ERC project : LAHACODE

logoljll LOGO_ERC
ERC Starting Grant : LAHACODE

Low-regularity and high oscillations: numerical analysis and
computation of dispersive evolution equations
Funding period: 2020 - 2025
(financed by the European Research Council)
https://cordis.europa.eu/project/id/850941
groupbw
Members :

Yvonne Bronsard Alama
María Cabrera Calvo
Albert Cohen
Georg Maierhofer
Katharina Schratz
Franco Zivcovich

Publications :

B. Li, S. Ma, K. Schratz A semi-implicit low-regularity integrator for Navier-Stokes equations
http://arxiv.org/abs/2107.13427 (preprint 2021)
K. Kropielnicka, K. Lademann, K. Schratz Effective high order integrators for
low to highly oscillatory Klein-Gordon equations
(preprint 2021)
M. Cabrera Calvo, F. Rousset, K. Schratz. Time integrators for dispersive equations in the long wave regime
http://arxiv.org/abs/2105.03731 (preprint 2021)
M. Cabrera Calvo, K. Schratz. Uniformly accurate low regularity integrators for the Klein-Gordon equation
from the classical to non-relativistic limit regime

http://arxiv.org/abs/2104.11672 (preprint 2021)
M. Cabrera Calvo, K. Schratz. Uniformly accurate splitting schemes for the Benjamin-Bona-Mahony
equation with dispersive parameter

http://arxiv.org/abs/2105.03732 (preprint 2021)
F. Rousset, K. Schratz. Convergence error estimates at low regularity for time discretizations of KdV
https://arxiv.org/abs/2102.11125 (preprint 2021)
A. Iserles, K. Kropielnicka, K. Schratz, M. Webb. Solving the linear Schrödinger equation on the real line
http://arxiv.org/abs/2102.00413 (preprint 2021)
Y. Bruned, K. Schratz. Resonance based schemes for dispersive equations via decorated trees
http://arxiv.org/abs/2005.01649 to appear in Forum of Mathematics, Pi
A. Poulain, K. Schratz. Convergence, error analysis and longtime behavior of the Scalar Auxiliary
Variable method for the nonlinear Schrödinger equation

https://arxiv.org/abs/2012.13943 to appear in IMA J. Numer. Anal.
A. Ostermann, F. Rousset, K. Schratz. Error estimates at low regularity of splitting schemes for NLS
https://arxiv.org/abs/2012.14146 to appear in Math. Comp.
F. Rousset, K. Schratz. A general framework of low regularity integrators
http://arxiv.org/abs/2010.01640 SIAM J. Numer. Anal. 59:1735-1768 (2021)
A. Ostermann, F. Rousset, K. Schratz. Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces http://arxiv.org/abs/2006.12785 to appear in J. Eur. Math. Soc. (JEMS)
K. Schratz, Y. Wang, X. Zhao. Low-regularity integrators for nonlinear Dirac equations.
https://arxiv.org/abs/1906.09413
Math. Comp. 90:189-214 (2021)
A. Ostermann, F. Rousset, K. Schratz. Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity.
https://arxiv.org/abs/1902.06779 Found. Comput. Math. 21:725-765 (2021)
S. Baumstark, K. Schratz. Asymptotic preserving integrators for the quantum Zakharov system.
doi:10.1007/s10543-020-00815-2 BIT Numer Math (2020)