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Introduction

Our hyperbolic balance laws is

ou ou
T A(U)% =F(u), (t,z)€[0,T]x0,L], (11)
where,

T

o u=(uy,...,u,)" is a vector function of (¢, x);

o A(u) has n real eigenvalues \;(u) (i =1,--- ,n) and a complete set of left
(resp. right) eigenvectors I;(u) = (L1 (u), -+, lin(u)) (resp.
ri(u) = (ri;(u), - 7lni(u))T7 (i=1,---,n)):

li(u)A(u) = Ai(u)li(u) ( resp. A(u)ri(u) = Xi(u)r;(u). ) (1.2)

o F(u) = (fi(u), -, fo(u))T is a given vector function of u with F(0) = 0.
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Introduction

Remark

In general, we call the following systems

ot oxr

ou n 0g(u) — F(u) (13)

to be hyperbolic balance laws, where the flux g := (g1, - ,gxs) is a vector
function of u. Obviously, system (1.3) can be written in the quasilinear form as
(1.1) with the Jacobian matrix

A(u) == D(g(u)). (1.4)

4
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Introduction

Many physical models are governed by linear and quasilinear hyperbolic balance
laws, for example:
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Introduction

Many physical models are governed by linear and quasilinear hyperbolic balance
laws, for example:

@ The telegrapher equations (Heaviside, O. (1892))

I N R.L-'I
8t< v)*aﬂc( o ):_( G0V )

Transmission line
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Introduction

@ The Saint-Venant equations (Barré de Saint-Venant (1871))

OH 0

E-ﬁ-afx(HV)—O,

oV 9 (V2 N
E)t+8x(2+gH>_ng_CVH .

Ht,m| YD N
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Introduction

@ The Saint-Venant-Exner equations (Hudson-Sweby (2003))
OH oOH ov

ot T or T =Y

oV ov OH 0B &
ot TV or Ter T, =9 O
0B , 0V

o0 TV e =0
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Introduction

o Heat exchangers (G.Bastin-J.-M.Coron (2016))

2
O, Hy + V10, Hy + %amv1 —0

V2 C
OVi + 0, (gH1—|—f)—|- V1|V1|

OT1 + 8, (ViT)) — kl(Tl T —ko(Ti —T.) =0
2
8, Hy + Vo, Hy + ‘iawv2 -0, o

V C ‘U i
)+ 57 ValVal = 0 mhs e

2
2
0:Va + 05 (gHa2 + > 0E)
0Ty + 0y (Vo) + ka(T Tz) —0 o G ! U/
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Introduction

All these models can be rewritten as inhomogeneous hyperbolic systems:

ou ou .

e + A% = Bu (Telegrapher equations)

ou ou . .

5 s A(u)% = F(u) (Saint-Venant(-Exner), Heat exchangers equations)
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Introduction

All these models can be rewritten as inhomogeneous hyperbolic systems:

ou ou .

e + A% = Bu (Telegrapher equations)

ou ou . .

5 s A(u)% = F(u) (Saint-Venant(-Exner), Heat exchangers equations)

v

@ w is a vector;
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Introduction

All these models can be rewritten as inhomogeneous hyperbolic systems:

ou ou .

e + A% = Bu (Telegrapher equations)

ou ou . .

5 s A(u)% = F(u) (Saint-Venant(-Exner), Heat exchangers equations)

v

@ w is a vector;

@ Balance Laws : B # 0, F(u) # 0, otherwise conservation laws.

@ Suppose that there is no zero eigenvalues for the matrix A.
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Introduction

Problem (Boundary Stabilization)

How to find a boundary feedback law such that the solution u = u(t, x) of the
hyperbolic systems with any given initial data satisfies

u(t,) = 0, ast— +o0? (1.5)

| \

Remarks
@ Exponential stability: 3 C, A > 0, such that

lu(t, )llx < Ce ™ |[u(0,-)]lx, Vt>0 (1.6)
@ Finite-time stability: dtp, such that

u(t,") =0, Vt>tp. (1.7)
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Introduction

Homogeneous case: (i.e. B =0, F(u) =0)

(1) Characteristic method (T.T. Li, T.H. Qin (1983, 1985, 1994))

o Quasilinear hyperbolic systems
ur + A(u)uy, =0
with the boundary conditions
u—(t,1) \ _ u—(t,0)
( us (£,0) )‘f ( us (1) (1.8)
o Framework of solution: C! norm,

o Local exponential stability (i.e ||u(0,-)||c1 is suitably small);
e Boundary is "dissipative”:

poa(F'(0)) < 1 (1.9)

