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L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015 1 / 62



Outline

1 Introduction

2 Boundary stabilization of linear hyperbolic balance laws

3 Boundary stabilization of quasilinear hyperbolic balance
laws

4 Perspectives-Stabilization of nonlocal hyperbolic system

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015 2 / 62



Outline

1 Introduction

2 Boundary stabilization of linear hyperbolic balance laws

3 Boundary stabilization of quasilinear hyperbolic balance
laws

4 Perspectives-Stabilization of nonlocal hyperbolic system

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015 3 / 62



Introduction

Our hyperbolic balance laws is

∂u

∂t
+A(u)

∂u

∂x
= F (u), (t, x) ∈ [0, T ]× [0, L], (1.1)

where,

u = (u1, . . . , un)T is a vector function of (t, x);

A(u) has n real eigenvalues λi(u) (i = 1, · · · , n) and a complete set of left
(resp. right) eigenvectors li(u) = (li1(u), · · · , lin(u)) (resp.
ri(u) = (r1i(u), · · · , lni(u))T , (i = 1, · · · , n)):

li(u)A(u) = λi(u)li(u) ( resp. A(u)ri(u) = λi(u)ri(u). ) (1.2)

F (u) = (f1(u), · · · , fn(u))T is a given vector function of u with F (0) = 0.
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Introduction

Remark
In general, we call the following systems

∂u

∂t
+
∂g(u)

∂x
= F (u) (1.3)

to be hyperbolic balance laws, where the flux g := (g1, · · · , gn) is a vector
function of u. Obviously, system (1.3) can be written in the quasilinear form as
(1.1) with the Jacobian matrix

A(u) := D(g(u)). (1.4)
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Introduction

Many physical models are governed by linear and quasilinear hyperbolic balance
laws, for example:

The telegrapher equations (Heaviside, O. (1892))

∂t

(
I
V

)
+ ∂x

(
−L−1

e V
−C−1

e I

)
= −

(
ReL

−1
e I

GeC
−1
e V

)
.
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Introduction

The Saint-Venant equations (Barré de Saint-Venant (1871))

∂H

∂t
+

∂

∂x
(HV ) = 0,

∂V

∂t
+

∂

∂x

(
V 2

2
+ gH

)
= gSb − CV 2H−1.
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Introduction

The Saint-Venant-Exner equations (Hudson-Sweby (2003))

∂H

∂t
+ V

∂H

∂x
+H

∂V

∂x
= 0,

∂V

∂t
+ V

∂V

∂x
+ g

∂H

∂x
+ g

∂B

∂x
= gSb − C

V 2

H
,

∂B

∂t
+ aV 2 ∂V

∂x
= 0.
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Introduction

Heat exchangers (G.Bastin-J.-M.Coron (2016))

∂tH1 + V1∂xH1 +
c2

g
∂xV1 = 0

∂tV1 + ∂x(gH1 +
V 2

1

2
) +

C

2d
V1|V1| = 0

∂tT1 + ∂x(V1T1)− k1(T1 − T2)− k0(T1 − Te) = 0

∂tH2 + V2∂xH2 +
c2

g
∂xV2 = 0,

∂tV2 + ∂x(gH2 +
V 2

2

2
) +

C

2d
V2|V2| = 0

∂tT2 + ∂x(V2T2) + k2(T1 − T2) = 0
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Introduction

All these models can be rewritten as inhomogeneous hyperbolic systems:

∂u

∂t
+A

∂u

∂x
= Bu (Telegrapher equations)

∂u

∂t
+A(u)

∂u

∂x
= F (u) (Saint-Venant(-Exner), Heat exchangers equations)

Remarks
u is a vector;

Balance Laws : B 6≡ 0, F (u) 6≡ 0, otherwise conservation laws.

