
Observation of solutions of the Neutron Transport
Equation in the diffusion limit.

Claude Bardos

Laboratoire Jacques Louis Lions Universite Denis Diderot Paris
claude.bardos@gmail.com

Collaboration with Kim Dang Phung

Claude Bardos Observation and diffusion



Two approaches.

1 Combine the estimates (now classical involving Green function or
Carleman estimates) for observation control and stabilization of so-
lutions of the diffusion equation with the diffusion approximation
to obtain related results for the solutions of the neutron transport
equation.

2 Use the diffusion approximation to contribute to the understanding
of the classical estimates for the diffusion equation.
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Transport Equation.

∂t f (x , v , t) + v · ∇x f =

ˆ
RN

[k(x , v ′, v)f (v ′)− k(x , v , v ′)f (v)]dv ′

Detailed balance
ˆ

RN
k(x , v , v ′)dv ′ =

ˆ
RN

k(x , v ′, v)dv ′

(x , v , t) 7→ f (x , v , t) is a function defined on the phase space Ω×RN

and describes the density of particles which at the point x and time
t do have the velocity v .
It was as introduced by Lorentz (1905) for a gas of electrons.
Many further applications, electrons in semi conductors , plasma ,
radiative transfer and interaction of neutrons with uranium kernels.
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An elementary version which contains most of the
mathematical subtleties x ∈ Ω ω ∈ SN−1

∂tuε+
ω ·∇xuε

ε
+

1
ε2
σε(x)(uε− uε) = 0 , u =

1
|SN−1|

ˆ
u(x , ω)dω

• All the particles have the same kinetic energy v = ω ∈ SN−1

• Ω ⊂ RN
x is either the torus TN = RN/ZN or a domain with smooth

boundary and exterior normal ~nx In this second case a boundary
condition has to be prescribed:
Specular :

x ∈ ∂Ω⇒ u(x , ω) = u(x ,R(ω)) ,R(ω) = ω − 2 ~nx(ω · ~nx)

Absorbing :

u(x , ω, t)
∣∣(Γ−) = 0 , Γ− = {(x , ω) ∈ ∂Ω× SN−1 , ω · ~nx < 0 }

Or other types....
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Scaling

ε is a scaling parameter which will play an important role later and
σε(x) ≥ 0 represent the opacity of the media.
The behavior of the solution results from the competition between
the advection term ω · ∇x and the relaxation term σ(x)(u − u) and
the role of ε is to measure the relative strenght of these two effects.
More over such ε is motivated by physic.
Examples:
• scattering cross-section of neutrons collisions of non fission type in
uranium oxide ' 10cm−1

• scattering cross-section of neutrons collisions in water 0.1cm−1

• 100 times more in uranium than in water.
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The best way to compare effect of the advection and the effect of
the relaxation to equilibrium is to consider the the diffusion approxi-
mation .
Also useful for the issue of time asymptotic behavior.
This may emphasize the way macroscopic estimates work for control
and observation.
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Formal estimates for t > 0 Valid for all type of boundary
condition.

• Maximum principle:

inf
(x ,ω)∈Ω×SN−1

uε(x , ω, 0) ≤ uε(x , ω, t) ≤ sup
(x ,ω)∈Ω×SN−1

uε(x , ω, 0) ;

• Energy estimate:

1
2

ˆ
Ω×SN−1

|uε(x , ω, t)|2dxdω+

ˆ
Ω×SN−1

1
ε2
σε(x)(uε− uε)2dxdωdx

=
1
2

ˆ
Ω×SN−1

‖uε(x , ω, 0)|2dxdω .

Hence the solution is described (in any Lp , 1 < p ≤ ∞) by a con-
traction semi group etTε .
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Discontinuous and infinite diffusion

Both for physical reasons and to contribute to the understanding of
relations with observation and control theory it is convenient to con-
sider the degenerate diffusion non only with discontinuous diffusion
coefficients but also for degenerate diffusion and to use variational
formulation:

= (1/ )

2B

1B

3B

4B

A

=1/

The spatial domain Ω = A ∪ B with smooth boundary Γ = ∂Ω;
here B = B1 ∪ . . . ∪ B4
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Well posed Variationnal formulation.

M(x) = M(x)T ∈ RN×N , ∀x ∈ Ω ξ ·M(x)ξ ≥ α|ξ|2

Assume M(x) ∈ L∞(A) infinite in B discontinuous on some closed
surfaces Σ ⊂ A.

