High Frequency Analysis for the Wave Equation with Potential

Belhassen DEHMAN¹ & Sylvain Ervedoza²

¹Faculté des Sciences de Tunis & Enit-Lamsin ²CNRS, Institut de Mathématiques de Toulouse

Dehman-Ervedoza ()

High Frequency

Setting

$$\begin{cases} \partial_t^2 u - \Delta_x u + q(x)u = 0 & \text{in} \quad]0, T[\times \Omega] \\ u = 0 & \text{on} \quad]0, T[\times \partial \Omega] \\ (u(0), \partial_t u(0)) = (u_0, u_1) \end{cases}$$
(W)

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Setting

$$\begin{cases} \partial_t^2 u - \Delta_x u + q(x)u = 0 & \text{in} \quad]0, T[\times \Omega] \\ u = 0 & \text{on} \quad]0, T[\times \partial \Omega] \\ (u(0), \partial_t u(0)) = (u_0, u_1) \end{cases}$$
(W)

Ω open bounded set of R^d, with smooth boundary.
q = q(x) bounded function, with real values.

æ

• • = • • = •

Setting

$$\begin{cases} \partial_t^2 u - \Delta_x u + q(x)u = 0 & \text{in }]0, T[\times \Omega \\ u = 0 & \text{on }]0, T[\times \partial \Omega \\ (u(0), \partial_t u(0)) = (u_0, u_1) \end{cases}$$
(W)

Ω open bounded set of R^d, with smooth boundary.
q = q(x) bounded function, with real values.

 ω open subset of Ω and T>0 (suitable)

ヨト イヨト

Perform a high frequency (HF) study for system (W) within the framework of two precise problems:

- **1** Data assimilation with observation on ω .
- **2** Exact controllability with a control vector localized on ω .

-∢∃>

Perform a high frequency (HF) study for system (W) within the framework of two precise problems:

- **1** Data assimilation with observation on ω .
- **2** Exact controllability with a control vector localized on ω .

Question: How do the high frequencies of

- The reconstructed data (case 1)
- In the control vector and the controlled solution (case 2)

depend on the potential q?

Perform a high frequency (HF) study for system (W) within the framework of two precise problems:

- **1** Data assimilation with observation on ω .
- **2** Exact controllability with a control vector localized on ω .

Question: How do the high frequencies of

- The reconstructed data (case 1)
- The control vector and the controlled solution (case 2)

depend on the potential q?

Answer: Not in a significant manner (in a suitable setting...).

Perform a high frequency (HF) study for system (W) within the framework of two precise problems:

- **1** Data assimilation with observation on ω .
- **2** Exact controllability with a control vector localized on ω .

Question: How do the high frequencies of

- The reconstructed data (case 1)
- In the control vector and the controlled solution (case 2)

depend on the potential q?

Answer: Not in a significant manner (in a suitable setting...).

Important remark: The whole work will be achieved under the **microlocal** condition of geometric control (Bardos-Lebeau-Rauch).

・ロト ・聞ト ・ヨト ・ヨト

General setting

The couple (ω, T) satisfies the geometric control condition (G.C), i.e every geodesic of Ω issued at t = 0 and travelling with speed 1, enters in ω before the time T.

General setting

- The couple (ω, T) satisfies the geometric control condition (G.C), i.e every geodesic of Ω issued at t = 0 and travelling with speed 1, enters in ω before the time T.
- Under (G.C), we get the observability inequality

$$\left\|\left(\varphi_{0},\varphi_{1}\right)\right\|_{L^{2}\times H^{-1}}^{2} \leq C(q) \int_{0}^{T} \int_{\Omega} a_{\omega}^{2} \left|\varphi\right|^{2} dx dt \qquad \text{(Obs)}$$

for every solution φ of system (*W*), where $a_{\omega}(x) \approx \mathbf{1}_{\omega}$ smooth.

• We will see later that $C(q) \rightarrow C_r$ with $||q||_{\infty} \leq r$.

General setting

- The couple (ω, T) satisfies the geometric control condition (G.C), i.e every geodesic of Ω issued at t = 0 and travelling with speed 1, enters in ω before the time T.
- Under (G.C), we get the observability inequality

$$\left\|\left(\varphi_{0},\varphi_{1}\right)\right\|_{L^{2}\times H^{-1}}^{2} \leq C(q) \int_{0}^{T} \int_{\Omega} a_{\omega}^{2} \left|\varphi\right|^{2} dx dt \qquad \text{(Obs)}$$

for every solution φ of system (W), where $a_{\omega}(x) \approx \mathbf{1}_{\omega}$ smooth.

