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2u— Au+q(x)u=0 in ]0, T[xQ
{ u=0 on 0, T[x0Q) (W)
(1(0),9:u(0)) = (uo, tn)
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2u— Au+q(x)u=0 in ]0, T[xQ
u=0 on 0, T[x0Q) (W)
(1(0),9:u(0)) = (uo, tn)

e () open bounded set of R?, with smooth boundary.

@ g = g(x) bounded function , with real values.
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2u— Au+q(x)u=0 in ]0, T[xQ
u=0 on 0, T[x0Q) (W)
(1(0),9:u(0)) = (uo, tn)

e () open bounded set of R?, with smooth boundary.

@ g = g(x) bounded function , with real values.

w open subset of (3 and T > 0 ( suitable )
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The Goal
Perform a high frequency (HF) study for system (W) within the
framework of two precise problems:

@ Data assimilation with observation on w.

@ Exact controllability with a control vector localized on w.
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@ The reconstructed data ( case 1)

@ The control vector and the controlled solution (case 2)

depend on the potential g ?
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The Goal
Perform a high frequency (HF) study for system (W) within the
framework of two precise problems:

@ Data assimilation with observation on w.

@ Exact controllability with a control vector localized on w.

Question: How do the high frequencies of

@ The reconstructed data ( case 1)

@ The control vector and the controlled solution (case 2)

depend on the potential g ?

Answer: Not in a significant manner ( in a suitable setting...).

Important remark: The whole work will be achieved under the

microlocal condition of geometric control ( Bardos-Lebeau-Rauch ).
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General setting

@ The couple (w, T) satisfies the geometric control condition (G.C), i.e
every geodesic of () issued at t = 0 and travelling with speed 1,
enters in w before the time T.
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General setting

@ The couple (w, T) satisfies the geometric control condition (G.C), i.e
every geodesic of () issued at t = 0 and travelling with speed 1,
enters in w before the time T.

e Under (G.C), we get the observability inequality

.
1P @) s < Ca) [ [ algldxde  (Obs)

for every solution ¢ of system (W), where a,(x) =~ 1, smooth.

o We will see later that C(q) — C, with ||q||, < r.

Dehman-Ervedoza () High Frequency 4 /31



General setting

@ The couple (w, T) satisfies the geometric control condition (G.C), i.e
every geodesic of () issued at t = 0 and travelling with speed 1,
enters in w before the time T.

e Under (G.C), we get the observability inequality

.
1P @) s < Ca) [ [ algldxde  (Obs)

for every solution ¢ of system (W), where a,(x) =~ 1, smooth.

o We will see later that C(q) — C, with ||q||, < r.
e The potential g € W?*(Q)).

e m>0,
Wi(Q) = {g € W>(Q), l|gllyee < m}

Dehman-Ervedoza () High Frequency 4 /31



Littlewood-Paley Decomposition

Denote (e, wjz)jzl the spectral elements of Q.

—Aej=wie; inQ, =0 ondQ, |ef,..=1

Take 0 € C°(R) and ¢ € C5°(R*) such that

0(s)+ Y_p(27%s) =1, seRy
k=1
o(s) = 0(s)
Pi(s) = p(275s) k=1
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Spectral localization operators

k €N, u:Zjajej,

In particular, for j = —1,0,

an(D)”L(HjH,H,') < C27k/2
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@ ¢, (D)u and S¢(D)u are resp. the dyadic rings and blocks of u.

@ 17, (D)u are the high frequencies of u.

© On a compact manifold, these are pseudo-differential operators of
order 0.

@ They are self-adjoints and commute with the laplacian.
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Digression

u=0 on ]0, T[x0Q)
(U(O),atu<0)) = (uo. U1> € H(} x L2

{a@wa@@ﬂ in 10, T[xQ
We look for f € L2(]0, T[xQ)), supported in w s.t
(u(T),0:u(T)) = (0,0)
By HUM and under (G.C),
f=Xo(x)v
where

v = on |0, T[x0Q

{xvmvo in ]0, T[xQ
(V(O),atV(O)) = (Vo, V1) cl2xH!
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A:H01><L2—>L2><H*1

(uo, u1) — (vo,v1)

is the HUM optimal control.
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A:H01><L2—>L2><H*1

(uo, u1) — (vo,v1)

is the HUM optimal control.

