Minimization principles in human motions: the inverse optimal control approach

Frédéric JEAN

ENSTA ParisTech, Paris (and Team GECO, INRIA Saclay)

Groupe de Travail Contrôle

Paris 6, novembre 2011
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Inverse optimal control

- Analysis/modelling of human motor control
 → looking for optimality principles

- Subjects under study:
 - Arm pointing motions
 - Goal oriented human locomotion
 - Saccadic motion of the eyes

- Mathematical formulation: inverse optimal control

Given $\dot{X} = \phi(X, u)$ and a set Γ of trajectories, find a cost $C(X_u)$ such that every $\gamma \in \Gamma$ is solution of

$$\inf \{C(X_u) : X_u \text{ traj. s.t. } X_u(0) = \gamma(0), X_u(T) = \gamma(T)\}.$$
Difficulties:

- \(\Gamma = \) experimental data (noise, feedbacks, etc)
- Dynamical model not always known (← hierarchical optimal control)
- Limited precision of both dynamical models and costs
 \(\Rightarrow \) necessity of stability (genericity) of the criterion
- Non well-posed inverse problem
- No general method

Validation method: a program in three steps

1. Modelling step: propose a class of optimal control problems
2. Analysis step: enhance qualitative properties of the optimal synthesis
 \(\rightarrow \) reduce the class of problems
 (using geometric control theory)
3. Comparison step: numerical methods
 \(\rightarrow \) choice of the best fitting \(L \) (identification)
- **Difficulties:**
 - $\Gamma =$ experimental data (noise, feedbacks, etc)
 - Dynamical model not always known (← hierarchical optimal control)
 - Limited precision of both dynamical models and costs
 \Rightarrow necessity of stability (genericity) of the criterion
 - Non well-posed inverse problem
 - No general method

- **Validation method: a program in three steps**
 1. Modelling step: propose a class of optimal control problems
 2. Analysis step: enhance qualitative properties of the optimal synthesis
 \rightarrow reduce the class of problems
 (using geometric control theory)
 3. Comparison step: numerical methods
 \rightarrow choice of the best fitting L (identification)
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Arm pointing motions

with B. Berret, C. Papaxanthis, T. Pozzo (INSERM Dijon), J.-P. Gauthier (Univ. Toulon) and C. Darlot (CNRS - Telecom ParisTech)

- Pointing motions in a vertical plane (1, 2, or 3 degrees of freedom)
- Fast motions in fixed time
Typical experimental data for 1 dof
Typical experimental data for 2 dof

Arm pointing motions

F. Jean (ENSTA ParisTech)
Inverse optimal control
Paris 6, 2011 9 / 47
Main characteristics

Some strong qualitative characteristics:

- simultaneous inactivations of opposing muscles;
- asymmetric velocity profile
 (acceleration phases shorter than the deceleration ones);

... and more quantitative ones:

- (for 2 et 3 dof) curvature of the finger trajectory;
- (for 3 dof) final configuration of the arm.
Main characteristics

Some strong qualitative characteristics:

- **simultaneous inactivations** of opposing muscles;
- asymmetric velocity profile
 (acceleration phases shorter than the deceleration ones);

... and more quantitative ones:

- (for 2 et 3 dof) curvature of the finger trajectory;
- (for 3 dof) final configuration of the arm.
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Modelling

Arm = controlled mechanical system described by:
- generalized coordinates $x \in \mathbb{R}^n$ for n dof
- an inertia matrix $M(x)$ (positive definite);

and submitted to two kind of forces:
- $\psi(x, \dot{x}) = \text{gravity} + \text{frictions} + \text{Coriolis}$;
- $\tau(x, u) = \text{action of the muscles (torques)}$;

Here, direct control of each dof, i.e. $\tau(x, u) = u \in \mathbb{R}^n$

$$\rightarrow \quad M(x)\ddot{x} = \psi(x, \dot{x}) + u,$$

$$\Leftrightarrow \quad \dot{X} = \phi(X, u), \quad X = (x, \dot{x}) \in \mathbb{R}^{2n}, \quad u \in \mathbb{R}^n.$$
Muscles dynamics