F(0)=0 and poo(F'(0)) := Inf{|AF (0)A | oo; A € Dy iy 1,

where D,, | denotes the set of n X n real diagonal matrices with strictly positive
diagonal elements.
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Introduction

Homogeneous case: (i.e. B =

(2) Control Lyapunov Functions method (G.Bastin, J.-M.Coron, B.
d’Andréa-Novel (1999, 2007, 2008, 2014))

e Quasilinear hyperbolic systems,
ur + A(u)uy, =0 (1.10)

with the boundary conditions

u—(t,1) \ _ u—(t,0)
(o )=7( 063 o
o Local exponential stability.
e Boundary is "dissipative”:
poo(F'(0)) < 1 for C" norm; (1.12)
p2(F'(0)) <1 for H* norm. (1.13)

4
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Introduction

Complements for hyperbolic balance laws

o Characteristic method and Control Lyapunov Functions method :
hyperbolic balance laws,

u + A(u)u, = F(u) (1.14)

can be exponentially stabilized by boundary feedback provided
IVF(0)|| is small enough (see T.T. Li (1994), J.-M. Coron-G.
Bastin-B. d'Andréa-Novel (2008) and C. Prieur et.al. (2008) ).
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Introduction

Complements for hyperbolic balance laws

What happens if ||[VF(0)|| is not small?
o Characteristic method: hyperbolic balance laws

u + A(u)u, = F(u) (1.15)

exponentially decays to zero if both boundary conditions and F'(u)
are "dissipative” in some sense (see C.M. Liu and Y.Z. Li (2015)).

e Control Lyapunov Functions method : A sufficient and necessary
condition is given for the existence of basic quadratic strict
control Lyapunov function for 2 x 2 linear hyperbolic balance
laws. (see G.Bastin-J.M.Coron (2011))
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Introduction

All the above works are based on the static boundary output feedback (i.e a
feedback of the state values at the boundaries only).

However, static boundary output feedback can not treat all inhomogeneous
case.

Counter example (G.Bastin-J.-M.Coron, 2016)

L>-. (1.16)

ol

there is no k € R such that the equilibrium (0,0)7 € L2(0, L)? is exponentially
stable for the closed loop system

0¢S1 + 0,51 + ¢Ss = 0,

01y — 0,52 + ¢Sy =0, te[0,+00), z € [0,1], (1.17)
Si(t,0) = kSa(t,0),  So(t,L) = Sy(t, L).
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Introduction

Inhomogeneous case: (i.e. B # 0 and F(u) # 0)

o Backstepping Method (J.-M.Coron-R. Vazquez-M. Krstic-G.Bastin
(2011, 2013)

o 2 X 2 linear hyperbolic balance laws;

u; + Au, = Bu (1.18)
o B e M272 and A = diag(—/\l, /\2) with /\1, Ay > 0;
o Full-state feedback

u(t, L) = /0 k(L )ult, €)de (1.19)

o Finite-time stability.
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Introduction

The backstepping method can be extended to deal with the boundary
stabilization problem of inhomogeneous quasilinear 2 x 2 hyperbolic
systems (See J.-M.Coron-R. Vazquez-M. Krstic-G.Bastin (2013) and
R.Vazquez-J.-M.Coron-M. Krstic-G.Bastin (2011))

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015 18 / 62



Introduction

Inhomogeneous case: ( n x n hyperbolic balance laws)

o Backstepping Method (F. Di Meglio-R.Vazquez-M.Krstic, 2013)

o 1 of the PDEs is controlled at its boundary and n — 1 other
PDEs, which convect in the opposite direction, are not
controlled and all have arbitrary interconnections, e.g.

uy + Au, = Bu (1.20)
where A = diag(—\1, — X2, -+, —A\u_1, A,) with

N>0,i=1,-,n.

and the only boundary feedback control is acting on w,(¢,0).

vy
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Introduction

Unfortunately, the method presented in J.-M. Coron et.al. (2013) and
R. Vazquez et.al. (2011,2013) and Di Meglio et.al. (2011, 2013) can
not be directly extended to n x n systems, especially when several
states convecting in the same direction are controlled.