- We will see later that $C(q) \rightarrow C_r$ with $\|q\|_{\infty} \leq r$.
- The potential $q \in W^{2,\infty}(\Omega)$.
- m>0, $W^{2,\infty}_m(\Omega)=\left\{q\in W^{2,\infty}(\Omega), \left\|q
 ight\|_{W^{2,\infty}}\leq m
 ight\}$

イロト イロト イヨト イヨト 二日

Denote $(e_j, \omega_j^2)_{j\geq 1}$ the spectral elements of Ω .

$$-\Delta e_j = \omega_j^2 e_j$$
 in Ω , $e_j = 0$ on $\partial \Omega$, $\|e_j\|_{L^2} = 1$

Take $\theta \in \mathit{C}^\infty_0(\mathbb{R})$ and $\psi \in \mathit{C}^\infty_0(\mathbb{R}^*)$ such that

Spectral localization operators

$$k \in \mathbb{N}$$
, $u = \sum_{j} a_{j} e_{j}$,
 $\psi_{k}(D)u = \sum_{j} \psi(2^{-k}\omega_{j}^{2})a_{j}e_{j}$
 $S_{k}(D) = \sum_{j=0}^{k-1} \psi_{j}(D)$ $k \ge 1$
 $\eta_{k}(D) = \sum_{j=k}^{\infty} \psi_{j}(D) = I - S_{k}(D)$

In particular, for j = -1, 0,

$$\|\eta_k(D)\|_{\mathcal{L}(H^{j+1},H^j)} \leq C2^{-k/2}$$

3

イロト イ理ト イヨト イヨト

• $\psi_k(D)u$ and $S_k(D)u$ are resp. the dyadic rings and blocks of u.

2 $\eta_k(D)u$ are the high frequencies of u.

On a compact manifold, these are pseudo-differential operators of order 0.

They are self-adjoints and commute with the laplacian.

過 ト イ ヨ ト イ ヨ ト

Digression

$$\begin{cases} \partial_t^2 u - \Delta_x u = \chi_\omega(x) f & \text{in} \quad]0, T[\times \Omega] \\ u = 0 & \text{on} \quad]0, T[\times \partial \Omega] \\ (u(0), \partial_t u(0)) = (u_0, u_1) \in H_0^1 \times L^2 \end{cases}$$

We look for $f \in L^2(]0, T[\times \Omega)$, supported in ω s.t

$$(u(T),\partial_t u(T)) = (0,0)$$

By HUM and under (G.C),

$$f = \chi_\omega(x) v$$

where

$$\begin{cases} \partial_t^2 v - \Delta_x v = 0 & \text{in} &]0, T[\times \Omega \\ v = 0 & \text{on} &]0, T[\times \partial \Omega \\ (v(0), \partial_t v(0)) = (v_0, v_1) \in L^2 \times H^{-1} \end{cases}$$

• • = • • = •

$$\Lambda: H_0^1 \times L^2 \to L^2 \times H^{-1}$$
$$(u_0, u_1) \to (v_0, v_1)$$

is the HUM optimal control.

æ

イロト イヨト イヨト イヨト

$$\Lambda: H_0^1 \times L^2 \to L^2 \times H^{-1}$$
$$(u_0, u_1) \to (v_0, v_1)$$

is the HUM optimal control.

Theorem

 $\begin{array}{l} (D\text{-}Lebeau) \\ \text{In the setting above and under (G.C),} \\ a) \text{ For all } s \geq 0, \\ & \Lambda : H^{s+1} \times H^s \to H^s \times H^{s-1} \\ \text{ is an isomorphism.} \\ b) \\ & \|\Lambda \psi_k(D) - \psi_k(D)\Lambda\| \leq C2^{-k/2} \end{array}$

The $\psi_k(D)$ almost commute to the HUM control operator.

