On the optimization of stabilizing time-varying feedback controls

Martin Gugat

1. Optimal Dirichlet Boundary Control

2. Optimal Neumann Boundary Control
 - Example: Solution of (EC)

3. Stabilization
 - Example: Stationary Feedback Law
 - Example: Time-varying Feedback Control

4. Optimized Feedback
 - Examples for optimized feedback
 - Examples for optimized feedback: Korteweg-de Vries Equation

5. Stabilization of semilinear systems: Telegraph equation

6. Stabilization of a quasilinear wave equation

7. Conclusion
On the optimization of stabilizing time-varying feedback controls

Martin Gugat

Optimal Boundary Control of the Wave Equation
Optimal Dirichlet Boundary Control

\[y(t, 1) = u(t) \]
The Problem of Optimal Exact Control: The 1d-case

Assume that $T = 2k$ for some natural number k.
Assume that $T = 2k$ for some natural number k.

We consider the wave equation on $[0, T] \times [0, 1]$.
The Problem of Optimal Exact Control: The 1d-case

- Assume that $T = 2k$ for some natural number k.
- We consider the wave equation on $[0, T] \times [0, 1]$.
- Initial state $y_0 \in L^2(0, 1)$.
Assume that $T = 2k$ for some natural number k.

We consider the wave equation on $[0, T] \times [0, 1]$.

Initial state $y_0 \in L^2(0, 1)$.

Initial velocity $y_1 \in H^{-1}(0, 1)$.

The Problem of Optimal Exact Control: The 1d-case

- Assume that $T = 2k$ for some natural number k.
- We consider the wave equation on $[0, T] \times [0, 1]$.
- Initial state $y_0 \in L^2(0, 1)$.
- Initial velocity $y_1 \in H^{-1}(0, 1)$.

\[
\begin{align*}
\text{(EC)} & \quad \begin{cases}
\text{minimize } \|u\|_{L^2(0,T)}^2 \text{ subject to } \\
y(0,x) = y_0(x), \quad y_t(0,x) = y_1(x), \quad x \in (0,1) \\
y(t,0) = 0, \quad y(t,1) = u(t), \quad t \in (0,T) \\
y_{tt}(t,x) = y_{xx}(t,x), \quad (t,x) \in (0,T) \times (0,1) \\
y(T,x) = 0, \quad y_t(T,x) = 0, \quad x \in (0,1).
\end{cases}
\end{align*}
\]
Solution of Problem (EC)

- M. Gugat, G. Leugering, G. Sklyar, *Lp optimal boundary control for the wave equation*, SICON 2005

Problem **EC** has a solution u that is uniquely determined.

The optimal control u^* is 2 periodic.

$$u^*(t) = \begin{cases}
1 & t \in (0, 1) \\
-\int_0^1 y_1(s) \, ds + r + y_0(1-t) & t \in (1, 2)
\end{cases}$$

with $r = \int_0^1 \int_0^t y_1(s) \, ds \, dt$.

To make life simple, for numerical purposes, it is sometimes useful to replace the exact end conditions by a penalty term:

$$\min 1 \gamma \| u \|_{L^2(0,T)} + \| y(T, \cdot) \|_{L^2(0,1)} + \| Y \|_{L^2(0,1)}$$

For the error we get

$$\| u_\gamma - u^* \|_{L^2(0,T)} / \| u^* \|_{L^2(0,T)} = \frac{1}{2} \kappa_{\gamma + 1}.$$
Solution of Problem (EC)

- M. Gugat, G. Leugering, G. Sklyar, \(L^p \) optimal boundary control for the wave equation, SICON 2005

Problem EC has a solution \(u \) that is uniquely determined.

- The optimal control \(u_* \) is 2 periodic.
Solution of Problem (EC)

- M. Gugat, G. Leugering, G. Sklyar, *Lp optimal boundary control for the wave equation*, SICON 2005

Problem EC has a solution u that is uniquely determined.

The optimal control u_* is 2 periodic.

$$u_*(t) = \begin{cases}
\frac{1}{T} \left(- \int_0^{1-t} y_1(s) \, ds + r + y_0(1-t) \right), & t \in (0, 1) \\
\frac{1}{T} \left(- \int_0^{t-1} y_1(s) \, ds + r - y_0(t-1) \right), & t \in (1, 2)
\end{cases}$$

with $r = \int_0^1 \int_0^t y_1(s) \, ds \, dt$.

To make life simple, for numerical purposes, it is sometimes useful to replace the exact end conditions by a penalty term:

$$\min 1 \gamma \|u\|_{L^2(0,T)} + \|y(T,\cdot)\|_{L^2(0,1)} + \|Y\|_{L^2(0,1)}$$

For the error we get

$$\|u_\gamma - u_*\|_{L^2(0,T)} \leq \frac{1}{2} \kappa \gamma + 1.$$
Solution of Problem (EC)

M. Gugat, G. Leugering, G. Sklyar, *Lp optimal boundary control for the wave equation*, SICON 2005

Problem EC has a solution u that is uniquely determined.

The optimal control u_\ast is 2 periodic.

$$
 u_\ast(t) = \begin{cases}
 \frac{1}{T} \left(- \int_0^{1-t} y_1(s) \, ds + r + y_0(1-t) \right), & t \in (0,1) \\
 \frac{1}{T} \left(- \int_0^{t-1} y_1(s) \, ds + r - y_0(t-1) \right), & t \in (1,2)
\end{cases}
$$

with $r = \int_0^1 \int_0^t y_1(s) \, ds \, dt$.

To make life simple, for numerical purposes, it is sometimes useful to replace the exact end conditions by a **penalty term**:

$$
\min \frac{1}{\gamma} \| u \|_{L^2(0,T)}^2 + \| y(T, \cdot) \|_{L^2(0,1)}^2 + \| Y \|_{L^2(0,1)}^2, \quad Y'(x) = y_t(T, x).
$$
Solution of Problem (EC)

- M. Gugat, G. Leugering, G. Sklyar, \(L^p \) optimal boundary control for the wave equation, SICON 2005

Problem EC has a solution \(u \) that is uniquely determined.

- The optimal control \(u_* \) is 2 periodic.

\[
 u_*(t) = \begin{cases}
 \frac{1}{T} \left(- \int_0^{1-t} y_1(s) \, ds + r + y_0(1-t) \right), & t \in (0,1) \\
 \frac{1}{T} \left(- \int_{t-1}^t y_1(s) \, ds + r - y_0(t-1) \right), & t \in (1,2)
\end{cases}
\]

with \(r = \int_0^1 \int_0^t y_1(s) \, ds \, dt \).

- To make life simple, for numerical purposes, it is sometimes useful to replace the exact end conditions by a penalty term:

\[
 \min \frac{1}{\gamma} \|u\|_{L^2(0,T)}^2 + \|y(T,\cdot)\|_{L^2(0,1)}^2 + \|Y\|_{L^2(0,1)}^2, \quad Y'(x) = y_t(T,x).
\]

- For the error we get

\[
 \frac{\|u_{\gamma} - u_*\|_{L^2(0,T)}}{\|u_*\|_{L^2(0,T)}} = \frac{1}{2k\gamma + 1}.
\]

M. Gugat: Penalty Techniques for State Constrained Optimal Control Problems with the Wave Equation, SICON 2009
Solution of Problem (EC)

- **M. Gugat, G. Leugering, G. Sklyar, Lp optimal boundary control for the wave equation, SICON 2005**

Problem **EC** has a solution \(u \) that is uniquely determined.

