X_1 X_2 u \\ X_2 X_1 u & X_2 X_2 u \end{pmatrix} \]

Definition

Characteristic point \(x \in \Gamma(S) \) is called

- elliptic if \(\det((\text{Hess } u)(x)) > 0 \),
- hyperbolic if \(\det((\text{Hess } u)(x)) < 0 \).
Criterion for accessibility of characteristic points in terms of

\[
\text{Hess } u = \begin{pmatrix}
X_1 X_1 u & X_1 X_2 u \\
X_2 X_1 u & X_2 X_2 u
\end{pmatrix}
\]

Definition

Characteristic point \(x \in \Gamma(S) \) is called

- elliptic if \(\det((\text{Hess } u)(x)) > 0 \),
- hyperbolic if \(\det((\text{Hess } u)(x)) < 0 \).

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator \(\frac{1}{2} \Delta_0 \)
- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.
Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Sketch of the proof:
Write Δ_0 as $\partial^2 / \partial s^2 + b(\gamma(s)) \partial / \partial s$ near $x \in \Gamma(S)$. Let λ_1 and λ_2 be the eigenvalues of $(X_1 X_2 u - X_1 X_1 u X_2 X_2 u - X_2 X_1 u)(x)$ subject to $(X_0 u)(x) = 1$. In particular, we have $\lambda_1 + \lambda_2 = 1$, and if $x \in \Gamma(S)$ is elliptic or hyperbolic then $\lambda_1, \lambda_2 \neq 0$.
Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Sketch of the proof:
Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Sketch of the proof: Write Δ_0 as $\frac{\partial^2}{\partial s^2} + b(\gamma(s)) \frac{\partial}{\partial s}$ near $x \in \Gamma(S)$.
Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Sketch of the proof: Write Δ_0 as $\frac{\partial^2}{\partial s^2} + b(\gamma(s)) \frac{\partial}{\partial s}$ near $x \in \Gamma(S)$.

Let λ_1 and λ_2 be the eigenvalues of

$$
\begin{pmatrix}
X_1X_2u & -X_1X_1u \\
X_2X_2u & -X_2X_1u
\end{pmatrix}
\begin{pmatrix}
x
\end{pmatrix}
$$

subject to $$(X_0u)(x) = 1.$$
Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Sketch of the proof: Write Δ_0 as $\frac{\partial^2}{\partial s^2} + b(\gamma(s)) \frac{\partial}{\partial s}$ near $x \in \Gamma(S)$.

Let λ_1 and λ_2 be the eigenvalues of

$$
\begin{pmatrix}
X_1 X_2 u & -X_1 X_1 u \\
X_2 X_2 u & -X_2 X_1 u
\end{pmatrix}
(x) \quad \text{subject to} \quad (X_0 u)(x) = 1.
$$

In particular, we have

$$
\lambda_1 + \lambda_2 = 1.
$$
Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Sketch of the proof: Write Δ_0 as $\frac{\partial^2}{\partial s^2} + b(\gamma(s)) \frac{\partial}{\partial s}$ near $x \in \Gamma(S)$.

Let λ_1 and λ_2 be the eigenvalues of

$$
\begin{pmatrix}
X_1X_2u & -X_1X_1u \\
X_2X_2u & -X_2X_1u
\end{pmatrix}(x) \quad \text{subject to} \quad (X_0u)(x) = 1.
$$

In particular, we have

$$
\lambda_1 + \lambda_2 = 1,
$$

and if $x \in \Gamma(S)$ is elliptic or hyperbolic then $\lambda_1, \lambda_2 \neq 0$.
\(b(\gamma(s)) \sim 2s \)

\(b(\gamma(s)) \sim \lambda_i s \)
\[\gamma(s) \sim 2 \quad \gamma(s) \sim 1 \quad \lambda_i \quad s \]
\[b(\gamma(s)) \sim 2s b(\gamma(s)) \sim 1 \lambda_i s \]
\(\gamma(s) \sim 2s \)
\(b(\gamma(s)) \sim \frac{2}{s} \)
\[b(\gamma(s)) \sim \frac{2}{s} \quad b(\gamma(s)) \sim \frac{1}{\lambda_i s} \quad b(\gamma(s)) \sim \frac{1}{\lambda_i s} \]