Theorem

(D-Lebeau)

In the setting above and under (G.C),
a) For all s > 0,

A:H T x HS — HS x HS1

is an isomorphism.

b)

1A, (D) — ¢, (D)A|| < C27*/2

The 1, (D) almost commute to the HUM control operator.
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Data assimilation

0P [Q] + Q(x)®[Q] =0 in 10, T[xQ

®[Q] =0 on |0, T[xaQ (1)

Question: Reconstruct the initial data

(®[Q](0),0:2[Q] (0)) = (Po, 1)

from the measurement

a,d in 10, T[xw
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Classical case: @ is a known potential.
Minimize over ((po, qol) € L2 x H™!, the functional

J[Q] (9. ¢1) 2// 219 [Q] — @ [Q])? dxdt
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Classical case: @ is a known potential.
Minimize over ((po, qol) € L2 x H™!, the functional

S0l (pag) =3 [ [ 2l lQ) @ (Gl aet

Less classical: @ is not known ( precisely ).
Here, we propose instead the minimizing over (¢,, ¢;) € L? x H™! of the
functional

el @eo) =3 [ [Rleld-olQ@Paa @

Oelgl +q(x)@lgl =0 in ]0, T[xQ
go[q]—O on |0, T[x0Q) (3)

(¢[a](0),0:0[q] (0)) = (@g. ¢1) € L x H™*

Here, the potential g is an approximation of Q.
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Take
— m>0and q, Q@ € W2*(Q),

— (P, ®1) € L2 x H™! and @ [Q] the associated solution of system
— (Pg [q], D1 [q]) the minimizer of J[q] in (2).

Theorem

(1).

There exists a constant C > 0 independent of (®g, ®1) such that for
every k > 1,

117, (D) ((Po, P1) — (Do [q], @1 [a])) ] 2y

< 27K |aw®@ [Q]ll 212y 19 — Qll 2w

(DA)

Remark: Good approximation of the HF of the reconstructed initial data,

even if the potential is not well known.
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Exact controllability

We still work under condition (G.C).

Find u € L?(]0, T[xQ) s.t. the solution of system

Oy +q(x)y =apu in ]0, T[xQ
y=20 on ]0, T[x0Q)
(¥(0),9:y(0)) = (v0.y1) € Hy x L

satisfies
(¥(T),9:y(T)) = (0,0)

Actually, we get the optimal control u, i.e the one having the minimal
norm in L2(]0, T[xQY).
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Minimize over (¢,, ¢;) € L?> x H™!, the functional

Klal (9o o) =3 [ [ & lolal dxat + (9. 91). (0.)

where

((@g. ¢1). (o, 31)) /(POYI / —A)_I(Prv)fl

If (Oo [q], D1 ][q]) is the minimizer of K [q], the control u[q] is then given

by
ulg] = a,®P|[q]

where @ [q] is the solution of (3).
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- m > 0 and two potentials g%, g° € W2=(Q)
- (yo,yl) S H& X L2
- (Po [g*P] , @1 [g™P]) the respective minimizers of K [¢™?] .

Theorem

There exists a constant C > 0, independent of (yy, y1) s.t. for every
k>1,
[171k(D)aw(® [a°] = @ [a°]) | 212

< Cok/4 (o yi)ll a2 l° = a°[| e

Moreover,
117k (D)(®o [¢°] — ®o [¢°] @1 [q°] — @1 [¢°])| 2,1y

< 27 |0 y) lprz 197 — @[l s
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Comments

@ One can weaken the potential regularity:
geEH?> (d=1), W?P (p>2,d=2) Wh>nw2? (d > 3).
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Comments

@ One can weaken the potential regularity:
geEH?> (d=1), W?P (p>2,d=2) Wh>nw2? (d > 3).

e Time dependent potential: g = q(t, x).
Similar results under the I'— condition of J-L.Lions ( Carleman
estimates ).
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Comments

@ One can weaken the potential regularity:
geEH?> (d=1), W?P (p>2,d=2) Wh>nw2? (d > 3).
e Time dependent potential: g = q(t, x).
Similar results under the I'— condition of J-L.Lions ( Carleman
estimates ).