- The optimal control \(u^* \) is 2 periodic.

\[
\begin{align*}
 u^*_1(t) &= \begin{cases}
 \frac{1}{T} \left(-\int_0^{1-t} y_1(s) \, ds + r + y_0(1-t)\right), & t \in (0,1) \\
 \frac{1}{T} \left(-\int_t^{t-1} y_1(s) \, ds + r - y_0(t-1)\right), & t \in (1,2)
 \end{cases}
\end{align*}
\]

with \(r = \int_0^1 \int_0^t y_1(s) \, ds \, dt \).

- To make life simple, for numerical purposes, it is sometimes useful to replace the exact end conditions by a **penalty term**:

\[
\min \frac{1}{\gamma} \| u \|^2_{L^2(0,T)} + \| y(T,\cdot) \|^2_{L^2(0,1)} + \| Y \|^2_{L^2(0,1)}, \quad Y'(x) = y_t(T, x).
\]

- For the error we get \[
\frac{\| u^*_\gamma - u^* \|^2_{L^2(0,T)}}{\| u^* \|^2_{L^2(0,T)}} = \frac{1}{2k\gamma+1}.
\]

M. Gugat: Penalty Techniques for State Constrained Optimal Control Problems with the Wave Equation, SICON 2009

- This problem has a solution also for \(T \to 0+ \)!
Example

- Let $y_0(x) = x$, $y_1(x) = 0$.

We get $r = \int_1^0 \int_t^0 y_1(s) \, ds \, dt = 0$ and the optimal control is the 2-periodic extension of $u^* (t) = \{ 1 \}$ for $t \in (0, 1)$ and $u^* (t) = \{ 1 \}$ for $t \in (1, 2)$. Hence $u^* (t) = 1$, $t \in (0, 2)$.

Thus if $T > 2$, we have a jump at time $t = 2$: $u(2 -) = -1 \neq 1 = u(2 +)$.

Hence also for continuous data, the optimal state for Dirichlet control is in general discontinuous. Continuity is an additional constraint, see M. Gugat; Optimal boundary control of a string to rest in finite time with continuous state, ZAMM, 86 (2006) pp. 134-150.
Example

- Let \(y_0(x) = x, \ y_1(x) = 0. \)
- We get \(r = \int_0^1 \int_0^t y_1(s) \, ds \, dt = 0 \) and the optimal control is the 2-periodic extension of
 \[
 u^*_t(t) = \begin{cases}
 \frac{1}{T} (1 - t), & t \in (0,1) \\
 \frac{1}{T} (1 - t), & t \in (1,2)
 \end{cases}
 \]
Example

- Let $y_0(x) = x$, $y_1(x) = 0$.
- We get $r = \int_0^1 \int_0^t y_1(s) \, ds \, dt = 0$ and the optimal control is the 2-periodic extension of
 \[u_*(t) = \begin{cases}
 \frac{1}{T} (1 - t), & t \in (0, 1) \\
 \frac{1}{T} (1 - t), & t \in (1, 2)
 \end{cases} \]
- Hence $u_*(t) = \frac{1}{T} (1 - t), t \in (0, 2)$.
Example

- Let $y_0(x) = x$, $y_1(x) = 0$.
- We get $r = \int_0^1 \int_0^t y_1(s) \, ds \, dt = 0$ and the optimal control is the 2-periodic extension of
 $$u^*_t(t) = \begin{cases} \frac{1}{T} (1 - t), & t \in (0, 1) \\ \frac{1}{T} (1 - t), & t \in (1, 2) \end{cases}$$
- Hence $u^*_t(t) = \frac{1}{T} (1 - t), t \in (0, 2)$.

Thus if $T > 2$, we have a jump at time $t = 2$: $u(2-) = -\frac{1}{T} \neq \frac{1}{T} = u(2+)$.
Example

- Let \(y_0(x) = x, \ y_1(x) = 0. \)
- We get \(r = \int_0^1 \int_0^t y_1(s) \, ds \, dt = 0 \) and the optimal control is the 2-periodic extension of

\[
 u^*_t(t) = \begin{cases}
 \frac{1}{T} (1 - t), & t \in (0, 1) \\
 \frac{1}{T} (1 - t), & t \in (1, 2)
\end{cases}
\]

- Hence \(u^*_t(t) = \frac{1}{T} (1 - t), \ t \in (0, 2). \)

Thus if \(T > 2 \), we have a jump at time \(t = 2: \ u(2-) = -\frac{1}{T} \neq \frac{1}{T} = u(2+). \)
- Hence also for continuous data, the optimal state for Dirichlet control is in general discontinuous. Continuity is an additional constraint, see M. Gugat;

Example

- Let $y_0(x) = x$, $y_1(x) = 0$.
- We get $r = \int_0^1 \int_0^t y_1(s) \, ds \, dt = 0$ and the optimal control is the 2-periodic extension of

 $$u_*(t) = \begin{cases} \frac{1}{T} (1 - t), & t \in (0, 1) \\ \frac{1}{T} (1 - t), & t \in (1, 2) \end{cases}$$

- Hence $u_*(t) = \frac{1}{T} (1 - t), t \in (0, 2)$.

Thus if $T > 2$, we have a **jump** at time $t = 2$: $u(2-) = -\frac{1}{T} \neq \frac{1}{T} = u(2+)$.

Hence also for continuous data, the optimal state for **Dirichlet** control is in general **discontinuous**. **Continuity** is an **additional constraint**, see M. Gugat;

- To do this, we need $y_0 \in H^1(0, 1)$, $y_1 \in L^2(0, 1)$.

Continuous states

- The following optimal control problem admits only continuous states:

\[
\begin{align*}
&\text{minimize } \|(u_0', u_1')\|_{2, (0, T)} \text{ subject to} \\
&u_0, u_1 \in H^1[0, T] \\
y(0, x) = y_0(x), \ y_t(0, x) = y_1(x), \ x \in (0, 1) \\
\begin{array}{|c|}
\hline
y(t, 0) = u_0(t), \ y(t, 1) = u_1(t), \ t \in [0, T] \\
\hline
\end{array} \\
y_{tt}(t, x) = y_{xx}(t, x), \ (t, x) \in (0, T) \times (0, 1) \\
y(T, x) = 0, \ y_t(T, x) = 0, \ x \in (0, 1) \\
y_0(0) = u_0(0), \ y_0(1) = u_1(0), \ 0 = u_0(T), \ 0 = u_1(T).
\end{align*}
\]

In the last line you see C^0–compatibility conditions.
Continuous states

Let $T = 2$, $y_0(x) = -1$ and $y_1(x) = 0$.

Optimal controls: $u_0(t) = u_1(t) = -1 + t/2$.