Open Question (J.-M.Coron-R. Vazquez-M. Krstic-G.Bastin, SICON,

2013 )

Can we stabilize the general inhomogeneous hyperbolic systems by multi-boundary
feedback controls?
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@ Boundary stabilization of linear hyperbolic balance laws
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System Description

We consider the following general linear hyperbolic system

u(t, ) + A ug(t,2) = ST u(t, z) + 2T o(t, 2) (2.1)
vi(t,z) — A v (t,z) = B Tu(t,z) + 7 u(t, x) (2.2)
where u = (u1 - ~un)T S (vl - -vm)T. and
AT =diag(A\1---A\n) AT =diag(py - pm) (2.3)
with
—p << Uy <0< A <<y (2.4)
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System Description

Y++ are matrices and without loss of generality, we assume that we assume that

Vj=1,..,m o7 =0, (2.5)

One can do some coordinate transformation of v in order to guarantee (2.5).
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System Description

The boundary conditions are as follows
u(t,0) = Qov(t,0), v(t,1) = Ryu(t,1) + U(¢) (2.6)

where Qo and Ry are constant matrices. U(t) = (Uy,- -+ ,U,)T are boundary
controls.

Our objective is to design a feedback control law for U(t) in order to ensure that
the closed-loop system vanishes in finite time.
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Methods: Backstepping

What is Backstepping method?

@ Mapping the original system to a target system which has “good” property
(e.g. finite-time stable or exponential stable) by using a invertible
backstepping transformation.
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Methods: Backstepping

What is Backstepping method?

@ Mapping the original system to a target system which has “good” property
(e.g. finite-time stable or exponential stable) by using a invertible
backstepping transformation.

Difficulty of this method

@ How to choose a good transformation?

@ How to choose a suitable target system?
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Linear Cases

Review of 2 x 2 (i.e. A € My,) case (JMC et.al. (2013) and R.

Vazquez et.al. (2011))

@ Transformation:

ut;a) =269~ [ K&, @)
0
@ Target system
Y (t, ) + Ay, (¢, z) = 0. (2.8)

@ The K-kernel is a matrix function of C? on the domain

T={@lb<e<a <1} (2.9)
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Linear Cases

Unfortunately, we can not deal with the general n x n cases by using the above
transformation and target system. If so, an overdetermined problem appears to
the K-kernel.
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Linear Cases

Unfortunately, we can not deal with the general n x n cases by using the above
transformation and target system. If so, an overdetermined problem appears to
the K-kernel.

@ Is it possible to change only the transformation or the target system to
achieve our purpose?
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Linear Cases

Unfortunately, we can not deal with the general n x n cases by using the above
transformation and target system. If so, an overdetermined problem appears to
the K-kernel.

@ Is it possible to change only the transformation or the target system to
achieve our purpose?

Answer: Yes!
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New target system

a(t,z) + Ao, (t,z) = ST a(t,x) + ST B(t, x)

z z 2.10
+ [ et oa@ics | o @on (210)
0 0
Bilt,x) — A= Bu(t,x) = G(2)B(0) (2.11)
with the following boundary conditions
where Ct and C~ are L* matrix functions on the domain
T={0<¢(< <1}, (2.13)
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New target system

while G € L>(0,1) is a lower triangular matrix with the following structures

0 0
Gla) = | 22 | (2.14)
(@ Gmm(@) 0

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015



New target system

Finite-time stabilization (LH, F. Di Meglio, R. Vazquez and M.Krstic

(2015 a))

The zero equilibrium of the target system is reached in finite time ¢t = tz, where

1 1
tp = )\—-I—Z— (2.15)
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Sketch of the proof

It is easy to see that 3 vanishes in finite time t; with

1
t) = ds. 2.16
=2 ) (2.16)
From the time ¢ = t; on, we find o becomes the solution of the following system
x
ayt,z) + Aag(t,2) = S a(t o) + / C* (@, §)a(§)dg (2.17)
0
with the boundary conditions
a(t,0) = 0. (2.18)
Changing the status of ¢ and z, and Equations (2.17) can be rewritten as
() + (A1) laultn) = (W) IS alt o) + [ (A1) @, Ea(€)de
0

(2.19)

with the initial condition (2.18).
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Sketch of the proof

Then by the uniqueness of the system (2.18),(2.19), and noting the order of the
transport speeds of the a—system (see (2.4)), this yields that « identically
vanishes for

t>—+» — (2.20)

How to reduce the finite-time-control time ¢? I
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Backstepping transformation

We consider the following backstepping (Volterra) transformation
alt,z) = u(t,x) (2.21)

Bt,2) = olt.a) - | K@, Ou(©) + Lz o©lde (2.22)

where the kernels to be determined K and L are defined on the triangular
domain 7.
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Backstepping transformation

We consider the following backstepping (Volterra) transformation
alt,z) = u(t,x) (2.21)

Bt,2) = olt.a) - | K@, Ou(©) + Lz o©lde (2.22)

where the kernels to be determined K and L are defined on the triangular
domain 7.