Assumption

Suppose that there is no zero eigenvalues for the matrix A.
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Introduction

Problem (Boundary Stabilization)

How to find a boundary feedback law such that the solution u = u(t, x) of the
hyperbolic systems with any given initial data satisfies

u(t, ·)→ 0, as t→ +∞? (1.5)

Remarks
Exponential stability: ∃ C, λ > 0, such that

‖u(t, ·)‖X ≤ Ce−λt‖u(0, ·)‖X , ∀t > 0 (1.6)

Finite-time stability: ∃tF , such that

u(t, ·) ≡ 0, ∀t ≥ tF . (1.7)
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Introduction

Homogeneous case: (i.e. B ≡ 0, F (u) ≡ 0)

(1) Characteristic method (T.T. Li, T.H. Qin (1983, 1985, 1994))

Quasilinear hyperbolic systems

ut +A(u)ux = 0

with the boundary conditions(
u−(t, 1)
u+(t, 0)

)
= F

(
u−(t, 0)
u+(t, 1)

)
(1.8)

Framework of solution: C1 norm,
Local exponential stability (i.e ‖u(0, ·)‖C1 is suitably small);
Boundary is ”dissipative”:

ρ∞(F ′(0)) < 1 (1.9)

F(0) = 0 and ρ∞(F ′(0)) := Inf{‖∆F ′(0)∆−1‖∞; ∆ ∈ Dn,+},
where Dn,+ denotes the set of n× n real diagonal matrices with strictly positive
diagonal elements.
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Introduction

Homogeneous case: (i.e. B ≡ 0, F (u) ≡ 0)

(2) Control Lyapunov Functions method (G.Bastin, J.-M.Coron, B.
d’Andréa-Novel (1999, 2007, 2008, 2014))

Quasilinear hyperbolic systems,

ut +A(u)ux = 0 (1.10)

with the boundary conditions(
u−(t, 1)
u+(t, 0)

)
= F

(
u−(t, 0)
u+(t, 1)

)
(1.11)

Local exponential stability.
Boundary is ”dissipative”:

ρ∞(F ′(0)) < 1 for C1 norm; (1.12)

ρ2(F ′(0)) < 1 for H2 norm. (1.13)
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Introduction

Complements for hyperbolic balance laws

Characteristic method and Control Lyapunov Functions method :
hyperbolic balance laws,

ut + A(u)ux = F (u) (1.14)

can be exponentially stabilized by boundary feedback provided
‖∇F (0)‖ is small enough (see T.T. Li (1994), J.-M. Coron-G.
Bastin-B. d’Andréa-Novel (2008) and C. Prieur et.al. (2008) ).
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Introduction

Complements for hyperbolic balance laws

What happens if ‖∇F (0)‖ is not small?

Characteristic method: hyperbolic balance laws

ut + A(u)ux = F (u) (1.15)

exponentially decays to zero if both boundary conditions and F (u)
are “dissipative” in some sense (see C.M. Liu and Y.Z. Li (2015)).

Control Lyapunov Functions method : A sufficient and necessary
condition is given for the existence of basic quadratic strict
control Lyapunov function for 2× 2 linear hyperbolic balance
laws. (see G.Bastin-J.M.Coron (2011))
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Introduction

All the above works are based on the static boundary output feedback (i.e a
feedback of the state values at the boundaries only).
However, static boundary output feedback can not treat all inhomogeneous
case.

Counter example (G.Bastin-J.-M.Coron, 2016)

If

L ≥ π

c
. (1.16)

there is no k ∈ R such that the equilibrium (0, 0)T ∈ L2(0, L)2 is exponentially
stable for the closed loop system

∂tS1 + ∂xS1 + cS2 = 0,

∂tS2 − ∂xS2 + cS1 = 0, t ∈ [0,+∞), x ∈ [0, 1],

S1(t, 0) = kS2(t, 0), S2(t, L) = S1(t, L).