@ Boundary observation ( control ): open problem.
o State of the art
* Bukhgeim-Klibanov (81")
* Puel-Yamamoto (96'), Yamamoto (99'), Imanuvilov-Yamamoto
(03'), Baudouin-Mercado-Osses (07")
* Zhang (00')
* Baudouin-Buhan-Ervedoza (11')
*Stefanov-Uhlmann (11')
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Estimates for the bracket
(D-Lebeau precised)

There exists a constant C > 0 s.t. for every k > 1 and every q € W?*,

1 (D). alll g2y < €272 gl e

11940, alll gy < €272 [lqll o
105 (D). @lll -1y < €272 [l o

¥k (D). alll g1z, 1) < 27  [lqllwes

1T, (D). alll gy, 12y < €275 Nlallwoes

Remark: Similar estimates hold for high frequency brackets: [, (D), q].
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Theorem

Precised observability estimate

Assume that (w, T) satisfies the (G.C) condition. Then for every r > 0,
there exists a constant C, > 0 s.t. for every g € L®(Q)) satisfying
||| .~ < r, the following estimate

—
2 2
[(9(0),2e9(O)[zsr < & [ [ 2 lof date
holds true for every solution of the system

Op+q(x)¢p=0 in 10, T[xQ, =0 on |0, T[x9Q2

Remark: This estimate is well known when w satisfies the geometric
I'—condition of J-L.Lions ( using Carleman inequalities). Here, we deal
with a microlocal condition.
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Sketch of the proof
Compactness-uniqueness argument.

@ Relaxed observability ( m.d.m'’s propagation )

.
[(9(0). 29O o < G [ [ 2 lof dct + C gl

@ Removing the compact term ( wave front propagation + unique
continuation for A).

X[q] = {¢lq] € L?(]0, T[xQ), ¢[q] solution, ¢[g] = 0in ]0, T[xw}

X[q] = {0}
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Lemma
If |gnll < v gn — Q in L*(Q)

and ¢, — ¢ in [%(]0, T[xQ),

then

gnp, — Qg in L2(]0, T[xQ)

Key point: g, = qs(x), i.e aaitn -

And 92¢, — Mg, + qnep, = 0.

So the mdm's of (g,) et (¢,) are supported on transverse manifolds ( see
P.Gérard 91').
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Estimates for the bracket (Sketch of the proof )

pe CPRY), R=2k

w?
D)(Xaje) = L y(5)aje
J J
For z € C\IRy,

(z+A)” Eajej Z &l 5 €

Then for z € K compact C C\R¢

[(zR+8)" ]|y < gz Ifllym . m=0,1

|(zR+8) [y < g IFllgns . m=0.1
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Let x € (§°(R), (ax — +o0) and

b0t i) = T 2 G e(any)

k>0

an almost analytic extension of ¢, i.e ¥(x) = ¢(x) for x real and

9P(z) € O(|Im z|™).
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Let x € (§°(R), (ax — +o0) and

b0t i) = T 2 G e(any)

k>0

an almost analytic extension of ¢, i.e ¥(x) = ¢(x) for x real and

9P(z) € O(|Im z|™).

Helffer-Sjostrand formula

1[0 <R 5
PnP) = T e a/R% T T Je R+

Therefore,

0.90(D)) = = [[3(2) (2R +8) 8, al(R +8) Hdz
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Proof of the data assimilation theorem

Recall the setting
{ 00 [Q]+ Q(x)®[Q] =0 in 0, T[xQ

(©[Q](0),0:2[Q] (0)) = (®o, P1) € L2 x H?

{ O®[g] +g(x)®[qg] =0 in 0, T[xQ

(@ [q] (0),0:® [q] (0)) = (Polq], P1[q]) € L> x H!




Proof of the data assimilation theorem

Recall the setting
{ 00 [Q]+ Q(x)®[Q] =0 in 0, T[xQ

(©[Q](0),0:2[Q] (0)) = (®o, P1) € L2 x H?

{ O®[g] +g(x)®[qg] =0 in 0, T[xQ

(@ [q] (0),0:® [q] (0)) = (Polq], P1[q]) € L> x H!