Important: «(t,0) = u(t,0), 5(t,0) = v(t,0)

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015 33 /62



Backstepping transformation

The original system (2.1) is mapped into the target system (2.6) if K and L
satisfy the following equations

for1<i<m,1<j<n

pi0a K (2, €) = N0 K ( Za**K )+ Y 0, Lip(z,6) (223)
p=1

for1<i<m,1<j<m

m

1i0z Lij (2, &) + pj0¢ Lij(x, §) = Z‘ij Lip(z,§) +Zak] ik(7,6) (2.24)

along with the following set of boundary conditions

—+
o .
Kij(x,x)z—uiiAjékij forl<i<m, 1<j<n (225
T A . L
Lij(z,z) = — =1 for1<i,5<m, 1#j (2.26)
ui —Hj
w;iLij(x,0) Z/\kK’k z,0)qx,; for1 <i<j<m. (2.27)
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Backstepping transformation

To ensure well-posedness of the kernel equations, we add the following artificial
boundary conditions for L;;(i > j)

We can select that

Li;(1,6) =0, for 1<j<i<m. (2.29)
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The existence of K and L

5 Boundary
conditions
Characteristic
1 T lines
r=E§
F ,.F
(Iq',js Iu)
(z,€)
0 1 €T

Figure 1 : Characteristic lines of the K kernels
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Boundary

The existence of K and L
¢

[t

[t

1 e 1
x=£ // _______ iconimit
/
/
(X5 (w0, £0), ¢ (w0, &), /(@6 ¢E&)
I,/
i (2.€)
o/
/,'q// |
& r =
0-,50) /\f,(lx ¢
of 1,S1
&
T 0@, @e) €=0 z
(a) Characteristic lines of the ker- (b) Characteristic lines of the ker-
nels L;; for i > j nels L;;
3 —
. Characersic
o
r=& /| Dicontimity
e,
20, €0).
(!} (0. 0). ¢ (o, ,n( &)
o
O 6) Chane)) € =01 @

(c) Characteristic lines of the ker-

nels L;j; for i < j
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The existence of K and L

Successive approximation method (LH, F. DiMeglio, R. Vazquez and

M. Krstic (2015 a)

+oo

K(z,8) =Y AK%(z,¢) (2.30)
.

L(z,§) =) ALY (z,§) (2.31)
q=0

where

AKq(z,f)’ ALq(ﬂf,f) < CMq(z _ (1 _ E)g)q )

p (2.32)

in which C, M > 0.
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Improved successive approximation method (LH, F.

DiMeglio, R. Vazquez and M. Krstic (2015 a)

1 /
v
D‘u
/
Q
o Key point:
(,€) The proof is based on the fact that, starting from
any point (z,£), all the characteristic lines " get
(z,€) closer” to the line defined by z — (1 — )& = 0.
(x,¢)
0 1 2z
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Since 4(t,1) = 0 and
alt,z) \ _ [ wtx)\  [7 0 0 u(t, &)
(500 )= (s )~ [ (i smg ) (068 ) e
(2.33)
Our feedback laws finally is
U = [ 00U + L0 9u(E)de ~ Ruut1). (239
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a(t,z) \ _ [ ult,z) | v 0 0 u(t, &)
<5<t,x>)‘<v<t,x>) / (K@c,s) L(x,@)(v(t,s))df'
(2.33)
Our feedback laws finally is
U(t) = / K(LEu(E) + L(LEw(E)] dé — Ryu(t, ). (234)

Theorem: Finite-time stabilization (LH, F. DiMeglio, R. Vazquez and

M. Krstic (2015 a))

By U(t), the zero equilibrium of the original system is reached in finite
timet =tp.

Proof. Good! (2.34) is always invertible, i.e. there exists a matrix function
R € (Lo°(T))ntm)x(ntm) “such that

( zgi; ) - ( 383 ) —/Ox R(z,¢) < ggg )df. (2.35)

Since (o, )T goes to zero in finite time t = tp, therefore (u,v)T shares this
property.
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[1] We can deal with the observer problem by using also the backstepping
approach.

[2] Our method is still valid for the case if the coefficients (A*, $%*) are
depending on z.

[3] Counter Example: G.Bastin-JMC-2016.