![3D plot showing the space and time intervals with a function graph]
Continuous states

- With Neumann control, Continuity is not an additional constraint!
Continuous states

- With Neumann control, Continuity is not an additional constraint!
- We will come to this later!
 Let us first look at the \(L^\infty \)-case:
 Do we get bang-bang controls?
L^∞-case: Weakness of the bang-bang principle

- $y_0 \in L^\infty(0, 1)$, $y_1 \in W^{-1,\infty}(0, 1)$.

\[
\begin{align*}
\text{(DEC}_\infty \text{)} \quad \min \ & \frac{1}{2} \|u\|_{L^\infty(0,T)}^2 \\
\text{subject to} \quad & y(0, x) = \sin(x\pi), \ y_t(0, x) = 0, \ x \in (0, 1) \\
& y(t, 0) = 0, \ y(t, 1) = u(t), \ t \in (0, T) \\
& y_{tt}(t, x) = y_{xx}(t, x), \ (t, x) \in (0, T) \times (0, 1). \\
& y(T, x) = 0, \ y_t(T, x) = 0, \ x \in (0, 1).
\end{align*}
\]
L^∞-case: Weakness of the bang-bang principle

- $y_0 \in L^\infty(0, 1)$, $y_1 \in W^{-1,\infty}(0, 1)$.

\[
\begin{aligned}
(\text{DEC}^\infty) \quad &\min \frac{1}{2} \|u\|^2_{L^\infty(0,T)} \text{ subject to } \\
&y(0, x) = \sin(x\pi), \; y_t(0, x) = 0, \; x \in (0, 1) \\
&y(t, 0) = 0, \; y(t, 1) = u(t), \; t \in (0, T) \\
&y_{tt}(t, x) = y_{xx}(t, x), \; (t, x) \in (0, T) \times (0, 1).
\end{aligned}
\]

- For $T = 2$ an optimal control is

$$u(t) = \frac{1}{2} \sin(t\pi).$$

All admissible controls have the form $u(t) + \text{const}$, so there is no admissible bang-bang control.
L^∞-case: Weakness of the bang-bang principle

- $y_0 \in L^\infty(0, 1)$, $y_1 \in W^{-1,\infty}(0, 1)$.

\[
\min \frac{1}{2} \|u\|_{L^\infty(0, T)}^2 \text{ subject to }
\begin{align*}
y(0, x) &= \sin(x\pi), \quad y_t(0, x) = 0, \quad x \in (0, 1) \\
y(t, 0) &= 0, \quad y(t, 1) = u(t), \quad t \in (0, T) \\
y_{tt}(t, x) &= y_{xx}(t, x), \quad (t, x) \in (0, T) \times (0, 1). \\
y(T, x) &= 0, \quad y_t(T, x) = 0, \quad x \in (0, 1).
\end{align*}
\]

- For $T = 2$ an optimal control is

$$u(t) = \frac{1}{2} \sin(t\pi).$$

All admissible controls have the form $u(t) + \text{const}$, so there is no admissible bang-bang control.

- Let $T = 2k$. States that can be reached by bang-bang-off controls:

$$y(x, T) \in y_0(x) + \|u\|_{\infty,(0, T)}\{-2k, -2k + 1, \ldots, 2k - 1, \ldots, 2k\}.$$
Now: Neumann boundary control

\[y_x(t, 1) = u(t) \]
Let $y_0 \in H^1(0, 1), y_1 \in L^2(0, 1)$.
The Problem of optimal exact control: Neumann

- Let \(y_0 \in H^1(0,1) \), \(y_1 \in L^2(0,1) \).

\[
\begin{align*}
\text{(EC)} & \quad \begin{cases}
\text{minimize } \|u\|_{L^2(0,T)}^2 \\
\text{subject to }
\begin{align*}
& y(0,x) = y_0(x), \quad y_t(0,x) = y_1(x), \quad x \in (0,1) \\
& y(t,0) = 0, \quad y_x(t,1) = u(t), \quad t \in (0,T) \\
& y_{tt}(t,x) = y_{xx}(t,x), \quad (t,x) \in (0,T) \times (0,1) \\
& y(T,x) = 0, \quad y_t(T,x) = 0, \quad x \in (0,1).
\end{align*}
\end{cases}
\end{align*}
\]
Méthode des caractéristiques - la clé du problème

Peinture de Maurice Quentin de La Tour.

\[y(t, x) = \alpha(x + t) + \beta(x - t) \]

From the initial conditions for \(t \in (0, 1) \):

\[\alpha(t) = \frac{1}{2} \left(y_0(t) + \int_0^t y_1(s) \, ds \right) + C, \quad \beta(t) = \frac{1}{2} \left(y_0(t) - \int_0^t y_1(s) \, ds \right) - C. \]
The optimal Neumann control

Theorem [Gugat 2013] Let \(T = K + 1 \) be even.
Theorem [Gugat 2013] Let $T = K + 1$ be even. Then the optimal control is 4–periodic, with

$$u(t) = \begin{cases} \frac{2}{T} \beta'(1 - t) = \frac{1}{T} (y'_0(1 - t) - y_1(1 - t)), & t \in (0, 1) \\ \frac{2}{T} \alpha'(t - 1) = \frac{1}{T} (y'_0(t - 1) + y_1(t - 1)), & t \in (1, 2). \end{cases}$$
The optimal Neumann control

- **Theorem** [Gugat 2013] Let $T = K + 1$ be even.
- Then the optimal control is 4–periodic, with

$$u(t) = \begin{cases} \frac{2}{T} \beta'(1 - t) = \frac{1}{T} (y_0'(1 - t) - y_1(1 - t)), & t \in (0, 1) \\ \frac{2}{T} \alpha'(t - 1) = \frac{1}{T} (y_0'(t - 1) + y_1(t - 1)), & t \in (1, 2). \end{cases}$$

- For $k \in \{0, 1, ..., (K - 1)/2\}$, $t \in (0, 2)$ we have:

$$u(t + 2k) = (-1)^k u(t).$$
Example: Optimal Neumann Control

Let $y_0(x) = 4 \sin(\frac{\pi}{2}x)$, $y_1(x) = 0$. Then $\alpha(x) = \beta(x) = 2 \sin(\frac{\pi}{2}x)$.

We obtain the optimal control

$$u(t) = \begin{cases}
\frac{2}{T} \pi \cos(\frac{\pi}{2}(1 - t)), & t \in (0, 1); \\
\frac{2}{T} \pi \cos(\frac{\pi}{2}(t - 1)), & t \in (1, 2).
\end{cases}$$

By continuation we get

$$u(t) = \frac{2}{T} \pi \cos\left(\frac{\pi}{2}(t - 1)\right).$$
Example: Minimal Control Time $T = 2$:

Optimal state for the minimal control time $T = 2$:

State $y(t, x)$ and $y_x(t, x)$ with optimal Neumann boundary control, $T = 2$. The state is continuous.
Example: Control time $T = 10$

Optimal state for the control time $T = 10$:

State $y(t, x)$ and $y_x(t, x)$ with optimal Neumann boundary control, $T = 10$.
Example: Control time \(T = 20 \)

Optimal state for the control time \(T = 20 \):

State \(y(t,x) \) and \(y_x(t,x) \) with optimal \textsc{Neumann} boundary control, \(T = 20 \).
How is the state steered to rest exactly?