H = L2(Ω) ∩ {∇v
∣∣B = 0} ,

V := {v ∈ H1(Ω : M
1
2 )\∇v

∣∣B = 0} = H ∩ H1(Ω)

t 7→ ρ(t) ∈ C (Rt+ ;H) ∩ L2(Rt+ ;V)with ∂tρ ∈ L2(Rt+ ;V ′) , ρ
∣∣
t=0 = ρin

d
dt

ˆ
Ω
ρ(t, x)w(x)dx +

ˆ
Ω
∇w(x) ·M(x)∇xρ(t, x)dx = 0 ,∀w ∈ V .

1
2

ˆ
Ω
|ρ(t, x)|2dx +

ˆ t

0

ˆ
Ω
∇xρ(s, x) ·M(x)∇xρ(s, x)dxds

=
1
2

ˆ
Ω
|ρ(0, x)|2dx .
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Equivalent formulation of the variational problem and
Convergence theorem

Theorem.
(C. B., E. Bernard, F. Golse , R. Sentis)



∂tρ = 1
N divx(σ(x)−1∇xρ) , x ∈ A

∂~nρ
∣∣
∂Ω

= 0 ,

[< nM · ∇xρ >=
∂ρ

∂nM
]
∣∣
Σ

= 0 ρ
∣∣
∂Bl

= ρl (t) , l = 1, . . . ,m

ρ̇l (t) =
1
|Bl |

ˆ
∂Bl

σ(x)−1 ∂ρ

∂n
(t, x)dS(x)

ρ
∣∣
t=0 = ρin

Then uε with initial data uε(x , ω, 0) = ρin → ρ in L2(Ω× SN−1)
uniformly in t ∈ [0,T ] .

1
ε

(uε − uε)→ −σ(x)−1ω · ∇ρ(t, x) in L2([0,T ]× A× SN−1) .
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Operator Formalism

With V being dense in H and the evolution equation is described in
H by the analytic semi group e−tA which preserve the domain of
Aα, 0 ≤ α .
In particular

V = D(A
1
2 ) and ‖e−tAu‖V ≤

C√
t
‖u|‖H
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Main ideas in the proof

For simplicity, consider the case where σ ≡ 1 in A (diffusive region)
and σ ≡ 0 in Bl for l = 1, . . . ,m
(1) A priori energy estimate

1
2

ˆ
Ω

 
SN−1

uε(t, x , ω)2dωdx

+
1
ε2

ˆ ∞
0

ˆ
A

 
SN−1

(uε − uε)2(s, x , ω)dωdxds

≤ 1
2

ˆ
Ω
ρin(x)2dx

By Banach-Alaoglu’s theorem:

uε⇀u in L∞(R+; L2(Ω× SN−1)) and

qε :=
1
ε

(uε − uε)⇀q in L2(R+ × A× SN−1)
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(2) Limiting structure of uε on A as ε→ 0:

u(t, x , ω) = ρ(t, x) , for a.e. ω ∈ SN−1 , x ∈ A t > 0

(3) Limiting structure of uε on Bl as ε→ 0:

ε∂tuε + ω · ∇xuε = 0 x ∈ Bl , |ω| = 1

Therefore
ω · ∇xu = 0 x ∈ Bl , |ω| = 1
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In addition

ε∂tuε + ω · ∇xuε = −1x∈Aqε bounded in L2
t,x ,ω

implying equality of the internal and external traces of u on ∂Bl :

ω · ∇xu = 0 x ∈ Bl , |ω| = 1 and u
∣∣
∂Bl×SN−1 = ρ

∣∣
∂Bl

Therefore x 7→ u(t, x , ω) is constant along a.e. straight line with
direction ω (characteristics), and since Bl is convex

ρ(t, x) = ρl (t) :=

 
∂Bl

ρ(t, x)ds(x) , x ∈ ∂Bl

and thus

u(t, x , ω) = ul (t) :=

 
Bl

u(t, x)dx = ρl (t) , x ∈ ∂Bl , |ω| = 1
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(4) Write transport equation in the sense of distributions with test
functions φ ≡ φ(x) in V := {v ∈ H1(Ω) ,∇v∣∣B = 0}, where

d
dt

ˆ
Ω
uε(t, x)φ(x)dx =

1
ε

ˆ
Ω
ω · ∇xφ(x)uε(t, x)dx

=
1
ε

ˆ
A
ωuε(t, x) · ∇xφ(x)dx

=

ˆ
A
ωqε(t, x) · ∇xφ(x)dx

because ωuε = ω(uε − uε) = ωqε
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(5) Observe that, on A