51(t,0) = /O K(0,6)8)(1,6) + L(0,6)Sx(t.6)de (2.36)
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Remarks

[5] Our kernel is probably not continuous, which is different with previous works.

Lip(x,¢)
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© Boundary stabilization of quasilinear hyperbolic balance
laws

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws Paris, 18 September 2015 43 / 62



System Description

The system considered is

ou ou

S+ AW = Fz.u) (L) € [0,7]x [0, L], (3.1)
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System Description

The system considered is

ou ou

S+ AW = Fz.u) (L) € [0,7]x [0, L], (3.1)

where
e u=(u,...,u,)Tis a vector function of (¢, x);
o A(z,u) := (a;j(x,u))nxn is of class C%, A(z,0) is a diagonal matrix with
distinct and nonzero eigenvalues A(x,0) = diag(A;(x), -+, An(z)), which
are ordered as follows:

A(z) <Aa(z) < - <Ap(z) <0< Apgi(z) < -+ < Ap(x),Vz € [0,1].
(32)
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System Description

e F:[0,1] x R™ — R" is a vector valued function with C?> components
filz,u)(i=1,---,n) with respect to u and
F(z,0) = 0. (3.3)
@ Denote
oF
S (2,0) 1= (i (@) (3.4)

we assume that f;; € C%([0,1]) and

fii(x) = 0. (35)

One can make some coordinate transformations in order to guarantee that (3.5) is
valid (see JMC (2014) and L. Hu & F. DiMeglio (2015)).
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System Description

The boundary conditions are given as follows:

z=0:us =Gg(u, - ,Up), s=m+1,--

x=1:u.=h.(t), r=1,--- ,m,

where G, are C? functions, and we assume that they vanish at the origin, i.e.

Gs(ov"' ,O)EO,s:m+1,~-~ ) 1,

while H = (hy,--- , hy,)T are boundary controls.

TN,

(3.8)

RENEILS

| \

@ Local well-posedness: see JMC (2008) and Tatsien Li (1994) [Remark 1.3 on

page 171] etc.

L. Hu (Shandong University, LJLL) Stabilization of hyperbolic balance laws
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Main Results

Theorem (LH, R. Vazquez, F. Di Meglio and M. Krstic (2015 b))

For every A > 0, there exist 6 > 0, ¢ > 0 and a continuous linear feedback control
H, such that 0 is the exponential stable point of u = u(t,z), i.e.

lu(t, )az < ce*u(0, )| m2, (3.9)

provided that |[u(0,-)|| g2 < 0.

RENEILS

| \

@ For simplicity, we skip of C'' compatibility conditions at the points
(t,.’t) = (070) and (Ov 1);
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Sketch of the proof

[1] Linearized system is

u + Ax)u, = X(z)u
x=0:us(t,0) = Z;n:1 Qsjuj(t,0) (3.10)
x=L:u;(t,1) = h;(t).

where A(z) = A(z,0) and X(z) = g—i(m,o), then we can find

/ 1 5 ul(t &)dgv (.7 =1, 7m)’ (311)

which can stabilize the linearized system in finite-time.
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Sketch of the Proof

[2] We also use the volterra transformation

v(t,x) = ult,z) — /Of K(x,&)u(t, &)dt. (3.12)

Lemma:Regularity of the direct kernel (LH, R. Vazquez, F. DiMeglio

and M. Krstic (2015 b))

Let N € NT. Under the assumption that

oij € CN0,1], \; € CN[0,1](i,j = 1,--- ,n), there exists a unique piecewise
C™N(T) solution to K kernel. Moreover, then K(-,-) € CN=1(0,1),

K(-,0) € CN=1(0,1) with bounded CV~! norm.

@ The H? norm of 7 is equivalent to the H? norm of w. \
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Then the nonlinear target system is

’Yt(t7 'T) + A(‘r)’YZD (t, .’L‘) - G(x)'Y(t7 O)

=F3[y, 7] + Fall, G139
The boundary conditions are
x=0:74(t,0) = Qv-(t,0) + Gnr(7-(t0)) (3.14)
and
x=1:~v_(t,1) =0. (3.15)