2

$$\begin{cases} \Box \Phi [Q] + Q(x) \Phi [Q] = 0 & \text{in} \quad]0, T[\times \Omega \\ \Phi [Q] = 0 & \text{on} \quad]0, T[\times \partial \Omega \\ (\Phi [Q] (0), \partial_t \Phi [Q] (0)) = (\Phi_0, \Phi_1) \in L^2 \times H^{-1} \end{cases}$$
(1)

Question: Reconstruct the initial data

$$(\Phi[Q](0), \partial_t \Phi[Q](0)) = (\Phi_0, \Phi_1)$$

from the measurement

$$a_{\omega}\Phi$$
 in]0, $T[\times\omega$

Dehman-Ervedoza ()

æ

イロト イヨト イヨト イヨト

Classical case: Q is a known potential. Minimize over $(\varphi_0, \varphi_1) \in L^2 \times H^{-1}$, the functional

$$J\left[Q\right]\left(\varphi_{0},\varphi_{1}\right)=\frac{1}{2}\int_{0}^{T}\int_{\Omega}a_{\omega}^{2}\left|\varphi\left[Q\right]-\Phi\left[Q\right]\right|^{2}dxdt$$

æ

Classical case: Q is a known potential. Minimize over $(\varphi_0, \varphi_1) \in L^2 \times H^{-1}$, the functional

$$J\left[Q\right]\left(\varphi_{0},\varphi_{1}\right)=\frac{1}{2}\int_{0}^{T}\int_{\Omega}a_{\omega}^{2}\left|\varphi\left[Q\right]-\Phi\left[Q\right]\right|^{2}dxdt$$

Less classical: Q is not known (precisely). Here, we propose instead the minimizing over $(\varphi_0, \varphi_1) \in L^2 \times H^{-1}$ of the functional

$$J[q](\varphi_0,\varphi_1) = \frac{1}{2} \int_0^T \int_\Omega a_\omega^2 |\varphi[q] - \Phi[Q]|^2 dx dt$$
(2)
$$\int \Box \varphi[q] + q(x)\varphi[q] = 0 \quad \text{in} \quad]0, T[\times \Omega]$$

$$\begin{cases} \varphi\left[q\right] = 0 & \text{on } \left[0, T\left[\times\partial\Omega\right] \\ (\varphi\left[q\right](0), \partial_t \varphi\left[q\right](0)\right) = (\varphi_0, \varphi_1) \in L^2 \times H^{-1} \end{cases}$$
(3)

Here, the potential q is an **approximation** of $Q_{a,a}$

Dehman-Ervedoza ()

High Frequency

Take

- ightarrow m> 0 and q, $Q\in W^{2,\infty}_m(\Omega)$,
- $\rightarrow (\Phi_0, \Phi_1) \in L^2 \times H^{-1}$ and $\Phi[Q]$ the associated solution of system (1).
- $ightarrow \left(\Phi_{0}\left[q
 ight] ,\Phi_{1}\left[q
 ight]
 ight)$ the minimizer of $J\left[q
 ight]$ in (2).

Theorem

There exists a constant C > 0 independent of (Φ_0, Φ_1) such that for every $k \ge 1$,

$$\|\eta_{k}(D)((\Phi_{0}, \Phi_{1}) - (\Phi_{0}[q], \Phi_{1}[q]))\|_{L^{2} \times H^{-1}}$$

$$\leq C2^{-k/4} \|a_{\omega}\Phi[Q]\|_{L^{2}(L^{2})} \|q - Q\|_{W^{2,\infty}}$$
(DA)

Remark: Good approximation of the HF of the reconstructed initial data, even if the potential is not well known.

We still work under condition (G.C).

Find $u \in L^2(]0, T[\times \Omega)$ s.t. the solution of system

$$\begin{cases} \Box y + q(x)y = a_{\omega}u & \text{in} \quad]0, T[\times \Omega \\ y = 0 & \text{on} \quad]0, T[\times \partial \Omega \\ (y(0), \partial_t y(0)) = (y_0, y_1) \in H^1_0 \times L^2 \end{cases}$$

satisfies

$$(y(T),\partial_t y(T)) = (0,0)$$

Actually, we get the optimal control u, i.e the one having the minimal norm in $L^2(]0, T[\times \Omega)$.

• • = • • = •

Minimize over $(\varphi_0, \varphi_1) \in L^2 \times H^{-1}$, the functional

$$K\left[q\right]\left(\varphi_{0},\varphi_{1}\right)=\frac{1}{2}\int_{0}^{T}\int_{\Omega}a_{\omega}^{2}\left|\varphi\left[q\right]\right|^{2}d\mathbf{x}dt+\left\langle \left(\varphi_{0},\varphi_{1}\right),\left(y_{0},y_{1}\right)\right\rangle$$

where

$$\langle (\varphi_0, \varphi_1), (y_0, y_1) \rangle = \int_{\Omega} \varphi_0 y_1 - \int_{\Omega} \nabla (-\Delta)^{-1} \varphi_1 \cdot \nabla y_1$$

If $(\Phi_0[q], \Phi_1[q])$ is the minimizer of K[q], the control u[q] is then given by

$$u\left[q
ight] = a_{\omega}\Phi\left[q
ight]$$

where $\Phi[q]$ is the solution of (3).