- How does the exact control steer the state to rest?

For $T = 2^n$, we have n time intervals of equal length. We have a conservative system, so if the control is switched off, the energy is conserved. Moreover we have a linear system so superposition is possible. Thus it is optimal, to take in each time interval the nth part of the energy out of the system. So the system decays like $1, \frac{1}{n-1}, \frac{1}{n-2}, \ldots, \frac{1}{2}, \frac{1}{1}, 0$.

Exponential decay is completely different: Like $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ it never reaches zero!
How is the state steered to rest exactly?

- How does the exact control steer the state to rest?
- For $T = 2n$, we have n time intervals of equal length.
How is the state steered to rest exactly?

- How does the exact control steer the state to rest?
- For $T = 2n$, we have n time intervals of equal length.
- We have a conservative system, so if the control is switched off, the energy is conserved.
How is the state steered to rest exactly?

- How does the exact control steer the state to rest?
- For $T = 2n$, we have n time intervals of equal length.
- We have a conservative system, so if the control is switched off, the energy is conserved.
- Moreover we have a linear system so superposition is possible.
How is the state steered to rest exactly?

- How does the exact control steer the state to rest?
- For $T = 2n$, we have n time intervals of equal length.
- We have a conservative system, so if the control is switched off, the energy is conserved.
- Moreover we have a linear system so superposition is possible.
- Thus it is optimal, to take in each time interval the nth part of the energy out of the system.

So the system decays like $1, \frac{1}{n}, \frac{1}{2n}, \frac{1}{3n}, \ldots, \frac{1}{n}, 0$.

Exponential decay is completely different: Like $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ it never reaches zero!
How is the state steered to rest exactly?

- How does the exact control steer the state to rest?
- For $T = 2n$, we have n time intervals of equal length.
- We have a conservative system, so if the control is switched off, the energy is conserved.
- Moreover we have a linear system so superposition is possible.
- Thus it is optimal, to take in each time interval the nth part of the energy out of the system.
- So the system decays like $1, \frac{n-1}{n}, \frac{n-2}{n}, \ldots, \frac{3}{n}, \frac{2}{n}, \frac{1}{n}, 0$.

Exponential decay is completely different: Like $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ it never reaches zero!
How is the state steered to rest exactly?

- How does the exact control steer the state to rest?
- For $T = 2n$, we have n time intervals of equal length.
- We have a conservative system, so if the control is switched off, the energy is conserved.
- Moreover we have a linear system so superposition is possible.
- Thus it is optimal, to take in each time interval the nth part of the energy out of the system.
- So the system decays like $1, \frac{n-1}{n}, \frac{n-2}{n}, \ldots, \frac{3}{n}, \frac{2}{n}, \frac{1}{n}, 0$.
- Exponential decay is completely different: Like $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ it never reaches zero!
The open loop control depends on the initial state \((y_0, y_1)\). In general, this state is \textbf{not} known. What happens, if the true initial state is different from \((y_0, y_1)\)?
The open loop control depends on the initial state \((y_0, y_1)\).
In general, this state is **not** known.
What happens, if the true initial state is a different from \((y_0, y_1)\)?

Example: \(\tilde{y}_0(x) = 2x\), \(y_1(x) = 0\).
Let f be a real number. This is our feedback parameter.
Let f be a real number. This is our feedback parameter.

Introduce a feedback law (closed loop control) at $x = 1$:

$$y_x(t, 1) = -f \ y_t(t, 1)$$
Let f be a real number. This is our feedback parameter.

Introduce a feedback law (closed loop control) at $x = 1$:

$$y_x(t, 1) = -f \ y_t(t, 1)$$

On the optimization of stabilizing time-varying feedback controls.
Exponential Stability of the System

We consider the **Energy**

\[
E(t) = \frac{1}{2} \int_0^1 (y_x(t, x))^2 + (y_t(t, x))^2 \, dx.
\]
Exponential Stability of the System

- We consider the **Energy**

\[E(t) = \frac{1}{2} \int_0^1 (y_x(t, x))^2 + (y_t(t, x))^2 \, dx. \]

- For all \(f > 0 \) System **STAB** is *exponentially stable*, that is there exist \(C_1, \mu \in (0, \infty) \) such that

\[E(t) \leq C_1 E(0) \exp(-\mu t), \ (t \in [0, \infty)). \]
Exponential Stability of the System

- We consider the **Energy**

\[E(t) = \frac{1}{2} \int_0^1 (y_x(t, x))^2 + (y_t(t, x))^2 \, dx. \]

- For all \(f > 0 \) System **STAB** is **exponentially stable**, that is there exist \(C_1, \mu \in (0, \infty) \) such that

\[E(t) \leq C_1 E(0) \exp(-\mu t), \quad (t \in [0, \infty)). \]

- For \(f = 1 \) **STAB** satisfies \(y(2, x) = y_t(2, x) = 0 \), for all initial states! (*Komornik, Cox and Zuazua*)
Example: Feedback

- Feedback switched off $f = 0$ (Conservation of energy):

$$y(t, x) \text{ with } f = 0, \text{ Zero control}$$
Example: Feedback

- Feedback switched off \(f = 0 \) (Conservation of energy):

\[
y(t, x) \text{ with } f = 0, \text{ Zero control}
\]

- Feedback with \(f = 1 \):

\[
\text{State } y(t, x) \text{ with feedback for } y_0 = 4 \sin(\pi x/2), \ y_1 = 0
\]
Example: Combination $y_x = -y_t + u$

- **Example** State for the control time $T = 10$ with $f = 1$ and the optimal control from (EC) for $y_0 = 4\sin\left(\frac{\pi}{2}x\right)$, $y_1(x) = 0$ with $\tilde{y}_0(x) = 2x$, $y_1(x) = 0$.

$$y_x(t, 1) = -y_t(t, 1) + u(t)$$

state $y(t, x)$ with **Neumann**-boundary control $y_x = -y_t + u_0$, $T = 10$
Example: Combination $y_x = -y_t + u$

- **Example** State for the control time $T = 10$ with $f = 1$ and the optimal control from (EC) for $y_0 = 4 \sin(\frac{\pi}{2}x)$, $y_1(x) = 0$ with $\tilde{y}_0(x) = 2x$, $y_1(x) = 0$.

$$y_x(t, 1) = -y_t(t, 1) + u(t)$$

state $y(t, x)$ with **Neumann**-boundary control $y_x = -y_t + u_0$, $T = 10$

- Can we do better?
Optimized Feedback

To guarantee stability of the system also if an optimal control is used, we look at *optimized Feedback*. Let a feedback parameter $f \geq 0$ be given.

\[
\begin{align*}
\minimize_{u \in L_2(0, T)} & \quad \|y_{x}(t, 1)\|_2, \\
\text{subject to} & \quad y(0, x) = y_0(x), \\
& \quad y_t(0, x) = y_1(x), \\
& \quad x \in (0, 1), \\
& \quad y(t, 0) = 0, \\
& \quad y_{xx}(t, 1) = -fy_t(t, 1) + u(t), \\
& \quad t \in (0, T), \\
& \quad y_{tt}(t, x) = y_{xx}(t, x), \\
& \quad (t, x) \in (0, T) \times (0, 1), \\
& \quad y(T, x) = 0, \\
& \quad y_t(T, x) = 0,
\end{align*}
\]

For $f = 0$ we get again (EC). Here the optimal control depends on y_0, y_1 and f. Due to the objective function, the optimal value is independent of f. After time T the control u is switched off: $u(t) = 0$ for $t > T$. This yields exponential stability of the system.
Optimized Feedback

To guarantee stability of the system also if an optimal control is used, we look at optimized Feedback.