Several possible modelling for the action of the muscles u:

1. Bounds on the torque u

$$u \in [u_1^-, u_1^+] \times \ldots \times [u_n^-, u_n^+], \quad u_i^- < 0 < u_i^+$$

2. Gradient constraints: $\dot{u} = v$

$$v \in [v_1^-, v_1^+] \times \ldots \times [v_n^-, v_n^+], \quad v_i^- < 0 < v_i^+$$

3. Agonistic-antagonistic pairs: $u = u_1^1 - u_2^2$

$$0 \leq u_i^1 \leq u_i^+ , \quad 0 \leq u_i^2 \leq -u_i^-$$

4. Pair of muscles with 1st-order dynamic: $u = u_1^1 - u_2^2$

$$\begin{align*}
\dot{u}_i^1 &= -\frac{1}{\sigma_{i1}}u_i^1 + v_i^1 \\
\dot{u}_i^2 &= -\frac{1}{\sigma_{i2}}u_i^2 + v_i^2
\end{align*}$$

$$\text{[control} = (v_i^1, v_i^2 \geq 0)\text{]}$$
Muscles dynamics

Several possible modelling for the action of the muscles u:

1. **Bounds on the torque u**

 $u \in [u_1^-, u_1^+] \times \ldots \times [u_n^-, u_n^+], \quad u_i^- < 0 < u_i^+$

 [control = u]

2. **Gradient constraints: $\dot{u} = v$**

 $v \in [v_1^-, v_1^+] \times \ldots \times [v_n^-, v_n^+], \quad v_i^- < 0 < v_i^+$

 [control = v]

3. **Agonistic-antagonistic pairs: $u = u^1 - u^2$**

 $0 \leq u_i^1 \leq u_i^+, \quad 0 \leq u_i^2 \leq -u_i^-$

 [control = (u^1, u^2)]

4. **Pair of muscles with 1st-order dynamic: $u = u^1 - u^2$**

 $$
 \begin{align*}
 \dot{u}_i^1 &= -\frac{1}{\sigma_i^1} u_i^1 + v_i^1 \\
 \dot{u}_i^2 &= -\frac{1}{\sigma_i^2} u_i^2 + v_i^2
 \end{align*}
 $$

 [control = $(v_i^1, v_i^2 \geq 0)$]
Optimal control problem

- **Criterion:** $J(u) = \int_0^T f(X, u) \, dt$.

Hyp. $u \mapsto f(X, u)$ strictly convex.

- **Initial data:** $X_s = (x_s, 0)$, target: $X_t = (x_t, 0)$.
- The time $T > 0$ is fixed.

Optimal control problem

(\mathcal{P}) minimise the integral cost $J(u)$ among the trajectories of $\dot{X} = \phi(X, u)$ joining X_s to X_t in time T.

Theorem. The minimum of (\mathcal{P}) is reached by some optimal trajectory.
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Necessary condition

Definition

\(u \) contains an **inactivation** if one of its components \(u_i \) is \(\equiv 0 \) on a non-empty interval.

\[\text{Not}^\circ: SC = \text{set of functions } f(X, u) \text{ such that } u \mapsto f(X, u) \text{ is strictly convex and differentiable.} \]

Theorem

For a generic cost \(f \in SC \), no minimizing control of \((P)\) contain inactivation.

\[\Rightarrow \text{the cost } f \text{ is necessarily non differentiable w.r.t. } u \]

(Proof: Pontryagin Maximum Principle + Thom transversality)
Pontryagin Maximum Principle

For $P \in \mathbb{R}^{2n}$ and $\lambda \leq 0$, one defines the *Hamiltonian*:

$$h(\lambda, X, P, u) = \lambda f(X, u) + P^T \phi(X, u),$$

Then, if $(X(t), u^*(t))$ is an optimal trajectory of (\mathcal{P}), there exists a curve $P(t) \in \mathbb{R}^{2n}$ (the *adjoint vector*) and $\lambda \leq 0$ such that:

1. $\dot{X}_i = \frac{\partial h}{\partial P_i}$ and $\dot{P}_i = -\frac{\partial h}{\partial X_i}$;

2. $h(\lambda, X(t), P(t), u^*(t))$ is maximal w.r.t u, $\forall t$.
Sufficient condition

Constraints on the cost:

- necessarily non differentiable w.r.t. u
- related to energetic consumption

Candidates: functions of the *absolute work* of the controlled forces.

- Work of the controlled forces:

 $$w = \int ud\mathbf{x} = \int \sum_{i=1}^{n} u_i dx_i = \int \sum_{i=1}^{n} u_i \dot{x}_i dt.$$

- Measure of the energetic consumption = absolute work:

 $$\dot{Aw} = \int \dot{Aw}(X, u), \quad \dot{Aw}(X, u) = \sum_{i=1}^{n} |u_i \dot{x}_i|, \quad X = (x, \dot{x})$$

 $\rightarrow \dot{Aw}$ non differentiable w.r.t. u when one component $u_i = 0$.
Form of the costs: $J(u) = \int_0^T f(X, u) dt$ with

$$f(X, u) = \phi(\dot{A}w, X, u), \quad \frac{\partial \phi}{\partial \dot{A}w} \neq 0$$

Theorem (Inactivation Principle)

Minimizing such a cost $J(u)$ implies the occurrence of inactivations in every optimal trajectory of (P) when T is small enough.
Proof \((n = 1 \text{ and } f(X, u) = |\dot{x}u| + \text{differentiable fn})\)

Let \(u^*\) be a minimizing control.

- **Fact N\(^1\):** \(u^*\) is continuous.
- **Fact N\(^2\):** For \(T\) close to \(T_{\text{min}}\), \(u^*\) change of sign when \(\dot{x} > 0\) (change of signs close to the ones of the control at \(T_{\text{min}}\))

Condition 2 of the Maximum Principle: \(u^*(t)\) maximize \(h\)

\[
\Rightarrow 0 \in \partial_u h \quad \text{(or } 0 = \frac{\partial h}{\partial u} \text{ if } h \text{ differentiable w.r.t. } u)\]

where \(h = -f(X, u) + P^T\phi(X, u)\)
Arm pointing motions

Here: \(h = -\dot{x}|u| + g(X, P, u) \) where \(g(X, P, u) \) differentiable w.r.t. \(u \)

\[
\Rightarrow \quad 0 \in \partial_u h = -\dot{x} \partial_u |u^*| + \frac{\partial g}{\partial u}(X, P, u^*)
\]

- \(u^* > 0 \Rightarrow \partial_u |u^*| = 1 \quad \& \quad \frac{\partial g}{\partial u} = \dot{x} \)

- \(u^* < 0 \Rightarrow \partial_u |u^*| = -1 \quad \& \quad \frac{\partial g}{\partial u} = -\dot{x} \)

- \(u^* = 0 \Rightarrow \partial_u |u^*| = [-1, 1] \)

and \(\frac{\partial g}{\partial u} \in [-\dot{x}, \dot{x}] \)

Thus, when the sign of \(u^* \) changes, \(\frac{\partial g}{\partial u} \) passes from \(\dot{x} \) to \(-\dot{x} \) **continuously**

\[\Rightarrow\] inactivation!!
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Choice of the cost

- Integral cost = compromise between Aw and a “comfort term”

$$J(u) = Aw + \int_0^T \tilde{f}(x, y, u) dt.$$

- For the simulations, \tilde{f} is chosen as the energy of the acceleration:

$$\tilde{f}(X, u) = \sum_{i=1}^{n} \alpha_i (\ddot{x}_i)^2$$

→ simulations do not depend significantly on the parameters $\alpha_i > 0$
Optimal strategies (1 dof)
- for T small, inactivations close to the velocity peak;
- disappearing of the inactivations when T increases.
Asymmetries and inactivations (2 dof)
Outline