□ > 《 E > 《 E > ____

- m>0 and two potentials q^a , $q^b\in W^{2,\infty}_m(\Omega)$
- $-(y_0, y_1) \in H^1_0 \times L^2$
- $(\Phi_0\left[q^{a,b}
 ight]$, $\Phi_1\left[q^{a,b}
 ight])$ the respective minimizers of $K\left[q^{a,b}
 ight]$.

Theorem

There exists a constant C > 0, independent of (y_0, y_1) s.t. for every $k \ge 1$,

$$\left\|\eta_{k}(D)\mathbf{a}_{\omega}(\Phi\left[q^{a}\right]-\Phi\left[q^{b}\right])\right\|_{L^{2}(L^{2})}$$

$$\leq C2^{-k/4} \left\| (y_0, y_1)
ight\|_{H^1_0 imes L^2} \left\| q^{a} - q^{b}
ight\|_{W^{2,\infty}}$$

Moreover,

$$\begin{aligned} \left\| \eta_{k}(D)(\Phi_{0}\left[q^{a}\right] - \Phi_{0}\left[q^{b}\right], \Phi_{1}\left[q^{a}\right] - \Phi_{1}\left[q^{b}\right]) \right\|_{L^{2} \times H^{-1}} \\ &\leq C2^{-k/4} \left\| (y_{0}, y_{1}) \right\|_{H^{1}_{0} \times L^{2}} \left\| q^{a} - q^{b} \right\|_{W^{2,\infty}} \end{aligned}$$

(本國) (本語) (本語) (王語)

• One can weaken the potential regularity: $q \in H^2$ (d = 1), $W^{2,p}$ (p > 2, d = 2), $W^{1,\infty} \cap W^{2,d}$ ($d \ge 3$).

2

- One can weaken the potential regularity: $q \in H^2$ (d = 1), $W^{2,p}$ (p > 2, d = 2), $W^{1,\infty} \cap W^{2,d}$ ($d \ge 3$).
- Time dependent potential: q = q(t, x). Similar results under the Γ - condition of J-L.Lions (Carleman estimates).

3

通 ト イヨ ト イヨ ト

- One can weaken the potential regularity: $q \in H^2$ (d = 1), $W^{2,p}$ (p > 2, d = 2), $W^{1,\infty} \cap W^{2,d}$ ($d \ge 3$).
- Time dependent potential: q = q(t, x).
 Similar results under the Γ- condition of J-L.Lions (Carleman estimates).
- Boundary observation (control): open problem.

通 ト イヨ ト イヨ ト

- One can weaken the potential regularity: $q \in H^2$ (d = 1), $W^{2,p}$ (p > 2, d = 2), $W^{1,\infty} \cap W^{2,d}$ ($d \ge 3$).
- Time dependent potential: q = q(t, x). Similar results under the Γ - condition of J-L.Lions (Carleman estimates).
- Boundary observation (control): open problem.
- State of the art
 - * Bukhgeim-Klibanov (81')
 - * Puel-Yamamoto (96'), Yamamoto (99'), Imanuvilov-Yamamoto
 - (03'), Baudouin-Mercado-Osses (07')
 - * Zhang (00')
 - * Baudouin-Buhan-Ervedoza (11')
 - *Stefanov-Uhlmann (11')

|||▶ ★ 臣 ▶ ★ 臣 ▶ || 臣

Estimates for the bracket

(D-Lebeau precised)

Theorem

There exists a constant C > 0 s.t. for every $k \ge 1$ and every $q \in W^{2,\infty}$, $\|[\psi_k(D), q]\|_{\mathcal{L}(L^2)} \le C 2^{-k/2} \|q\|_{W^{2,\infty}}$ $\|[\psi_k(D), q]\|_{\mathcal{L}(H^1_0)} \le C 2^{-k/2} \|q\|_{W^{2,\infty}}$ $\|[\psi_k(D), q]\|_{\mathcal{L}(H^{-1})} \le C 2^{-k/2} \|q\|_{W^{2,\infty}}$ $\|[\psi_k(D), q]\|_{\mathcal{L}(L^2 H^{-1})} \le C 2^{-k} \|q\|_{W^{2,\infty}}$ $\|[\psi_k(D), q]\|_{\mathcal{L}(H^1_{\alpha}, L^2)} \le C2^{-k} \|q\|_{W^{2,\infty}}$

Remark: Similar estimates hold for high frequency brackets: $[\eta_k(D), q]$.