ωqε = −ω⊗2 · ∇xuε − εω∂tuε⇀− 1
N∇xρ

in L2(R+ × A× SN−1)

(6) Finally uε⇀ρ ≡ ρ(t, x) in L∞(R+; L2(Ω× SN−1)) with

ρ ∈ L2(R+;V) ∩ Cb(R+;H)

and, for each test function φ ∈ V = H1 ∩ {∇v
∣∣
A = 0},

d
dt

ˆ
Ω
uε(t, x)φ(x)dx =

ˆ
A

1
N∇xρ(t, x) · ∇xφ(x)dx .

This is the Lions-Magenes variational formulation of the diffusion
problem with infinite diffusion in Bl for each l = 1, . . . ,m.
Transmission condition results from the fact that both ρ(t, ·) and φ
belong to H .
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Theorem.

On B σε(x) = o(ε2) , on A σε(x) ≥ a > 0 , uε(x , ω, 0) = ρ(x , 0)⇒
uε → ρ in C (Rt

t ; L2(Ω)) ∩ L2(Rt ;V) strong .

1
2

ˆ
Ω
|ρ(t, x)|2dx +

ˆ t

0

ˆ
Ω

1
Nσ(x)

|∇xρ(s, x)|2dxds =
1
2

ˆ
Ω
|ρ(0, x)|2dx

1
2

ˆ
Ω×SN−1

|uε(x , ω, t)|2dxdω +

ˆ t

0

ˆ
Ω×SN−1

1
ε2
σε(x)(uε− uε)2dxdωds

=
1
2

ˆ
Ω×SN−1

|ρ(x , 0)|2dx .

lim
ε→0

1
2

ˆ
Ω×SN−1

|uε(x , ω, t)|2dxdω ≥ 1
2

ˆ
Ω
|ρ(t, x)|2dx

lim
ε→0

ˆ t

0

ˆ
Ω×SN−1

1
ε2
σε(x)(uε− uε)2dxdωds ≥

ˆ t

0

ˆ
Ω×SN−1

(weak lim
ε→0

(

√
σε(x)(uε− uε)

ε
))2dωdxds
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End of Proof

On B σε(x) = o(ε2)⇒
√
σε(x)(uε− uε)

ε
⇀ 0

On A
ε√
σε(x)

∂tuε +
1√
σε(x)

ω · ∇xuε +

√
σε(x)(uε− uε)

ε
= 0

⇒
√
σε(x)(uε − uε)

ε
⇀ − 1√

σε(x)
ω · ∇xρ

lim
ε→0

ˆ t

0

ˆ
Ω×SN−1

1
ε2
σε(x)(uε− uε)2dxdωds

≥
ˆ t

0

ˆ
Ω

1
σ(x)

ˆ
SN−1

(ω · ∇xρ(x , s))2dωdxds

=

ˆ t

0

ˆ
Ω

1
Nσ(x)

|∇xρ(s, x)|2dxds .
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Improving the error estimate with B = ∅

Theorem.
For uε(x , v , t) solution of the rescaled transport equation (with, in
the presence of boundary, reflection or absorbing condition) and
initial data uε(x , v , 0) = ρ(x , 0) in V , the convenient space (H1

0 (Ω)
for absorbing boundary condition and H1(Ω) for reflection
boundary condition) one has:

‖uε(x , v , t)− ρ(x , t)‖L2(Ω×SN−1) ≤ ε
1
2C‖ρ0‖

1
2
V‖ρ0‖

1
2
L2(Ω)

.
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Proof

∂t(uε − (ρ− εω · ∇xρ))+
ω ·∇x(uε − (ρ− εω · ∇xρ))

ε

+
1
ε2
σε(x)((uε − (ρ− εω · ∇xρ))− ((uε − (ρ− εω · ∇xρ))

= ε∂tω · ∇xρ+ (−∂tρ+ (ω · ∇x)⊗
2
ρ) .