1. **Inverse optimal control**

2. **Arm pointing motions**
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. **Goal oriented human locomotion**
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Goal-oriented human locomotion

with Y. Chitour, F. Chittaro, and P. Mason (LSS)

Initial point \((x_0, y_0, \theta_0)\) \rightarrow Final point \((x_1, y_1, \theta_1)\)

\((x, y \text{ position, } \theta \text{ orientation of the body})\)

QUESTIONS:

Which trajectory is experimentally the most likely?
What criterion is used to choose this trajectory?
Examples of recorded trajectories
(data due to G. Arechavaleta and J-P. Laumond)
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Modelling goal oriented human locomotion

HYPOTHESIS:
the chosen trajectory is solution of a minimization problem

\[
\min \int L(x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}, \ldots) dt
\]
among all “possible” trajectories
joining the initial point to the final one.

→ TWO QUESTIONS:

- What are the possible trajectories? dynamical constraints?
- How to choose the criterion? (inverse optimal control problem)

Dynamical Constraints

\[\text{[Arechavaleta-Laumond-Hicheur-Berthoz, 2006] (=[\text{ALHB}])} \]

\[\downarrow \]

1st experimental observation: **if target far enough**, the velocity is perpendicular to the body

\[\dot{x} \sin \theta - \dot{y} \cos \theta = 0 \]

nonholonomic constraint!

\[(\text{Dubins}) \rightarrow \begin{cases}
\dot{x} = v \cos \theta \\
\dot{y} = v \sin \theta
\end{cases} \quad v = \text{tangential velocity}. \]
Dynamical Model

- 2nd experimental observation in [ALHB]:
 the velocity has a positive lower bound, \(v \geq a > 0 \),
 and is a function (almost constant) of the curvature
 \(\Rightarrow \) The trajectories may be parameterized by arc-length
 and the problem is geometric (the curves do not depend on \(\frac{ds}{dt} \))
 \(\Rightarrow \) \(v \equiv 1 \).

- The whole problem is invariant by rototranslations
 \(\Rightarrow \) \(L \) independent of \((x, y, \theta) \)
 + the initial point can be chosen as \((x, y, \theta)(0) = 0 \)
Dynamical Model

- Previous observations: $L = L(\dot{\theta}, \ddot{\theta}, \ldots)$
- Trajectories obtained through a minimization procedure

 \[\Rightarrow \text{trajectories in a complete functional space, } \theta \in W^{k,p}, \text{ and} \]
 \[L = L(\dot{\theta}, \ldots, \theta^{(k)}) \text{ convex w.r.t. } \theta^{(k)} \]

\[\rightarrow \text{the trajectories are solutions of the optimal control problem} \]

\[\min C_L(u) = \int_0^T L(\dot{\theta}, \ldots, \theta^{(k)}) dt \]

among all trajectories of

\[\begin{aligned}
\dot{x} &= \cos \theta \\
\dot{y} &= \sin \theta \\
\theta^{(k)} &= u
\end{aligned} \quad u \in L^p, \]

s.t. \((x, y, \theta)(0) = 0 \quad \text{and} \quad (x, y, \theta)(T) = (x_1, y_1, \theta_1) := X_1. \]
The class of admissible costs

Definition

\(\mathcal{L}_k \) = set of functions \(L = L(\dot{\theta}, \ldots, \theta^{(k)}) \) such that:

- \(L \) is smooth (at least \(C^2 \))
- 0 is the unique minimum of \(L \) (normalization \(L(0) = 1 \))
- \(L \) is strictly convex w.r.t. \(\theta^{(k)} \)
- \(L(\dot{\theta}, \ldots, \theta^{(k-1)}, u) \geq C|u|^p \) for \(|u| > R \)