Theorem

Precised observability estimate

Assume that (ω, T) satisfies the (G.C) condition. Then for every r > 0, there exists a constant $C_r > 0$ s.t. for every $q \in L^{\infty}(\Omega)$ satisfying $\|q\|_{L^{\infty}} \leq r$, the following estimate

$$\left\|\left(\varphi(0),\partial_t\varphi(0)\right)\right\|_{L^2\times H^{-1}}^2 \leq C_r \int_0^T \int_\Omega a_\omega^2 \left|\varphi\right|^2 dx dt$$

holds true for every solution of the system

$$\Box arphi + q(x) arphi = 0$$
 in]0, $T[imes \Omega$, $arphi = 0$ on]0, $T[imes \partial \Omega$

Remark: This estimate is well known when ω satisfies the geometric Γ -condition of J-L.Lions (using Carleman inequalities). Here, we deal with a microlocal condition.

Sketch of the proof

Compactness-uniqueness argument.

• Relaxed observability (m.d.m's propagation)

$$\|(\varphi(0),\partial_t \varphi(0))\|_{L^2 imes H^{-1}}^2 \le C_r \int_0^T \int_\Omega a_\omega^2 |\varphi|^2 \, dx dt + C_r \, \|\varphi\|_{L^2(H^{-1})}^2$$

• Removing the compact term (wave front propagation + unique continuation for Δ).

 $X[q]=\{arphi[q]\in L^2(]0,\,\mathcal{T}[imes\Omega),\,arphi[q] ext{ solution, }arphi[q]=0 ext{ in }]0,\,\mathcal{T}[imes\omega\}$ $X[q]=\{0\}$

イロト 不得下 イヨト イヨト 二日

Lemma

$$\left\{ \begin{array}{l} \mbox{ If } \|q_n\|_{L^{\infty}} \leq r, \quad q_n \rightharpoonup Q \mbox{ in } L^2(\Omega) \\ \\ \mbox{ and } \phi_n \rightharpoonup \phi \mbox{ in } L^2(]0, T[\times \Omega), \end{array} \right.$$

then

$$q_n \varphi_n \rightharpoonup Q \varphi$$
 in $L^2(]0, T[\times \Omega)$

Key point: $q_n = q_n(x)$, i.e $\frac{\partial q_n}{\partial t} = 0$. And $\partial_t^2 \varphi_n - \Delta \varphi_n + q_n \varphi_n = 0$.

So the mdm's of (q_n) et (φ_n) are supported on transverse manifolds (see P.Gérard 91').

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Estimates for the bracket (Sketch of the proof)

$$\psi \in C_0^\infty(\mathbb{R}^*)$$
, $R = 2^k$,
 $\psi_R(D)(\sum_j a_j e_j) = \sum_j \psi(\frac{\omega_j^2}{R})a_j e_j$

For $z \in \mathbb{C} \setminus \mathbb{R}_+$,

$$(z+\Delta)^{-1}(\sum_{j}a_{j}e_{j})=\sum_{j}rac{a_{j}}{z-\omega_{j}^{2}}e_{j}$$

Then for $z \in K$ compact $\subset \mathbb{C} \setminus \mathbb{R}_+$

$$\begin{split} \left\| (zR + \Delta)^{-1} f \right\|_{H^m} &\leq \frac{1}{R |\operatorname{Im} z|} \| f \|_{H^m}, \qquad m = 0, 1 \\ \left\| (zR + \Delta)^{-1} f \right\|_{H^m} &\leq \frac{C_1}{\sqrt{R} |\operatorname{Im} z|} \| f \|_{H^{m-1}}, \qquad m = 0, 1 \end{split}$$

글 > - + 글 >

Let $\chi \in C_0^\infty(\mathbb{R})$, $(\alpha_k \to +\infty)$ and $\widetilde{\psi}(x + iy) = \sum_{k \ge 0} \frac{\psi^{(k)}(x)}{k!} (iy)^k \chi(\alpha_k y)$

an almost analytic extension of ψ , i.e $\widetilde{\psi}(x) = \psi(x)$ for x real and