With ρ solution of the limit equation and

(uε − (ρ− εω · ∇xρ)) = (uε − uε) + (uε − ρ+ εω · ∇xρ)

one has:ˆ
Ω×SN−1

(−∂tρ+ (ω · ∇x)⊗
2
ρ)((uε − uε) + (uε − ρ+ εω · ∇xρ))dxdω

=

ˆ
Ω×SN−1

(−∂tρ+ (ω · ∇x)⊗
2
ρ)(uε − uε)dxdω .
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And eventually:

|
ˆ t

0

ˆ
Ω×SN−1

(−∂tρ+ (ω · ∇x)⊗
2
ρ)(uε − uε)dxdωds|

≤ ε(
ˆ t

0

ˆ
Ω×SN−1

(−∂tρ+ (ω · ∇x)⊗
2
ρ)2dxdωds)

1
2

(

ˆ t

0

ˆ
Ω×SN−1

1
ε2

(uε − uε)2dxdωds)
1
2

≤ Cε‖ρ(., 0)‖H1(Ω)‖ρ(., 0)‖L2(Ω)

By the same tokenˆ t

0

ˆ
Ω×SN−1

ε∂t(ω · ∇xρ)(uε − ρ+ εω · ∇xρ)dxdωds

= ε2
ˆ t

0

ˆ
Ω×SN−1

∂t(ω · ∇xρ)
uε − uε
ε

dxdωds

ε2

2

ˆ
Ω×SN−1

((ω · ∇xρ(x , t))2 − (ω · ∇xρ(x , 0))2)dxdω|

≤ Cε2‖ρ(., 0)‖H1(Ω)‖ρ(., 0)‖L2(Ω) .
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Observation of Transport via diffusion

• For use of radiative material for non destructive analysis.
• For potential application for control and stabilisation.
• For a better understanding of the relations between different esti-
mates closely related to solutions.
• The only thing available is to combine classical estimates for dif-
fusion approximation with the above error estimate.
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Observation and frequency

u′(t) +Au = 0 A = A∗ , (A(u), v) = a(u, v) a(u, u) ≥ ‖u‖2V ,

fk(u) = fk(u0) =
(Ak+1(u0), u0)

(Ak(u0), u0)

Nk(t) =
(Ak+1(u)(t), u(t))

(Ak(u)(t), u(t))
,

dNk , (t)

dt
< 0⇒ Nk(t)(u) ≤ fk(u) ,

(Aku(0), u(0)) ≤ eT fk(u0)(Aku(T ), u(T )) .
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Unique Continuation

• If a solution u(x ,T ) = eTAu0 , u0 ∈ H is equal to 0 for any x ∈ Ω
it is identically equal to zero on Ω× R+

t .
• If ∂k

x u(x ,T ) = ∂k
x (eTAu0)(x) = 0 for all k at one point x0 ∈ A

u(x , t) ≡ 0 on A× {T} .
Hence every where (Landis and Oleinik (1968-1974). In particular if
u(x ,T ) is zero on an open set Ω̃ ⊂ Ω

Theorem.
Let U being a domain of unique continuation (for sake of simplicity
U = Ω̃× {T} or U = Ω̃× (T − δ,T ) with Ω̃ ⊂ A .
Then for any s > 0 there exists a bounded positive function
fs(‖u0‖D(As)) such that one has:

‖u0‖L2(Ω) ≤ fs(U, ‖u0‖D(As))‖etAu0‖L2(U)

Proof By contradiction and compactness.
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An example of general but " conditional " observation
theorem.

Theorem.

For any Ω̃ ⊂ Ω and any s > 0 there exists a bounded function
f (Ω̃, s, ‖ρ0‖D(As)) such that any sequence of solutions uε(x , ω, t)
of the transport equation with well prepared initial data
uε(x , ω, 0) = ρ0(x) ∈ D(As) satisfies the relation:

‖ρ0‖L2(Ω) ≤ f (Ω̃, s, ‖ρ0‖D(As)) lim
ε→0
‖uε‖L2(Ω̃×SN−1) (1)
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Proof

If (??) would be wrong there would exists a sequence of uε(n)(x , ω, t)
of solutions of the transport equation with initial data uε(n)(x , ω, 0) =
ρn(x , 0) and ‖ρ(x , 0)‖D(As)) ≤ C <∞ such that