(1.17)
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Introduction

Inhomogeneous case: (i.e. B 6= 0 and F (u) 6≡ 0)

Backstepping Method (J.-M.Coron-R. Vazquez-M. Krstic-G.Bastin
(2011, 2013)

2× 2 linear hyperbolic balance laws;

ut + Aux = Bu (1.18)

B ∈M2,2 and A = diag(−λ1, λ2) with λ1, λ2 > 0;
Full-state feedback

u−(t, L) =

∫ L

0

k(L, ξ)u(t, ξ)dξ (1.19)

Finite-time stability.
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Introduction

Remark

The backstepping method can be extended to deal with the boundary
stabilization problem of inhomogeneous quasilinear 2× 2 hyperbolic
systems (See J.-M.Coron-R. Vazquez-M. Krstic-G.Bastin (2013) and
R.Vazquez-J.-M.Coron-M. Krstic-G.Bastin (2011))
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Introduction

Inhomogeneous case: ( n× n hyperbolic balance laws)

Backstepping Method (F. Di Meglio-R.Vazquez-M.Krstic, 2013)

1 of the PDEs is controlled at its boundary and n− 1 other
PDEs, which convect in the opposite direction, are not
controlled and all have arbitrary interconnections, e.g.

ut + Aux = Bu (1.20)

where A = diag(−λ1,−λ2, · · · ,−λn−1, λn) with

λi > 0, i = 1, · · · , n.

and the only boundary feedback control is acting on un(t, 0).
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Introduction

Unfortunately, the method presented in J.-M. Coron et.al. (2013) and
R. Vazquez et.al. (2011,2013) and Di Meglio et.al. (2011, 2013) can
not be directly extended to n× n systems, especially when several
states convecting in the same direction are controlled.

Open Question (J.-M.Coron-R. Vazquez-M. Krstic-G.Bastin, SICON,
2013 )

Can we stabilize the general inhomogeneous hyperbolic systems by multi-boundary
feedback controls?
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System Description

We consider the following general linear hyperbolic system

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (2.1)

vt(t, x)− Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (2.2)

where u =
(
u1 · · ·un

)T
, v =

(
v1 · · · vm

)T
. and

Λ+ = diag(λ1 · · ·λn) Λ− = diag(µ1 · · ·µm) (2.3)

with

−µ1 < · · · < −µm < 0 < λ1 ≤ · · · ≤ λn (2.4)
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System Description

Σ±± are matrices and without loss of generality, we assume that we assume that

∀j = 1, ...,m σ−−jj = 0, (2.5)

Remark

One can do some coordinate transformation of v in order to guarantee (2.5).
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System Description

The boundary conditions are as follows

u(t, 0) = Q0v(t, 0), v(t, 1) = R1u(t, 1) + U(t) (2.6)

where Q0 and R1 are constant matrices. U(t) = (U1, · · · , Um)T are boundary
controls.

Goal

Our objective is to design a feedback control law for U(t) in order to ensure that
the closed-loop system vanishes in finite time.
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Methods: Backstepping

What is Backstepping method?

Mapping the original system to a target system which has “good” property
(e.g. finite-time stable or exponential stable) by using a invertible
backstepping transformation.

Difficulty of this method

How to choose a good transformation?

How to choose a suitable target system?
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Linear Cases

Review of 2× 2 (i.e. Λ ∈M2,2) case (JMC et.al. (2013) and R.
Vazquez et.al. (2011))

Transformation:

u(t, x) = γ(t, x)−
∫ x

0

K(x, ξ)γ(t, ξ)dξ, (2.7)

Target system

γt(t, x) + Λγx(t, x) = 0. (2.8)

The K-kernel is a matrix function of C2 on the domain

T = {(x, ξ)|0 ≤ ξ ≤ x ≤ 1}. (2.9)
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Linear Cases

Unfortunately, we can not deal with the general n× n cases by using the above
transformation and target system. If so, an overdetermined problem appears to
the K-kernel.

Question
Is it possible to change only the transformation or the target system to
achieve our purpose?

Answer: Yes!
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New target system

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) + Σ+−β(t, x)

+

∫ x

0

C+(x, ξ)α(ξ)dξ +

∫ x

0

C−(x, ξ)β(ξ)dξ
(2.10)

βt(t, x)− Λ−βx(t, x) = G(x)β(0) (2.11)

with the following boundary conditions

α(t, 0) = Q0β(t, 0), β(t, 1) = 0 (2.12)

where C+ and C− are L∞ matrix functions on the domain

T = {0 ≤ ξ ≤ x ≤ 1} , (2.13)
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New target system

while G ∈ L∞(0, 1) is a lower triangular matrix with the following structures

G(x) =


0 · · · · · · 0

g2,1(x)
. . .