Let a feedback parameter \(f \geq 0 \) be given.

\[
\begin{aligned}
\text{minimize}_{u \in L^2(0, T)} & \| y_x(t, 1) \|_{L^2(0, T)}^2 \\
\text{subject to} & \\
y(0, x) = y_0(x), & \ y_t(0, x) = y_1(x), \ x \in (0, 1) \\
y(t, 0) = 0, & \ y_x(t, 1) = -fy_t(t, 1) + u(t), \ t \in (0, T) \\
y_{tt}(t, x) = y_{xx}(t, x), & \ (t, x) \in (0, T) \times (0, 1) \\
y(T, x) = 0, & \ y_t(T, x) = 0, \ x \in (0, 1).
\end{aligned}
\]

For \(f = 0 \) we get again (EC).

Here the optimal control depends on \(y_0, y_1 \) and \(f \).

Due to the objective function, the optimal value is independent of \(f \).

After time \(T \) the control \(u \) is switched off: \(u(t) = 0 \) for \(t > T \). This yields exponential stability of the system.
Optimized Feedback

To guarantee stability of the system also if an optimal control is used, we look at **optimized Feedback**.

Let a feedback parameter $f \geq 0$ be given.

\[
\begin{aligned}
\text{minimize}_{u \in L^2(0,T)} \|y_x(t,1)\|_{L^2(0,T)}^2 \\
\text{subject to} \\
y(0,x) = y_0(x), \ y_t(0,x) = y_1(x), \ x \in (0,1) \\
y(t,0) = 0, \ y_x(t,1) = -fy_t(t,1) + u(t), \ t \in (0,T) \\
y_{tt}(t,x) = y_{xx}(t,x), \ (t,x) \in (0,T) \times (0,1) \\
y(T,x) = 0, \ y_t(T,x) = 0, \ x \in (0,1).
\end{aligned}
\]

For $f = 0$ we get again (EC).
To guarantee stability of the system also if an optimal control is used, we look at **optimized Feedback**. Let a feedback parameter $f \geq 0$ be given.

\[
\begin{align*}
\text{(OF)} & \quad \begin{cases}
\text{minimize}_{u \in L^2(0,T)} \|y_x(t,1)\|_{L^2(0,T)}^2 \\
y(0,x) = y_0(x), \ y_t(0,x) = y_1(x), \ x \in (0,1) \\
y(t,0) = 0, \ y_x(t,1) = -fy_t(t,1) + u(t), \ t \in (0,T) \\
y_{tt}(t,x) = y_{xx}(t,x), \ (t,x) \in (0,T) \times (0,1) \\
y(T,x) = 0, \ y_t(T,x) = 0, \ x \in (0,1).
\end{cases}
\end{align*}
\]

For $f = 0$ we get again (EC).

Here the optimal control depends on y_0, y_1 and f.
Optimized Feedback

- To guarantee stability of the system also if an optimal control is used, we look at **optimized Feedback**.
 - Let a feedback parameter \(f \geq 0 \) be given.

\[
\text{(OF)} \left\{ \begin{array}{rl}
\text{minimize} & u \in L^2(0, T) \| y_x(t, 1) \|_{L^2(0, T)}^2 \\
\text{subject to} & y(0, x) = y_0(x), \ y_t(0, x) = y_1(x), \ x \in (0, 1) \\
& y(t, 0) = 0, \ y_x(t, 1) = -fy_t(t, 1) + u(t), \ t \in (0, T) \\
& y_{tt}(t, x) = y_{xx}(t, x), \ (t, x) \in (0, T) \times (0, 1) \\
& y(T, x) = 0, \ y_t(T, x) = 0, \ x \in (0, 1).
\end{array} \right.
\]

- For \(f = 0 \) we get again **(EC)**.
- Here the optimal control depends on \(y_0, y_1 \) and \(f \).
- Due to the objective function, the optimal value is independent of \(f \).
Optimized Feedback

- To guarantee stability of the system also if an optimal control is used, we look at **optimized Feedback**.
 Let a feedback parameter $f \geq 0$ be given.

\[
\begin{aligned}
\text{(OF)} & \quad \min_{u \in L^2(0,T)} \|y_x(t,1)\|_{L^2(0,T)}^2 \\
& \quad \text{subject to} \\
& \quad y(0,x) = y_0(x), \quad y_t(0,x) = y_1(x), \quad x \in (0,1) \\
& \quad y(t,0) = 0, \quad y(x,t) = -fy_t(t,1) + u(t), \quad t \in (0,T) \\
& \quad y_{tt}(t,x) = y_{xx}(t,x), \quad (t,x) \in (0,T) \times (0,1) \\
& \quad y(T,x) = 0, \quad y_t(T,x) = 0, \quad x \in (0,1).
\end{aligned}
\]

- For $f = 0$ we get again (EC).
- Here the optimal control depends on y_0, y_1 and f.
- Due to the objective function, the optimal value is independent of f.
- After time T the control u is switched off: $u(t) = 0$ for $t > T$. This yields exponential stability of the system.
The optimal control

Theorem [Gugat 2013] Let \(T = K + 1 \) be even.
The optimal control

- **Theorem** [Gugat 2013] Let $T = K + 1$ be even.
- Then the optimal control for $k \in \{0, 1, \ldots, (K - 1)/2\}$, $t \in (0, 2)$ is:

$$u(t + 2k) = \begin{cases}
\frac{(-1)^k}{T} [1 - f (T - (2k + 1))] 2\beta'(1 - t), & t \in (0, 1) \\
\frac{(-1)^k}{T} [1 - f (T - (2k + 1))] 2\alpha'(t - 1), & t \in (1, 2)
\end{cases}$$

For the minimal control time $T = 2$ we get

$$u(t) = \begin{cases}
[1 - f] \beta'(1 - t), & t \in (0, 1) \\
[1 - f] \alpha'(t - 1), & t \in (1, 2)
\end{cases}$$

In particular for $f = 1$ we get $u(t) = 0$.