‖ρn(x , 0)‖L2(Ω) ≥ α > 0 and lim
ε→0
‖uε(n)‖L2(Ω̃×SN−1) = 0

Then with the point wise (in time) convergence of the diffusion ap-
proximation and the compact injection of D(As) in H the sequence
ρn(x , 0) → ρ(x , 0) 6= 0 which will be the initial data for a solu-
tion e−tA(ρ(x , 0)) which vanishes on the set of uniqueness Ω̃×{T}
Hence the contradiction.
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Remark

Assume Ω = A ∪ B with B 6= ∅ then for the diffusion equation
the u ≡ 0 propagates from any subset of unique continuation to
A × R+

t ⇒ ρ = 0 on ∂B × R+
t and therefore on B since ρ(x , t)

does not depends on x in B and therefore one has the global unique
continuation as used above.
On the other hand ρ = 0 in B × R+

t implies that ρ(x , t) = 0 for
x ∈ ∂B .
However for ∂nρA(x , t) one has only

1
|Bl |

ˆ
∂Bl

σ(x)−1∂ρA

∂n
(t, x)dS(x) = 0

which does not seems enough to obtain the unique continuation in
A .
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This indicates that the rate function fs(U, ‖u0‖D(As)) may be very
sensitive to the variations of σ(x) even when σ(x) ≥ α > 0. and
that in presence of the relaxation term the things may not be so
simple depending on the size of the action of this operator.
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Evaluation of f in term of frequency and for B = ∅ I

Start from estimations of observation for the genuine diffusion equa-
tion....Obtained with Carleman estimates or / with comparison with
the Green function of the heat equation... For instance I will start
from (Phung and Wang) : For some c one has:

‖eT∆ρ0‖L2(Ω) ≤ De
c2
T ‖ρ0‖

c
1+c
L2(Ω)
‖eT∆ρ0‖

1
1+c

L2(Ω̃)

With T ≥ δ > 0 and frequency estimate this gives:

‖ρ0‖H1(Ω) ≤ f1(ρ0)‖ρ0‖L2(Ω) ≤ Df1(ρ0)e(c1f0(ρ0)T )(

ˆ
Ω̃

(eT∆ρ0)(x))2dx)
1
2
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Evaluation of f in term of frequency and for B = ∅ II

Theorem.

For any Ω̃ ⊂ Ω there exists 4 “universal constants" δ, c ,C ,D such
that for 0 < δ < T any solution uε(x , ω, t) of the rescaled
transport equation well prepared initial data
uε(x , ω, 0) = ρ0(x) ∈ H1

0 (Ω) satisfies the relation:

‖ρ0‖H1(Ω)(1−
√
εCDf1(ρ0)ecf0(ρ0)T ) ≤ Df1(ρ0)ecf0(ρ0)T‖uε‖L2(Ω̃×SN−1) .

In all what follows C represent a constant related to the diffusion ap-
proximation and D to local and frequency estimates for the diffusion
equation.
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Corollary.
For ε small enough with respect to the frequency of the solution

ε ≤ (CDf1(ρ0))−2e−2cf0(ρ0)Tα2 with 0 < α < 1

one has the following estimate on the source in term of observation
on an arbitrarily small small open set Ω̃ ⊂ Ω at any time T ≥ δ > 0

‖ρ0‖H1(Ω) ≤
Df1(ρ0)

1− α
ecf0(ρ0)T‖uε‖L2(Ω̃×SN−1) .
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Proof

Start from

‖ρ0‖H1(Ω) ≤ Df1(ρ0)ecf0(ρ0)T‖ρ(x ,T )‖L2(Ω̃)

≤ Df1(ρ0)ecf0(ρ0)T‖ρ(x ,T )− uε‖L2(Ω̃×SN−1) + Df1(ρ0)ecf0(ρ0)T‖uε‖L2(Ω̃×SN−1)

≤
√
εCDf1(ρ0)ecf0(ρ0)T‖ρ0‖H1(Ω) + Df1(ρ0)e2cf1(ρ0)T‖uε‖L2(Ω̃×SN−1)

or finally:

‖ρ0‖H1(Ω)(1− CDf1(ρ0)
√
εecf0(ρ0)T ) ≤ Df1(ρ0)ecf1(ρ0)T‖uε‖L2(Ω̃×SN−1) .
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Comments I

• Without the advection term the information would not propagate
from one part of the domain to the rest of this domain therefore the
advection operator plays an important role.
• On the other hand no hypothesis of geometric control is present.
This is due to the fact that the effect of the relaxation term is en-
hanced when ε→ 0 then all directions are involved.
• It is only at the limit that the action of the diffusion is determining.
An interpretation of the connection between these two aspect would
be to consider the operator

σ(x)

ε2
(u(x , ω)− u(x))

as a "jump process" similar to a stochastic process σ∂Bt in the
derivation of the Brownian motion.
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Comment II

The competition between advection and relaxation may also appear
in the following approach.