Physiologically, \(k \geq 3 \) is not reasonable \(\Rightarrow \) \(k = 1 \) or \(k = 2 \)

\(\rightarrow \) The class of admissible costs is \(\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 \)
Inverse Optimal Control Problem

Given experimental data, infer a cost function $L \in \mathcal{L}_k$, $k = 1$ or 2, such that the recorded trajectories are optimal solutions of

$$
\begin{align*}
\min C_L(u) &= \int_0^T L(\dot{\theta}, \ldots, \theta^{(k)}) \, dt \\
\text{subject to} \quad &
\begin{cases}
\dot{x} = \cos \theta \\
\dot{y} = \sin \theta \\
\theta^{(k)} = u
\end{cases}
\\
\text{with} \quad & (x, y, \theta)(0) = 0 \quad \text{and} \quad (x, y, \theta)(T) = X_1, \quad T \text{ not fixed.}
\end{align*}
$$

MAIN QUESTIONS

- Stability of the direct problem
- What is the value of k?
 (+ asymptotic analysis)
Outline

1. Inverse optimal control

2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations

3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Analysis of $P_k(L)$ – General Results

Proposition

- For every target X_1, there exists an optimal trajectory of $P_k(L)$.
- Every optimal trajectory satisfies the Pontryagin Maximum Principle.

REMARKS:

- The control system is controllable
- The proof of existence uses standard arguments (cf. Lee & Markus)
- The optimal control does not belong \textit{a priori} to $L^\infty([0,T])$. But:

Lemma

For (x_1, y_1) far away from 0, the optimal control is uniformly bounded.

→ not necessary to put an a priori bound on the control
CASE \(L = L(\dot{\theta}) \in \mathcal{L}_1 \)

\[
H = p_1 \cos \theta + p_2 \sin \theta + p_3 \dot{\theta} - \nu L(\dot{\theta}) \equiv 0
\]

- No abnormal extremals \(\rightarrow \) optimal traj. are \(C^\infty \) \((\nu = 1) \)
- **Adjoint Equation**: \((p_1, p_2)\) are constant and
 using \(\frac{\partial H}{\partial u} = 0 \), the adjoint equation writes as an ODE:
 \[
 \ddot{\theta} = G_L(\theta, \dot{\theta}; (p_1, p_2)), \quad \theta(0) = 0
 \]

CASE \(L = L(\dot{\theta}, \ddot{\theta}) \in \mathcal{L}_2 \)

\[
H = p_1 \cos \theta + p_2 \sin \theta + p_3 \dot{\theta} + p_4 \ddot{\theta} - \nu L(\dot{\theta}, \ddot{\theta}) \equiv 0
\]

- No abnormal extremals \(\rightarrow \) optimal traj. are \(C^\infty \) \((\nu = 1) \)
- **Adjoint Equation**: \((p_1, p_2)\) are constant and
 \[
 \theta^{(4)} = F_L(\theta, \dot{\theta}, \ddot{\theta}, \theta^{(3)}; (p_1, p_2)),
 \]
 with initial data: \((\theta, \theta^{(3)})(0) = (0, 0)\) \[transversality condition\]
Stability results

We say that $L_\varepsilon \in \mathcal{L}$ converges to $L_0 \in \mathcal{L}$ if:

- $|L_\varepsilon(\dot{\theta}, \ddot{\theta}) - L_0(\dot{\theta}, \ddot{\theta})| \text{ or } |L_\varepsilon(\dot{\theta}, \ddot{\theta}) - L_0(\dot{\theta})| \leq C_\varepsilon |\ddot{\theta}|^p$ when $L_\varepsilon \in \mathcal{L}_2$,
- $|L_\varepsilon(\dot{\theta}) - L_0(\dot{\theta})| \leq C_\varepsilon |\dot{\theta}|^p$ when L_0 and $L_\varepsilon \in \mathcal{L}_1$.