[3] Luckily! The usual Lyapunov function (see JMC-R.Vazquez-M Krstic
-G.Bastin, SICON 2013) can be also used to exponentially stabilize this ~
system.
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Control Lyapunov Functions

o Estimate of |||/ L=
Define

We have

Proposition 1

For any given A\; > 0, there exists ; > 0 and K5 > 0, such that

. 3
Vi < Vi + K2 (Vi + [l Vi), (3.16)

provided ||7|co < 0.
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Control Lyapunov Functions

o Estimate of ||v;|| Lz
Define { = 4 and

Va(t) = / ¢ (t, ) RIYIC (¢, 2)de, (317)

where R[] is a positive matrix. We have

Proposition 2

For any given Ay > 0, there exists 65 > 0 and K7 > 0, such that
Va < =2Va + K7 ([Clloo + 1¥lloo) Vas (3.18)

provided that [|V|eo < d2.
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Control Lyapunov Functions

o Estimate of ||y4¢ 12
Define 8 = ~;; and

Va(t) = /0 07 (¢, 2) RID10(t, ) de, (3.19)

We have

Proposition 3

For any given A3 > 0, there exists d3 > 0 and positive constants Kyg, K11, Ko,
K13 and K4, such that

. py i 3
Vs < —A3Vs + Kio|[¥]leo Vs + K11 VaVy? + K12VaVi2 + Ki3Vi? + Kua||C|I2,,
(3.20)

provided that ||7]loc + [[¢]loc < J3.
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Proof of main result

Denote W = V; + Vi + V3, by Proposition 1-3, one can show that for any given
A > 0, there exists § > 0 and K15 > 0, such that

W < AW+ Ki5W2, (3.21)

provided that ||V|loo + [|¢]]oo < .
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@ Perspectives-Stabilization of nonlocal hyperbolic system
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Non-local hyperbolic system is considered as

{ ur = ug + fi gz, y)u(t,y)dy (4.1)
u(t,L) =U(t) |

@ u is a scalar U(t) is the boundary feedback.

e (4.1) may involve the traffic laws, some KdV-like equation and PDE-ODE
interconnected system (see M. Krstic, A.Smyshlyaev (2008), F. Bribiesca and
M. Krstic (2015)).
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Known results

e M. Krstic, A.Smyshlyaev (2008): g(z,y) =0, = < y.
Map (4.1) into

(o 42

by using Volterra transformation

u(t, z) = wit,z) — /O " k(o y)w(t,y)dy (4.3)
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Known results

o F. Bribiesca and M. Krstic (2015): For general g Volterra transformation fails.
Map (4.1) into (4.2) by using Fredholm transformation

L ~
ult, x) = w(t, z) - / F(e, y)w(t,y)dy (4.4)

provided ||g|| is small.

The smallness of ||g|| is used to guarantee the existence of & and the invertibility
of the the Fredholm transformation (4.4).
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Main results (J.-M. Coron, LH and G. Olive (2015))

Suppose g € H'(7T_) N H'(T..), where

T ={(z,y) € (0,L) x (0, L)|z >y},
71_ = {(:l?,y) S (07L) X (0,L)|ZE < y}a

Then (4.1) is finite-time stabilizable in time L if and only if (4.1) is exactly
controllable at time L. )
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Sketch of proof

We also use the Fredholm transformation

L
ult, x) = w(t, z) — / W, yyw(t,y)dy (4.5)

to map the system (4.2) into (4.1). The kernel h satisfies

{ (( ) + hy(,y) + [ G, )h(r, y)dr — G(z,y) = 0 ws)

h(z,0) = h(z, L) = 0

@ We use the controllability of the original system (4.1) to prove the existence
of h;

@ The invertibility of h can be guaranteed if the original system (4.1) is
controllability.
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@ We can also treat the equation of the more general form

<t x) = w x) +a(@)u(t, ) + Bla)ult,0) + [ g(z, y)ult,y)dy
fo u(t,z)dz + U(t)
<o, x) = °<x>.

where «, (3, v :(0,L) — C are regular enough.
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@ We can also treat the equation of the more general form

<t x) = ux@ x) +a(@)u(t, ) + Bla)ult,0) + [ g(z, y)ult,y)dy
fo u(t,z)dz + U(t)
<o,x> = °<x>.

where «, (3, v :(0,L) — C are regular enough.
o We expect that (4.1) is always controllable. However, this is NOT true.
o If g(z,y) =0,z <y, (4.1) is controllable. (M. Krstic, A.Smyshlyaev (2008))
o If ||g|| is small enough, (4.1) is controllable. (F. Bribiesca and M. Krstic
(2015))
o If g(z,y) = g(x), (4.1) is controllable if and only if (J.M.Coron, LH and
G.Olive (2015))

ker(A — A*) NkerB* = {0}, VA € C. (4.7)

Question: What about the general case g(x,y)?
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Pas un jour sans contrdle

Thank you for your attention |
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