 $\overline{\partial}\widetilde{\psi}(z)\in O(|\mathrm{Im}\,z|^{\infty}).$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Let $\chi \in C_0^{\infty}(\mathbb{R})$, $(\alpha_k \to +\infty)$ and $\widetilde{\psi}(x+iy) = \sum_{k\geq 0} \frac{\psi^{(k)}(x)}{k!} (iy)^k \chi(\alpha_k y)$

an almost analytic extension of ψ , i.e $\widetilde{\psi}(x)=\psi(x)$ for x real and

 $\overline{\partial}\widetilde{\psi}(z)\in O(|\mathrm{Im}\,z|^{\infty}).$

Helffer-Sjöstrand formula

$$\psi_{R}(D) = \frac{-1}{\pi} \int_{\mathbb{C}} \frac{\overline{\partial} \widetilde{\psi}(z)}{z + \Delta/R} dz = \frac{-R}{\pi} \int_{\mathbb{C}} \frac{\overline{\partial} \widetilde{\psi}(z)}{zR + \Delta} dz$$

Therefore,

$$[q, \psi_R(D)] = \frac{-R}{\pi} \int_{\mathbb{C}} \overline{\partial} \widetilde{\psi}(z) (zR + \Delta)^{-1} [\Delta, q] (zR + \Delta)^{-1} dz$$

Recall the setting

$$\begin{cases} \Box \Phi [Q] + Q(x) \Phi [Q] = 0 \quad \text{in} \quad]0, T[\times \Omega \\ (\Phi [Q] (0), \partial_t \Phi [Q] (0)) = (\Phi_0, \Phi_1) \in L^2 \times H^{-1} \end{cases}$$

$$\left\{ \begin{array}{ll} \Box \Phi\left[q\right]+q(x)\Phi\left[q\right]=0 \quad \text{ in } \quad \left]0, \, T\left[\times \Omega\right. \\ \\ \left(\Phi\left[q\right]\left(0\right), \partial_t \Phi\left[q\right]\left(0\right)\right)=\left(\Phi_0[q], \Phi_1[q]\right)\in L^2\times H^{-1} \end{array} \right. \right.$$

æ

イロト イヨト イヨト イヨト

Recall the setting

$$\begin{cases} \Box \Phi[Q] + Q(x)\Phi[Q] = 0 \quad \text{in} \quad]0, T[\times \Omega\\ (\Phi[Q](0), \partial_t \Phi[Q](0)) = (\Phi_0, \Phi_1) \in L^2 \times H^{-1} \end{cases}$$

$$\begin{cases} \Box \Phi [q] + q(x) \Phi [q] = 0 \quad \text{in} \quad]0, T[\times \Omega \\ (\Phi [q] (0), \partial_t \Phi [q] (0)) = (\Phi_0[q], \Phi_1[q]) \in L^2 \times H^{-1} \end{cases}$$

 \rightarrow The potential Q is not (well) known.

 $ightarrow \left(\Phi_0[q], \Phi_1[q]
ight)$ is the minimizer of the functional J[q].

- 《圖》 《臣》 《臣》

Step 1: First evaluations

 $\|(\Phi_0, \Phi_1)\|_{L^2 \times H^{-1}} + \|\Phi[Q]\|_{\mathcal{C}(L^2) \cap \mathcal{C}^1(H^{-1})} \le C \, \|\mathbf{a}_{\omega} \Phi[Q]\|_{L^2(L^2)}$

$$\|a_{\omega}\Phi[q]\|_{L^{2}(L^{2})} \leq C \|a_{\omega}\Phi[Q]\|_{L^{2}(L^{2})}$$

 $\|(\Phi_0[q], \Phi_1[q])\|_{L^2 \times H^{-1}} + \|\Phi[q]\|_{\mathcal{C}(L^2) \cap \mathcal{C}^1(H^{-1})} \le C \|\mathbf{a}_{\omega} \Phi[Q]\|_{L^2(L^2)}$

$$\|\Phi[q] - \Phi[Q]\|_{\mathcal{C}(L^2) \cap \mathcal{C}^1(H^{-1})} \le C \|q - Q\|_{W^{2,\infty}} \|\mathbf{a}_{\omega} \Phi[Q]\|_{L^2(L^2)}$$