. . .
...

...
. . .

. . .
...

gm,1(x) · · · gm,m−1(x) 0

 . (2.14)
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New target system

Finite-time stabilization (LH, F. Di Meglio, R. Vazquez and M.Krstic
(2015 a))

The zero equilibrium of the target system is reached in finite time t = tF , where

tF :=
1

λ1
+

m∑
j=1

1

µj
. (2.15)
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Sketch of the proof

It is easy to see that β vanishes in finite time t1 with

t1 =

m∑
r=1

1

|λr(s)|
ds. (2.16)

From the time t = t1 on, we find α becomes the solution of the following system

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) +

∫ x

0

C+(x, ξ)α(ξ)dξ (2.17)

with the boundary conditions

α(t, 0) = 0. (2.18)

Changing the status of t and x, and Equations (2.17) can be rewritten as

αx(t, x) + (Λ+)−1αt(t, x) = (Λ+)−1Σ++α(t, x) +

∫ x

0

(Λ+)−1C+(x, ξ)α(ξ)dξ

(2.19)

with the initial condition (2.18).
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Sketch of the proof

Then by the uniqueness of the system (2.18),(2.19), and noting the order of the
transport speeds of the α–system (see (2.4)), this yields that α identically
vanishes for

t ≥ 1

λ1
+

m∑
j=1

1

µj
(2.20)

Open Question

How to reduce the finite-time-control time tF ?
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Backstepping transformation

We consider the following backstepping (Volterra) transformation

α(t, x) = u(t, x) (2.21)

β(t, x) = v(t, x)−
∫ x

0

[K(x, ξ)u(ξ) + L(x, ξ)v(ξ)] dξ (2.22)

where the kernels to be determined K and L are defined on the triangular
domain T .

Important: α(t, 0) = u(t, 0), β(t, 0) = v(t, 0)
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Backstepping transformation

The original system (2.1) is mapped into the target system (2.6) if K and L
satisfy the following equations

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

µi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =

n∑
k=1

σ++
kj Kik(x, ξ) +

m∑
p=1

σ−+
pj Lip(x, ξ) (2.23)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xLij(x, ξ) + µj∂ξLij(x, ξ) =

m∑
p=1

σ−−pj Lip(x, ξ) +

n∑
k=1

σ+−
kj Kik(x, ξ) (2.24)

along with the following set of boundary conditions

Kij(x, x) = −
σ−+
ij

µi + λj

∆
= kij for 1 ≤ i ≤ m, 1 ≤ j ≤ n (2.25)

Lij(x, x) = −
σ−−ij
µi − µj

∆
= lij for 1 ≤ i, j ≤ m, i 6= j (2.26)

µjLij(x, 0) =

n∑
k=1

λkKik(x, 0)qk,j for 1 ≤ i ≤ j ≤ m. (2.27)
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Backstepping transformation

To ensure well-posedness of the kernel equations, we add the following artificial
boundary conditions for Lij(i > j)

Lij(1, ξ) = lij , for 1 ≤ j < i ≤ m. (2.28)

Remark
We can select that

Lij(1, ξ) = 0, for 1 ≤ j < i ≤ m. (2.29)
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The existence of K and L

Figure 1 : Characteristic lines of the K kernels
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The existence of K and L

Figure 2 : Characteristic lines of the L kernels
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The existence of K and L

Successive approximation method (LH, F. DiMeglio, R. Vazquez and
M. Krstic (2015 a)

K(x, ξ) =

+∞∑
q=0

∆Kq(x, ξ) (2.30)

L(x, ξ) =

+∞∑
q=0

∆Lq(x, ξ) (2.31)

where

∆Kq(x, ξ),∆Lq(x, ξ) ≤ CM
q(x− (1− ε)ξ)q

q!
. (2.32)

in which C,M > 0.
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Improved successive approximation method (LH, F.
DiMeglio, R. Vazquez and M. Krstic (2015 a)

Key point:
The proof is based on the fact that, starting from
any point (x, ξ), all the characteristic lines ”get
closer” to the line defined by x− (1− ε)ξ = 0.