In this case the feedback law already yields the optimal control!
The optimal control

- **Theorem** [Gugat 2013] Let $T = K + 1$ be even.
- Then the optimal control for $k \in \{0, 1, ..., (K - 1)/2\}$, $t \in (0, 2)$ is:

 $$u(t + 2k) = \begin{cases}
 \frac{(-1)^k}{T} [1 - f(T - (2k + 1))] 2\beta'(1 - t), & t \in (0, 1) \\
 \frac{(-1)^k}{T} [1 - f(T - (2k + 1))] 2\alpha'(t - 1), & t \in (1, 2).
 \end{cases}$$

- For the minimal control time $T = 2$ we get

 $$u(t) = \begin{cases}
 [1 - f] \beta'(1 - t), & t \in (0, 1) \\
 [1 - f] \alpha'(t - 1), & t \in (1, 2).
 \end{cases}$$
The optimal control

- **Theorem** [Gugat 2013] Let $T = K + 1$ be even.
- Then the optimal control for $k \in \{0, 1, \ldots, (K - 1)/2\}$, $t \in (0, 2)$ is:
 \[
 u(t + 2k) = \begin{cases}
 \frac{(-1)^k}{T} [1 - f(T - (2k + 1))] 2\beta'(1 - t), & t \in (0, 1) \\
 \frac{(-1)^k}{T} [1 - f(T - (2k + 1))] 2\alpha'(t - 1), & t \in (1, 2).
 \end{cases}
 \]
- For the minimal control time $T = 2$ we get
 \[
 u(t) = \begin{cases}
 [1 - f] \beta'(1 - t), & t \in (0, 1) \\
 [1 - f] \alpha'(t - 1), & t \in (1, 2).
 \end{cases}
 \]

In particular for $f = 1$ we get $u(t) = 0$.

In this case the feedback law already yields the optimal control!
Example: Minimal Control Time \(T = 2 \)

- State \(y \) for \(f = 0 \) and the optimal control from (EC) for \(y_0 = 4 \sin \left(\frac{\pi}{2} x \right) \), \(y_1(x) = 0 \) with \(\dot{y}_0(x) = 2x \), \(y_1(x) = 0 \)
Example: Minimal Control Time $T = 2$

- State y for $f = 0$ and the optimal control from (EC) for $y_0 = 4 \sin(\frac{\pi}{2} x)$, $y_1(x) = 0$ with $\ddot{y}_0(x) = 2x$, $y_1(x) = 0$

- State y with $f = 1$ and the optimal control $u = 0$ from (OF)
Example: Minimal Control Time $T = 2$

- state y with $f = \frac{1}{2}$ and the optimal control from (OF)
Example: Minimal Control Time $T = 2$

- state y with $f = \frac{1}{2}$ and the optimal control from (OF)

- State y with $f = 2$ and the optimal control from (OF)
Example: Minimal Control Time $T = 2$

- state y with $f = \frac{1}{2}$ and the optimal control from (OF)

- State y with $f = 2$ and the optimal control from (OF)

- With initial state $y_0 = 4 \sin(\frac{\pi}{2}x)$, $y_1(x) = 0$ the picture is independent of f!
The optimal control for $f = 1$ and general T

Let $T = K + 1$ be even. For $k \in \{0, 1, \ldots, (K - 1)/2\}$, $t \in (0, 2)$ we have the optimal control

$$u(t + 2k) = \begin{cases} \displaystyle (-1)^k \frac{2}{T} [1 - f (T - (2k + 1))] \beta'(1 - t), & t \in (0, 1) \\ \displaystyle (-1)^k \frac{2}{T} [1 - f (T - (2k + 1))] \alpha'(t - 1), & t \in (1, 2). \end{cases}$$

Hence for $f = 1$ the optimal control satisfies $u(t) \big|_{[T - 2, T]} = 0$.
The optimal control for \(f = 1 \) and general \(T \)

- Let \(T = K + 1 \) be even.
 For \(k \in \{0, 1, \ldots, (K - 1)/2\} \), \(t \in (0, 2) \) we have the optimal control

\[
u(t + 2k) = \begin{cases}
(-1)^k \frac{2}{T} [1 - f (T - (2k + 1))] \beta'(1 - t), & t \in (0, 1) \\
(-1)^k \frac{2}{T} [1 - f (T - (2k + 1))] \alpha'(t - 1), & t \in (1, 2).
\end{cases}
\]

- For \(2k = T - 2 \) this implies

\[
u(t + T - 2) = \begin{cases}
(-1)^k \frac{2}{T} [1 - f] \beta'(1 - t), & t \in (0, 1) \\
(-1)^k \frac{2}{T} [1 - f] \alpha'(t - 1), & t \in (1, 2).
\end{cases}
\]
The optimal control for $f = 1$ and general T

- Let $T = K + 1$ be even.

 For $k \in \{0, 1, ..., (K - 1)/2\}$, $t \in (0, 2)$ we have the optimal control

 $$u(t + 2k) = \begin{cases}
 (-1)^k \frac{2}{T} \left[1 - f \left(T - (2k + 1)\right)\right] \beta'(1 - t), & t \in (0, 1) \\
 (-1)^k \frac{2}{T} \left[1 - f \left(T - (2k + 1)\right)\right] \alpha'(t - 1), & t \in (1, 2)
 \end{cases}$$

- For $2k = T - 2$ this implies

 $$u(t + T - 2) = \begin{cases}
 (-1)^k \frac{2}{T} \left[1 - f\right] \beta'(1 - t), & t \in (0, 1) \\
 (-1)^k \frac{2}{T} \left[1 - f\right] \alpha'(t - 1), & t \in (1, 2)
 \end{cases}$$

- Hence for $f = 1$ the optimal control satisfies

 $$u(t)|_{[T-2, T]} = 0.$$

With $f = 1$ and u with all initial states at time T the zero state is reached exactly!
Example: Control Time $T = 20$

- The optimal control from (OF) for $T = 20$ and $f = 1$
Example: Control Time $T = 20$

- The optimal control from (OF) for $T = 20$ and $f = 1$

- The generated state with this control and initial state $\tilde{y}_0(x) = 2x$, $y_1(x) = 0$
Example: Control Time $T = 20$

- State y with $\tilde{y}_0(x) = 2x$, $y_1(x) = 0$, $f = \frac{1}{2}$
Example: Control Time $T = 20$

- State y with $\tilde{y}_0(x) = 2x$, $y_1(x) = 0$, $f = \frac{1}{2}$

- State y with $\tilde{y}_0(x) = 2x$, $y_1(x) = 0$, $f = 0$ (Feedback control switched off)
Korteweg-de Vries

Cerpa and Coron 2013:
Feedback stabilization with **exponential stability** with a suitably chosen kernel k for initial state with a sufficiently small L^2-norm:

\[
\begin{align*}
 y(0, x) &= y_0(x) \in L^2(0, 1) \\
 y_t + y_x + y_{xxx} + yy_x &= 0 \\
 y(t, 1) &= 0 \\
 y_x(t, 1) &= 0 \\
 y(t, 0) &= \int_0^1 k(0, z)y(t, z) \, dz
\end{align*}
\]

Method: Backstepping.
For the integral feedback, the information in $y(t, z)$, $z \in (0, 1)$ is used.
Time-varying Feedback Control: Korteweg-de Vries

The System is locally exactly controllable to zero.