∂tuε +
1
ε
ω · ∇xuε +

1
ε2

(uε(x , ω)− uε) = 0

∂tuε +∇x
ωuε
ε

= 0

∂tuε − (ω · ∇x)⊗2uε = ∂tω · ∇uε
ε∂2

t uε + ∂tω · ∇uε = 0

∂tuε + ε∂2
t uε −

1
N

∆uε = (ω · ∇x)⊗2(uε − uε) = εrε .

A perturbation of

ε∂2
t uε −∆uε + ∂tuε = 0

Then Lopez, Zhang and Zuazua J. Math. Pures Appl. 79, 8 (2000)
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Comment III

• The proof of the convergence estimates works also for a piecewise
σ with constant diffusion with discontinuities on a surface Σ

0 < α ≤ σε(x) ≤ β <∞

reason is that with q+ = q− and
1
σ+

∂nq+ =
1
σ−

∂nq−

the interface term
1
ε

ˆ
Σ

ˆ
SN−1

ω · ~n[(uε − ρ+ + ε
1
σ+

ω · ∇xρ+)2

− (uε − ρ− + ε
1
σ−

ω · ∇xρ−)2]dωdΣ = 0 .

Then Le Rousseau Robbiano Invent math (2011).
• I do not know how to extend the above result to the case of x ∈
B 6= ∅ ⇒ σε(x)→ 0 . There is the above rate of convergence f but
no explicit estimate!
What about Le Rousseau -Robbiano in the presence of transparent
region??
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Conclusion: A final remark about large time behavior

Above estimates are made for finite time 0 < t < T and ε → 0 to
compare with more classical results consider in Ω×SN−1 (Ω convex
and bounded and reflecting boundary conditions, or Ω = (R/Z)d i.e.
periodic boundary conditions) solutions of total mean value zero:

∂tuε +
ω · ∇uε

ε
+
σε
ε2

(uε − uε) = 0ˆ ˆ
uε(x , ω)dxdω = 0

Then the solution is given by a contraction semi group e−tTε
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1 If ∀x ∈ Ω σε(x) ≥ α > 0 then spectra(e−tTε)∩{e−tα < |z | < 1}
is a set of eigenvalues of finite multiplicity with the leading eigenvalue

etλε

being simple real and and strictly less than 1 Moreover when ε→ 0
this eigenvalue converge to the leading eigenvalue of the diffusion
equation. (Spectral analysis goes back to Ghidouche-Point-Ukai)
convergence to diffusion toSentis and B. -Santos-Sentis.
2 If σε(x) > 0 on an open set Ω̃ ⊂ Ω of positive measure then for
any u0 and ε fixed one has:

lim
t→∞

e−tTεu0 = 0

this convergence is not uniform and may not be exponential. Bernard
Salvarani , Han-Kwan Leautaud.
3 If a GCC is satisfied then with respect to the support of σ(x)
then one has for fix ε uniform exponential convergence. Han-Kwan
Leautaud. What happens for ε → 0 has not to the best of my
knowledge yet being considered.
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4 The proof of 3 relies on the observation estimate (for ε fixed)

‖uε(x , ω, 0)‖L2(Ω×SN−1) ≤ C (ε)

ˆ T (ε)

0

ˆ
Ω×SN−1

σε
ε2

(x)(uε−uε)2dxdωdt

which is not valid without GCC (GCC⇔ C (ε) <∞) .
With C (ε) uniformly bounded ( Did not check if this is true ) and
well prepared initial data uε(x , , 0) = ρ0(x) this would correspond in
the diffusion approximation to the estimate to the estimate:

‖ρ0‖L2(Ω) ≤ C lim
ε→0

ˆ t

0

ˆ
A×SN−1

1
ε2
σε(x)(uε− uε)2dxdωds

=

ˆ t

0

ˆ
A

1
Nσ(x)

|∇xρ(s, x)|2dxds .
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