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015 39 / 62



Since β(t, 1) = 0 and(
α(t, x)
β(t, x)

)
=

(
u(t, x)
v(t, x)

)
−
∫ x

0

(
0 0

K(x, ξ) L(x, ξ)

)(
u(t, ξ)
v(t, ξ)

)
dξ.

(2.33)

Our feedback laws finally is

U(t) =

∫ 1

0

[K(1, ξ)u(ξ) + L(1, ξ)v(ξ)] dξ −R1u(t, 1). (2.34)

Theorem: Finite-time stabilization (LH, F. DiMeglio, R. Vazquez and
M. Krstic (2015 a))

By U(t), the zero equilibrium of the original system is reached in finite
time t = tF .

Proof. Good! (2.34) is always invertible, i.e. there exists a matrix function
R ∈ (L∞(T ))(n+m)×(n+m), such that(

u(t, x)
v(t, x)

)
=

(
α(t, x)
β(t, x)

)
−
∫ x

0

R(x, ξ)

(
α(t, ξ)
β(t, ξ)

)
dξ. (2.35)

Since (α, β)T goes to zero in finite time t = tF , therefore (u, v)T shares this
property.
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Since β(t, 1) = 0 and(
α(t, x)
β(t, x)

)
=

(
u(t, x)
v(t, x)

)
−
∫ x

0

(
0 0

K(x, ξ) L(x, ξ)

)(
u(t, ξ)
v(t, ξ)

)
dξ.

(2.33)

Our feedback laws finally is

U(t) =

∫ 1

0

[K(1, ξ)u(ξ) + L(1, ξ)v(ξ)] dξ −R1u(t, 1). (2.34)

Theorem: Finite-time stabilization (LH, F. DiMeglio, R. Vazquez and
M. Krstic (2015 a))
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Remarks

[1] We can deal with the observer problem by using also the backstepping
approach.

[2] Our method is still valid for the case if the coefficients (Λ±, Σ±,±) are
depending on x.

[3] Counter Example: G.Bastin-JMC-2016.

S1(t, 0) =

∫ L

0

K(0, ξ)S1(t, ξ) + L(0, ξ)S2(t, ξ)dξ (2.36)
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Remarks

[5] Our kernel is probably not continuous, which is different with previous works.

Figure 3 : Kernels L11(x, ξ) and L12(x, ξ) (n = 0, m = 2).
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System Description

The system considered is

∂u

∂t
+A(x, u)

∂u

∂x
= F (x, u) (t, x) ∈ [0, T ]× [0, L], (3.1)

where

u = (u1, . . . , un)T is a vector function of (t, x);

A(x, u) := (aij(x, u))n×n is of class C2, A(x, 0) is a diagonal matrix with
distinct and nonzero eigenvalues A(x, 0) = diag(Λ1(x), · · · ,Λn(x)), which
are ordered as follows:

Λ1(x) < Λ2(x) < · · · < Λm(x) < 0 < Λm+1(x) < · · · < Λn(x),∀x ∈ [0, 1].
(3.2)
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System Description

F : [0, 1]× Rn → Rn is a vector valued function with C2 components
fi(x, u)(i = 1, · · · , n) with respect to u and

F (x, 0) ≡ 0. (3.3)

Denote

∂F

∂u
(x, 0) := (fij(x))n×n, (3.4)

we assume that fij ∈ C2([0, 1]) and

fii(x) ≡ 0. (3.5)

Remark

One can make some coordinate transformations in order to guarantee that (3.5) is
valid (see JMC (2014) and L. Hu & F. DiMeglio (2015)).
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System Description

The boundary conditions are given as follows:

x = 0 : us = Gs(u1, · · · , um), s = m+ 1, · · · , n, (3.6)

x = 1 : ur = hr(t), r = 1, · · · ,m, (3.7)

where Gs are C2 functions, and we assume that they vanish at the origin, i.e.