L. Rosier: Control of the surface of a fluid by a wavemaker, ESAIM:COCV 10 (2004)

Optimized Feedback stabilization (with respect to y_0)

\[
\begin{aligned}
\inf_u \int_0^T y(t,0)^2 \, dt \quad &\text{subject to} \\
y(0,x) = y_0(x) \in L^2(0,1) \quad &\text{small} \\
y_t + y_x + y_{xxx} + y y_x = 0 \\
y(t,1) = 0 \\
y_x(t,1) = 0 \\
y(t,0) = \int_0^1 k(0,z)y(t,z) \, dz + u(t) \\
y(T,x) = 0.
\end{aligned}
\]

If the initial state y_0 is known exactly (which is never the case), this gives exact control to zero. Otherwise exponential stability (with $u(t) = 0$ for $t \geq T$).
Optimized Feedback Control: Korteweg-de Vries

- **Step 1:** From *(Glass, Guerrero)*: Determine an exact control \(v \) that is \(\varepsilon \)-optimal/feasible for

\[
\begin{aligned}
\inf_v \int_0^T (v(t))^2 \, dt \quad &\text{subject to} \\
y(0, x) = y_0(x) \in L^2(0, 1) \text{ small} \\
y_t + y_x + y_{xxx} + yy_x = 0 \\
y(t, 1) = 0 \\
y_x(t, 1) = 0 \\
y(t, 0) = v(t) \\
y(T, x) = 0.
\end{aligned}
\]
Optimized Feedback Control: Korteweg-de Vries

- **Step 1:** From *(Glass, Guerrero)*: Determine an exact control \(v \) that is \(\varepsilon \)-optimal/feasible for

\[
\begin{aligned}
\inf_v \int_0^T (v(t))^2 \, dt & \text{ subject to } \\
y(0, x) = y_0(x) \in L^2(0, 1) \text{ small} \\
y_t + y_x + y_{xxx} + yy_x = 0 \\
y(t, 1) = 0 \\
y_x(t, 1) = 0 \\
y(t, 0) = v(t) \\
y(T, x) = 0.
\end{aligned}
\]

- **Step 2:** Set

\[
u(t) = v(t) - \int_0^1 k(0, z)y_{y_0, v}(t, z) \, dz
\]

where \(v(t) = 0 \) for \(t > T \).

Then by *Cerpa, Coron* the system with control

\[
y(t, 0) = \int_0^1 k(0, z)y(t, z) \, dz + u(t)
\]

is exponentially stable and if \(y(0, \cdot) = y_0 \), it is steered to zero at time \(T \).
Stabilization of semilinear wave equations
Semilinear wave equation

For initial data $y_0 \in L^\infty(0, 1), \ y_1 \in W^{-1, \infty}(0, 1)$ consider a system with the nonlinear wave equation (includes telegraph equation, waterhammer eqn.)

$$y_{tt}(t, x) - 2g_y(x, y(t, x)) \ y_t(t, x) = y_{xx}(t, x) \quad (1)$$

where

$$|g_y(x, y)| \leq w \quad (2)$$

with the boundary conditions

$$y(t, 0) = 0, \quad y_x(t, 1) = -y_t(t, 1), \quad t \in (0, T).$$
Semilinear wave equation

- For initial data $y_0 \in L^\infty(0, 1)$, $y_1 \in W^{-1, \infty}(0, 1)$ consider a system with the nonlinear wave equation (includes **telegraph** equation, waterhammer eqn.)

$$y_{tt}(t, x) - 2g_y(x, y(t, x)) y_t(t, x) = y_{xx}(t, x) \quad (1)$$

where

$$|g_y(x, y)| \leq w \quad (2)$$

with the boundary conditions

$$y(t, 0) = 0, \quad y_x(t, 1) = -y_t(t, 1), \quad t \in (0, T).$$

- For $w < 1/20$, $\|y(t, \cdot)\|_{L^\infty(0,1)}$ decays exponentially with rate

$$\mu = |\ln(20w)|.$$
Semilinear wave equation

For initial data $y_0 \in L^\infty(0, 1)$, $y_1 \in W^{-1, \infty}(0, 1)$ consider a system with the nonlinear wave equation (includes \textbf{telegraph} equation, waterhammer eqn.)

$$y_{tt}(t, x) - 2g_y(x, y(t, x)) y_t(t, x) = y_{xx}(t, x)$$

where

$$|g_y(x, y)| \leq w$$

with the boundary conditions

$$y(t, 0) = 0, \quad y_x(t, 1) = -y_t(t, 1), \quad t \in (0, T).$$

For $w < 1/20$, $\|y(t, \cdot)\|_{L^\infty(0,1)}$ decays exponentially with rate

$$\mu = |\ln(20w)|.$$

Thus the decay rate becomes arbitrarily large for $w \to 0$.

Semilinear wave equation

- For initial data $y_0 \in L^\infty(0, 1), y_1 \in W^{-1, \infty}(0, 1)$ consider a system with the nonlinear wave equation (includes telegraph equation, waterhammer eqn.)

$$y_{tt}(t, x) - 2g_y(x, y(t, x))y_t(t, x) = y_{xx}(t, x)$$ \hspace{1cm} (1)

where

$$|g_y(x, y)| \leq w$$ \hspace{1cm} (2)

with the boundary conditions

$$y(t, 0) = 0, \quad y_x(t, 1) = -y_t(t, 1), \quad t \in (0, T).$$

- For $w < 1/20$, $\|y(t, \cdot)\|_{L^\infty(0,1)}$ decays exponentially with rate

$$\mu = |\ln(20w)|.$$

Thus the decay rate becomes arbitrarily large for $w \to 0$.

- Consider now stability of ISS type (see Mazenc, Prieur, MCRF 1, 2011).
Semilinear wave equation: ISS stability

For initial data $y_0 \in L^\infty(0, 1), y_1 \in W^{-1,\infty}(0, 1)$ consider a perturbed system

$$y_{tt}(t, x) - 2g_y(x, y(t, x)) y_t(t, x) = y_{xx}(t, x) + D(t, x)$$

with continuous uniformly bounded D and $(|g_y(x, y)| \leq w)$ with the boundary feedback $y(t, 0) = 0, y_x(t, 1) = -y_t(t, 1)$.
Semilinear wave equation: ISS stability

- For initial data $y_0 \in L^\infty(0,1), y_1 \in W^{-1,\infty}(0,1)$ consider a **perturbed** system

\[
y_{tt}(t,x) - 2g_y(x, y(t,x)) y_t(t,x) = y_{xx}(t,x) + D(t,x) \tag{3}
\]

with continuous uniformly bounded D and $(|g_y(x, y)| \leq w)$ with the boundary feedback $y(t, 0) = 0$, $y_x(t, 1) = -y_t(t, 1)$

Related: For the linear wave equation $g = 0$ in *Gugat, Tucsnak, Sigalotti: Robustness analysis for the boundary control of the string equation*, 2007) the influence of the position coefficient b in the feedback

\[
y_x(t, 1) = -fy_t(t, 1) - by(t, 1)
\]
on the robustness is studied:

In some cases with $b > 0$, the system is more robust with respect to D than for $b = 0$.
Semilinear wave equation: ISS stability (L^∞)

Let δ solve the linear closed loop system $\delta_{tt} = \delta_{xx} + D$, $\delta(0, x) = \delta_t(0, x) = 0$, $\delta(t, 0) = 0$, $\delta_x(t, 1) = -\delta_t(t, 1)$.
Semilinear wave equation: ISS stability \((L^\infty)\)

- Let \(\delta\) solve the linear closed loop system \(\delta_{tt} = \delta_{xx} + D\), \(\delta(0, x) = \delta_t(0, x) = 0\), \(\delta(t, 0) = 0\), \(\delta_x(t, 1) = -\delta_t(t, 1)\).