—The potential @ is not ( well ) known.
— (Do[q], P1[q]) is the minimizer of the functional J[q].
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Step 1: First evaluations

(Do, 1) [ 21 + 1P[QI c(12yncr (1) < Cllaw®@[Q]l 22
law®[a]ll 2(12) < Cl|awP[Q]ll 212
[(@olg], P1[a]) | 21 + [[R[a]ll c(2yncr 1) < Cllaw®@[Q]l 1212y

|®[q] — CD[Q]HC(LZ)HO(H*) < Cllg — Qllyew Hawcb[Q]HLZ(B)
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Step 2: We estimate

Wi = ¢y — 115 (D) (®lq] — P[Q])

where ¢, is the solution of
O¢, +q(x)¢, =0 in 10, T[xQ
{ (¢4(0),9:¢,.(0)) = 173 (D) (Po[q] — Po, P1[q] — P1)
{ Owi + q(x)we = fi  in 10, T[xQ

(wk (0), 9:wx (0)) = (0,0)

f = [13(D). 4] (®[q] — @[Q]) + 75 (D) ((9 — Q)®[Q))




Last step: We estimate

Wi = ¢, — 11, (D)(®[q] — [Q))

where ¢, solves
{ O¢, +q(x)¢, =0 in 10, T[xQ

(64(0), 2, (0)) = 1, (D) (Polq] — Po, P1[q] — P1)

HawakHLz(Lz) < c2 K/ ||CI - QHWZ00 Haw(D[Q”|L2(L2)

And the result follows.
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Proof of the control theorem

Recall the setting
{ OP[q°] +¢°(x)®P[¢°] =0  in ]0, T[xQ

(®[g7](0),9:®[¢7] (0)) = (y0,y1) € H x L?

{D@[qb]+qb(x)q>[qb]o in ]0, T[xQ

(@ [¢°] (0),0:® [¢°] (0)) = (yo,y1) € H x [*
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Proof of the control theorem

Recall the setting
{ OP[q°] +¢°(x)®P[¢°] =0  in ]0, T[xQ

(®[g7](0),9:®[¢7] (0)) = (y0,y1) € H x L?

{ 00 [¢°] + ¢ (x)® [¢°] =0 in ]0, T[xQ
(@ [¢°] (0),0:® [¢°] (0)) = (y0,31) € Hy x L?

— q%,q> e W2,
— (®g[q], P1[q]) is the minimizer over L2 x H™! of the functional

Klal(90.0) =3 [ [ lolalP e+ {(go. ). (v0.0)
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Step 1: First evaluations

1(@ola], Prla)l iz m-1 + [ ®Lalllc(12)ncr (1) = CIH0r Yl gr

Let ¢ [g°] be the solution of

{ Op+q¢°(x)¢=0 on ]0, T[xQ

(¢(0),0:9(0)) = (Polg’] — Po[q°], P1[q7] — P1[q”])

010 - (@la") - @1a"))| <c|

a__ b |
e = e =] o 1009 g
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|20 (@la) — ®[a*))]

<C’

7=, 00 ) g

W2,oo

L2(L2)

| (@ola?] — ®olg"], @1[a7] = @1[g*])| 2
+ H@[qa] - q)[qb] HC(Lz)ﬂCl(Hfl)

< Clla® = @ w100 y2) | 2
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Step 2: Taking ¢ € W2, we introduce ¢, [q] the solution of

{ O¢, +q(x)¢, =0 in 0, T[xQ

(¢4(0),9:¢,.(0)) = 175 (D) (Po[q°] — Po[q°], P1[q°] — P1[q"])

I, La] = 12 (D) (@[a) — @la"D| 2yt 111

< C272 g7 = @®|| e 10000 y2) g w12

—k/4 b
< 2 ‘q"—q szw 1o y) g 2

|n(D)au(@la’] ~ (")), .
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Last step: We estimate
¢x — 1,(D)(®[a°] — @[q"])
where ¢, solves
{m@+¢w@o n 10, T[xQ

(¢4(0).0¢¢,(0)) = 17, (D) (Polq’] — Polg”], P1[q°] — P1[q”])

bl < 24 o =g

Ol s 100 ) g

And the result follows.
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