Gs(0, · · · , 0) ≡ 0, s = m+ 1, · · · , n, (3.8)

while H = (h1, · · · , hm)T are boundary controls.

Remark

Local well-posedness: see JMC (2008) and Tatsien Li (1994) [Remark 1.3 on
page 171] etc.
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Main Results

Theorem (LH, R. Vazquez, F. Di Meglio and M. Krstic (2015 b))

For every λ > 0, there exist δ > 0, c > 0 and a continuous linear feedback control
H, such that 0 is the exponential stable point of u = u(t, x), i.e.

‖u(t, ·)‖H2 ≤ ce−λt‖u(0, ·)‖H2 , (3.9)

provided that ‖u(0, ·)‖H2 ≤ δ.

Remark

For simplicity, we skip of C1 compatibility conditions at the points
(t, x) = (0, 0) and (0, 1);
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Sketch of the proof

[1] Linearized system is
ut + Λ(x)ux = Σ(x)u

x = 0 : us(t, 0) =
∑m
j=1Qsjuj(t, 0)

x = L : uj(t, 1) = hj(t).

(3.10)

where Λ(x) = A(x, 0) and Σ(x) = ∂F
∂u (x, 0), then we can find

hj(t) =

∫ 1

0

n∑
l=1

Kjl(1, ξ)ul(t, ξ)dξ, (j = 1, · · · ,m), (3.11)

which can stabilize the linearized system in finite-time.
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Sketch of the Proof

[2] We also use the volterra transformation

γ(t, x) = u(t, x)−
∫ x

0

K(x, ξ)u(t, ξ)dt. (3.12)

Lemma:Regularity of the direct kernel (LH, R. Vazquez, F. DiMeglio
and M. Krstic (2015 b))

Let N ∈ N+. Under the assumption that
σij ∈ CN [0, 1], λi ∈ CN [0, 1](i, j = 1, · · · , n), there exists a unique piecewise
CN (T ) solution to K kernel. Moreover, then K(·, ·) ∈ CN−1(0, 1),
K(·, 0) ∈ CN−1(0, 1) with bounded CN−1 norm.

Remark

The H2 norm of γ is equivalent to the H2 norm of u.
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Then the nonlinear target system is

γt(t, x) + Λ(x)γx(t, x)−G(x)γ(t, 0)

=F3[γ, γx] + F4[γ],
(3.13)

The boundary conditions are

x = 0 : γ+(t, 0) = Qγ−(t, 0) +GNL(γ−(t, 0)) (3.14)

and

x = 1 : γ−(t, 1) = 0. (3.15)

[3] Luckily! The usual Lyapunov function (see JMC-R.Vazquez-M.Krstic
-G.Bastin, SICON 2013) can be also used to exponentially stabilize this γ
system.
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Control Lyapunov Functions

Estimate of ‖γ‖L2

Define

V1(t) =

∫ 1

0

e−δxγ+(t, x)T (Λ+(x))
−1
γ+(t, x)dx

−
∫ 1

0

eδxγ−(t, x)TB (Λ−(x))
−1
γ−(t, x)dx.

We have

Proposition 1

For any given λ1 > 0, there exists δ1 > 0 and K2 > 0, such that

V̇1 ≤ −λ1V1 +K2

(
V

3
2

1 + ‖γx‖∞V1

)
, (3.16)

provided ‖γ‖∞ ≤ δ1.
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Control Lyapunov Functions

Estimate of ‖γt‖L2

Define ζ = γt and

V2(t) =

∫ 1

0

ζT (t, x)R[γ]ζ(t, x)dx, (3.17)

where R[γ] is a positive matrix. We have

Proposition 2

For any given λ2 > 0, there exists δ2 > 0 and K7 > 0, such that

V̇2 ≤ −λ2V2 +K7

(
‖ζ‖∞ + ‖γ‖∞

)
V2, (3.18)

provided that ‖γ‖∞ ≤ δ2.
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Control Lyapunov Functions