- Due to the feedback law, the solution \(\delta\) has limited memory with respect to \(D\): \(\delta(t, x)\) only depends on the data \(D(s, x)|_{s \in (t-4, t)}\)!
Semilinear wave equation: ISS stability \((L^\infty)\)

- Let \(\delta\) solve the linear closed loop system \(\delta_{tt} = \delta_{xx} + D\),
 \[\delta(0, x) = \delta_t(0, x) = 0, \quad \delta(t, 0) = 0, \quad \delta_x(t, 1) = -\delta_t(t, 1). \]

- Due to the feedback law, the solution \(\delta\) has limited memory with respect to \(D\): \(\delta(t, x)\) only depends on the data \(D(s, x)|_{s \in (t-4, t)}\)!

 This implies in particular, that

 \[
 \text{ess sup}_t \|\delta(t, \cdot)\|_{L^\infty(0,1)}
 \]

 remains bounded if \(D\) is uniformly bounded.
Semilinear wave equation: ISS stability (L^∞)

- Let δ solve the linear closed loop system $\delta_{tt} = \delta_{xx} + D$,
 $\delta(0, x) = \delta_t(0, x) = 0$, $\delta(t, 0) = 0$, $\delta_x(t, 1) = -\delta_t(t, 1)$.
- Due to the feedback law, the solution δ has limited memory with respect to D: $\delta(t, x)$ only depends on the data $D(s, x)|_{s \in (t-4, t)}$.
 This implies in particular, that

$$\text{ess sup}_t \| \delta(t, \cdot) \|_{L^\infty(0,1)}$$

remains bounded if D is uniformly bounded.
- We get the **robustness estimate** (for $k \in \{1, 2, 3, \ldots\}$)

$$\text{ess sup}_{s \in [2k, 2k+2]} \| y(s, \cdot) \|_{L^\infty(0,1)}$$

$$\leq (20w)^k \text{ess sup}_{s \in [0,2]} \| y(s, \cdot) \|_{L^\infty(0,1)} + \frac{1 - (20w)^k}{1 - 20w} \text{ess sup}_{t \in [0,2k+2]} \| \delta(t, \cdot) \|_{L^\infty(0,1)}.$$
Stabilization of quasilinear wave equations
Quasilinear wave equation

In a paper with Leugering, Wang, Tamasoiu, we have studied the pde

\[\ddot{\tilde{u}} + 2\tilde{u}\dot{\tilde{u}}_{x} - (a^2 - \tilde{u}^2)\tilde{u}_{xx} = \tilde{F}(\tilde{u}, \tilde{u}_{x}, \tilde{u}_{t}). \] (4)

with Neumann boundary control.
Quasilinear wave equation

- In a paper with Leugering, Wang, Tamasoiu, we have studied the pde
 \[
 \ddot{\tilde{u}} + 2\tilde{u}\dot{\tilde{u}}_x - (a^2 - \tilde{u}^2)\tilde{u}_{xx} = \tilde{F} (\tilde{u}, \tilde{u}_x, \tilde{u}_t).
 \] (4)

 with Neumann boundary control.

- To stabilize the system governed by the quasilinear wave equation (4) locally around a stationary state \(\bar{u}(x)\), we use boundary feedback given by
 \[
 x = 0 : \tilde{u}_x = \bar{u}_x(0) + k\tilde{u}_t, \\
 x = L : \tilde{u} = \bar{u}(L),
 \]

 with a feedback parameter \(k \in (0, \infty) \).
Quasilinear wave equation

- In a paper with Leugering, Wang, Tamasoiu, we have studied the pde

\[
\ddot{u} + 2\dot{u}\dot{u}_x - (a^2 - \ddot{u})u_{xx} = \tilde{F}(\ddot{u}, \dot{u}_x, \dot{u}_t).
\] (4)

with Neumann boundary control.

- To stabilize the system governed by the quasilinear wave equation (4) locally around a stationary state \(\bar{u}(x)\), we use boundary feedback given by

\[
\begin{align*}
 x = 0 & : \ddot{u}_x = \bar{u}_x(0) + k\ddot{u}_t, \\
 x = L & : \ddot{u} = \bar{u}(L),
\end{align*}
\]

with a feedback parameter \(k \in (0, \infty)\).

- For certain \(k > 0\), \(C^2\) solutions \(u = \ddot{u} - \bar{u}\) of the system decay exponentially:

\[
\|(u(t, \cdot), u_t(t, \cdot))\|_{H^2(0,L) \times H^1(0,L)} \leq \eta_1 \|(u(0, \cdot), u_t(0, \cdot))\|_{H^2(0,L) \times H^1(0,L)} \exp(-\bar{\mu}t)
\]
Quasilinear wave equation

- The analysis is based upon the Lyapunov function:

\[
E(t) = \int_0^L h_1(x) \left[\left((a^2 - \tilde{u}^2)u_x^2 + u_t^2 \right) + \left((a^2 - \tilde{u}^2)u_{xx}^2 + u_{tx}^2 \right) \right] \\
-2h_2(x) \left[\left(\tilde{u} u_x^2 + u_t u_x \right) + \left(\tilde{u} u_{xx}^2 + u_{tx} u_{xx} \right) \right] \, dx
\]

with the exponential weights \(h_1(x) = ke^{-\mu_1 x}, \ h_2(x) = e^{-\mu_2 x}. \)
Quasilinear wave equation

- The analysis is based upon the Lyapunov function:

\[
E(t) = \int_0^L h_1(x) \left[\left((a^2 - \tilde{u}^2) u_x^2 + u_t^2 \right) + \left((a^2 - \tilde{u}^2) u_{xx}^2 + u_{tx}^2 \right) \right] \\
-2 h_2(x) \left[\left(\tilde{u} u_x^2 + u_t u_x \right) + \left(\tilde{u} u_{xx}^2 + u_{tx} u_{xx} \right) \right] \, dx
\]

with the exponential weights \(h_1(x) = ke^{-\mu_1 x}, \ h_2(x) = e^{-\mu_2 x}. \)

- If \(\max_{(t,x)} |u(t,x)| \) is sufficiently small, the numbers \(k, \mu_1, \mu_2 \) can be chosen such that

\[
\| u_x \|^2_{H^1(0,L)} + \| u_t \|^2_{H^1(0,L)} \leq C_0 \, E(t).
\]
Conclusion

- Problems of optimal exact control provide optimal controls that should be combined with a feedback law to enhance stability.
Conclusion

- Problems of optimal exact control provide optimal controls that should be combined with a feedback law to enhance stability.
- In engineering practice, we often have nonlinear dynamics on networks:

![Network Image]

There are lots of open questions!
Merci!

- M. Gugat, G. Leugering, G. Sklyar, L^p-optimal boundary control for the wave equation, SICON 2005
- M. Gugat, Optimal boundary control of a string to rest in finite time with continuous state ZAMM, 2006
- M. Gugat, Penalty Techniques for State Constrained Optimal Control Problems with the Wave Equation, SICON 2009
- M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA Journal of Mathematical Control and Information 2010