Notation: $\mathcal{T}(L, X_1) = \text{the set of trajectories } (x, y, \theta, \dot{\theta}) \text{ s.t.}$

- (x, y, θ) is optimal for $P_1(L)$ with final point X_1 if $L \in \mathcal{L}_1$;
- $(x, y, \theta, \dot{\theta})$ is optimal for $P_2(L)$ with final point X_1 if $L \in \mathcal{L}_2$.

Theorem

If $X_1^\varepsilon \rightarrow X_1$, L_ε converges to L_0, and $(x_\varepsilon, y_\varepsilon, \theta_\varepsilon, \dot{\theta}_\varepsilon) \in \mathcal{T}(L_\varepsilon, X_1^\varepsilon)$, then

$$d_{\text{unif}}((x_\varepsilon, y_\varepsilon, \theta_\varepsilon, \dot{\theta}_\varepsilon), \mathcal{T}(L_0, X_1)) \rightarrow 0$$

(+ uniform convergence of $\ddot{\theta}_\varepsilon$ and $\theta_\varepsilon^{(3)}$ if $L_\varepsilon \in \mathcal{L}_2$ under add. hypothesis).
Stability results

→ Optimal trajectories + adjoint equations are stable under perturbations of the cost.

Consequences
- Stability of the direct problem
- Our modelling is compatible with the physiology
- A solution “up to perturbations” is sufficient

Question
Can we choose, up to perturbations, a cost in \mathcal{L}_1? (i.e. a cost that depends only on the curvature)
Outline

1. Inverse optimal control
2. Arm pointing motions
 - Modelling
 - Necessary and sufficient conditions for inactivation
 - Validation/Simulations
3. Goal oriented human locomotion
 - Modelling
 - Analysis of the direct problem
 - Locomotion depends only on $\dot{\theta}$
Remark on the problem $P_1(L)$

If $L \in \mathcal{L}_1$, optimal solutions parameterized by $(p_1, p_2, \dot{\theta}(0))$ and:

$$H = p_1 \cos \theta + p_2 \sin \theta + \dot{\theta} L'(\dot{\theta}) - L(\dot{\theta}) \equiv 0$$

If $\dot{\theta}(t_0) = 0$, then $p_1 \cos \theta(t_0) + p_2 \sin \theta(t_0) = 1$

\Rightarrow all minimizers deduced from the ones parameterized by $(1, p_2, 0)$

\rightarrow one-parameter family of curves (up to rotation + translation)

- For $L \in \mathcal{L}_k$, $\mathcal{M}(L) = \{\text{minimizers } (x, y, \theta) \text{ of } P_k(L) \text{ s.t. } \dot{\theta} = 0 \text{ once}\}$
- Given t, define the transformation $\Phi_t : \mathcal{M}(L) \rightarrow \mathbb{R}^3$ by

$$\Phi_t(x, y, \theta) = (\bar{x}(t), \bar{y}(t), \bar{\theta}(t))$$

(only depends on $(x(t_0), y(t_0), \theta(t_0))$ where t_0 is such that $\dot{\theta}(t_0) = 0$)

Proposition

If $L \in \mathcal{L}_1$, for every fixed t, the set $\Phi_t(\mathcal{M}(L))$ is a curve in \mathbb{R}^3.
Numerical test

- Numerical test: apply the transformation Φ_t to the recorded curves. Does it give a curve?

YES!

(Φ_t applied at different times to ~ 200 recorded trajectories)
Validity of the test

Consider a cost $L \in \mathcal{L}_2$.

Theorem

- There exists an open set \tilde{M} of minimizers (x, y, θ) of $P_2(L)$ s.t. $\dot{\theta} = 0$ at some time (\tilde{M} close to the straight line).
- For every $t > 0$, the map Φ_t is of rank ≥ 2 on \tilde{M}.

Idea of the proof:

- Parameterization of minimizers by initial adjoint vector
- Continuity of the adjoint vector w.r.t. the goal
 (\leftarrow stability results)
Conclusion

Models with $L = L(\dot{\theta})$ should be sufficient to describe human locomotion.
References