Estimate of ‖γtt‖L2

Define θ = γtt and

V3(t) =

∫ 1

0

θT (t, x)R[γ]θ(t, x)dx, (3.19)

We have

Proposition 3

For any given λ3 > 0, there exists δ3 > 0 and positive constants K10, K11, K12,
K13 and K14, such that

V̇3 ≤ −λ3V3 +K10‖γ‖∞V3 +K11V3V
1
2

2 +K12V2V
1
2

3 +K13V
3
2

3 +K14‖ζ‖3∞,
(3.20)

provided that ‖γ‖∞ + ‖ζ‖∞ ≤ δ3.
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Proof of main result

Denote W = V1 + V2 + V3, by Proposition 1–3, one can show that for any given
λ > 0, there exists δ > 0 and K15 > 0, such that

Ẇ ≤ −λW +K15W
3
2 , (3.21)

provided that ‖γ‖∞ + ‖ζ‖∞ ≤ δ.
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Perspectives

Non-local hyperbolic system is considered as{
ut = ux +

∫ L
0
g(x, y)u(t, y)dy

u(t, L) = U(t)
(4.1)

u is a scalar U(t) is the boundary feedback.

(4.1) may involve the traffic laws, some KdV-like equation and PDE-ODE
interconnected system (see M. Krstic, A.Smyshlyaev (2008), F. Bribiesca and
M. Krstic (2015)).
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Known results

M. Krstic, A.Smyshlyaev (2008): g(x, y) = 0, x ≤ y.
Map (4.1) into {

wt = wx

w(t, L) = 0.
(4.2)

by using Volterra transformation

u(t, x) = w(t, x)−
∫ x

0

k(x, y)w(t, y)dy (4.3)
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Known results

F. Bribiesca and M. Krstic (2015): For general g Volterra transformation fails.
Map (4.1) into (4.2) by using Fredholm transformation

u(t, x) = w(t, x)−
∫ L

0

k̃(x, y)w(t, y)dy (4.4)

provided ‖g‖ is small.

Remark

The smallness of ‖g‖ is used to guarantee the existence of k̃ and the invertibility
of the the Fredholm transformation (4.4).
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Perspectives

Main results (J.-M. Coron, LH and G. Olive (2015))

Suppose g ∈ H1(T−) ∩H1(T+), where

T− = {(x, y) ∈ (0, L)× (0, L)|x > y},
T+ = {(x, y) ∈ (0, L)× (0, L)|x < y},

Then (4.1) is finite-time stabilizable in time L if and only if (4.1) is exactly
controllable at time L.
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Sketch of proof

We also use the Fredholm transformation

u(t, x) = w(t, x)−
∫ L

0

h(x, y)w(t, y)dy (4.5)

to map the system (4.2) into (4.1). The kernel h satisfies{
hx(x, y) + hy(x, y) +

∫ L
0
G(x, τ)h(τ, y)dτ −G(x, y) = 0

h(x, 0) = h(x, L) = 0
(4.6)

We use the controllability of the original system (4.1) to prove the existence
of h;

The invertibility of h can be guaranteed if the original system (4.1) is
controllability.
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Remarks

We can also treat the equation of the more general form
ut(t, x) = ux(t, x) + α(x)u(t, x) + β(x)u(t, 0) +

∫ L
0
g(x, y)u(t, y)dy

u(t, L) =
∫ L

0
γ(x)u(t, x)dx+ U(t)

u(0, x) = u0(x).

where α, β, γ : (0, L)→ C are regular enough.

We expect that (4.1) is always controllable. However, this is NOT true.

If g(x, y) = 0, x ≤ y, (4.1) is controllable. (M. Krstic, A.Smyshlyaev (2008))
If ‖g‖ is small enough, (4.1) is controllable. (F. Bribiesca and M. Krstic
(2015))
If g(x, y) = g(x), (4.1) is controllable if and only if (J.M.Coron, LH and
G.Olive (2015))

ker(λ−A∗) ∩ kerB∗ = {0}, ∀λ ∈ C. (4.7)

Question: What about the general case g(x, y)?
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Pas un jour sans contrôle

Thank you for your attention !
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