→ < ∃ > < ∃ >

Step 2: We estimate

$$w_k = \phi_k - \eta_k^2(D)(\Phi[q] - \Phi[Q])$$

where ϕ_k is the solution of

$$\begin{cases} \Box \phi_k + q(x)\phi_k = 0 & \text{in} \quad]0, \, T[\times \Omega \\ (\phi_k(0), \partial_t \phi_k(0)) = \eta_k^2(D)(\Phi_0[q] - \Phi_0, \Phi_1[q] - \Phi_1) \\ \\ \begin{bmatrix} \Box w_k + q(x)w_k = f_k & \text{in} &]0, \, T[\times \Omega \\ (w_k(0), \partial_t w_k(0)) = (0, 0) \end{bmatrix} \\ f_k = [\eta_k^2(D), q](\Phi[q] - \Phi[Q]) + \eta_k^2(D)((q - Q)\Phi[Q]) \end{cases}$$

$$\|w_k\|_{C(L^2)\cap C^1(H^{-1})} \le C2^{-k/2} \|q-Q\|_{W^{2,\infty}} \|a_\omega \Phi[Q]\|_{L^2(L^2)}$$

3

イロト イ理ト イヨト イヨト

Last step: We estimate

$$\widetilde{w}_k = \widetilde{\phi}_k - \eta_k(D)(\Phi[q] - \Phi[Q])$$

where $\widetilde{\phi}_k$ solves

$$\begin{cases} \Box \widetilde{\phi}_k + q(x) \widetilde{\phi}_k = 0 \quad \text{in} \quad]0, \, \mathcal{T}[\times \Omega] \\ (\widetilde{\phi}_k(0), \partial_t \widetilde{\phi}_k(0)) = \eta_k(D)(\Phi_0[q] - \Phi_0, \Phi_1[q] - \Phi_1) \end{cases}$$

$$\|a_{\omega}\widetilde{\phi}_{k}\|_{L^{2}(L^{2})} \leq C2^{-k/4} \|q-Q\|_{W^{2,\infty}} \|a_{\omega}\Phi[Q]\|_{L^{2}(L^{2})}$$

And the result follows.

æ

< 2> < 2> -

Proof of the control theorem

Recall the setting

$$\begin{cases} \Box \Phi [q^a] + q^a(x) \Phi [q^a] = 0 \quad \text{in} \quad]0, T[\times \Omega \\ (\Phi [q^a] (0), \partial_t \Phi [q^a] (0)) = (y_0, y_1) \in H^1_0 \times L^2 \end{cases}$$

$$\begin{cases} \Box \Phi \left[q^{b} \right] + q^{b}(x) \Phi \left[q^{b} \right] = 0 \quad \text{in} \quad]0, T[\times \Omega \\ (\Phi \left[q^{b} \right](0), \partial_{t} \Phi \left[q^{b} \right](0)) = (y_{0}, y_{1}) \in H_{0}^{1} \times L^{2} \end{cases}$$

æ

イロト イヨト イヨト イヨト

Recall the setting

$$\begin{cases} \Box \Phi [q^a] + q^a(x) \Phi [q^a] = 0 \quad \text{in} \quad]0, T[\times \Omega \\ (\Phi [q^a] (0), \partial_t \Phi [q^a] (0)) = (y_0, y_1) \in H^1_0 \times L^2 \end{cases}$$

$$\begin{cases} \Box \Phi \left[q^{b} \right] + q^{b}(x) \Phi \left[q^{b} \right] = 0 \quad \text{in} \quad]0, T[\times \Omega] \\ (\Phi \left[q^{b} \right](0), \partial_{t} \Phi \left[q^{b} \right](0)) = (y_{0}, y_{1}) \in H_{0}^{1} \times L^{2} \end{cases}$$

 $\rightarrow q^a$, $q^b \in W^{2,\infty}_m$. $\rightarrow (\Phi_0[q], \Phi_1[q])$ is the minimizer over $L^2 \times H^{-1}$ of the functional

$$\mathcal{K}[q](\varphi_0,\varphi_1) = \frac{1}{2} \int_0^T \int_\Omega a_\omega^2 |\varphi[q]|^2 \, dx dt + \langle (\varphi_0,\varphi_1), (y_0,y_1) \rangle$$

Step 1: First evaluations

 $\|(\Phi_0[q], \Phi_1[q])\|_{L^2 \times H^{-1}} + \|\Phi[q]\|_{C(L^2) \cap C^1(H^{-1})} \le C \,\|(y_0, y_1)\|_{H^1_0 \times L^2}$

Let $\varphi[q^a]$ be the solution of

$$\begin{cases} \Box \varphi + q^{a}(x)\varphi = 0 \quad \text{on} \quad]0, T[\times \Omega\\ (\varphi(0), \partial_{t}\varphi(0)) = (\Phi_{0}[q^{a}] - \Phi_{0}[q^{b}], \Phi_{1}[q^{a}] - \Phi_{1}[q^{b}]) \end{cases}$$

$$\left\|\varphi\left[q^{a}\right] - \left(\Phi[q^{a}] - \Phi[q^{b}]\right)\right\|_{C(L^{2}) \cap C^{1}(H^{-1})} \leq C \left\|q^{a} - q^{b}\right\|_{W^{2,\infty}} \left\|(y_{0}, y_{1})\right\|_{H^{1}_{0} \times L^{2}}$$

æ

(4 回) (4 \Pi) (4 \Pi)

$$\left\| a_{\omega}(\Phi[q^{a}] - \Phi[q^{b}])] \right\|_{L^{2}(L^{2})} \leq C \left\| q^{a} - q^{b} \right\|_{W^{2,\infty}} \left\| (y_{0}, y_{1}) \right\|_{H^{1}_{0} \times L^{2}}$$

$$\begin{pmatrix} \left\| \left(\Phi_{0}[q^{a}] - \Phi_{0}[q^{b}], \Phi_{1}[q^{a}] - \Phi_{1}[q^{b}] \right) \right\|_{L^{2} \times H^{-1}} \\
+ \left\| \Phi[q^{a}] - \Phi[q^{b}] \right\|_{C(L^{2}) \cap C^{1}(H^{-1})} \\
\leq C \left\| q^{a} - q^{b} \right\|_{W^{2,\infty}} \left\| (y_{0}, y_{1}) \right\|_{H^{1}_{0} \times L^{2}}$$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()~

Step 2: Taking $q \in W^{2,\infty}_m$, we introduce $\phi_k[q]$ the solution of

$$\begin{cases} \Box \phi_k + q(x)\phi_k = 0 & \text{in} \end{bmatrix} 0, \, T[\times \Omega \\ (\phi_k(0), \partial_t \phi_k(0)) = \eta_k^2(D)(\Phi_0[q^a] - \Phi_0[q^b], \Phi_1[q^a] - \Phi_1[q^b]) \end{cases}$$

$$\begin{cases} \left\| \phi_{k}[q] - \eta_{k}^{2}(D)(\Phi[q^{a}] - \Phi[q^{b}]) \right\|_{\mathcal{C}(L^{2}) \cap \mathcal{C}^{1}(H^{-1})} \\ \\ \leq C2^{-k/2} \left\| q^{a} - q^{b} \right\|_{W^{2,\infty}} \left\| (y_{0}, y_{1}) \right\|_{H^{1}_{0} \times L^{2}} \end{cases}$$

$$\left\|\eta_{k}(D)a_{\omega}(\Phi[q^{a}]-\Phi[q^{b}])\right\|_{L^{2}(L^{2})} \leq C2^{-k/4}\left\|q^{a}-q^{b}\right\|_{W^{2,\infty}}\left\|(y_{0},y_{1})\right\|_{H^{1}_{0}\times L^{2}}$$

Last step: We estimate

$$\widetilde{\phi}_k - \eta_k(D)(\Phi[q^a] - \Phi[q^b])$$

where $\widetilde{\phi}_k$ solves

$$\begin{cases} \Box \widetilde{\phi}_k + q^a(x) \widetilde{\phi}_k = 0 \quad \text{in} \quad]0, \, T[\times \Omega \\ (\widetilde{\phi}_k(0), \partial_t \widetilde{\phi}_k(0)) = \eta_k(D)(\Phi_0[q^a] - \Phi_0[q^b], \Phi_1[q^a] - \Phi_1[q^b]) \end{cases}$$

$$\|a_{\omega}\widetilde{\phi}_{k}\|_{L^{2}(L^{2})} \leq C2^{-k/4} \|q^{a}-q^{b}\|_{W^{2,\infty}} \|(y_{0},y_{1})\|_{H^{1}_{0} \times L^{2}}$$

And the result follows.

æ