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Abstract

English Abstract
We show that for a certain family of initial data, there exist non-

unique weak solutions to the 3D incompressible Euler equations satisfying
the weak energy inequality, whereas the weak limit of every sequence of
Leray-Hopf weak solutions for the Navier-Stokes equations, with the same
initial data, and as the viscosity tends to zero, is uniquely determined and
equals the shear flow solution of the Euler equations. This simple example
suggests that, also in more general situations, the vanishing viscosity limit
of the Navier-Stokes equations could serve as a uniqueness criterion for
weak solutions of the Euler equations.

Résumé
On montre que pour une certaine famille de données initiales, il ex-

iste plusieurs solutions faibles de l’équation d’Euler incompressible qui
satisfont l’inégalité d’energie au sens faible. Cependant toute solution
faible de l’Equation d’Euler qui de surcroit est limite faible d’une suite
de solutions des ´quations de Navier-Stokes (au sens de Leray-Hopf) avec
les mêmes données initiales et une viscosité évnescente est déterminée de
manière unique. Cet exemple simple suggère que , de même, dans des sit-
uations plus générales, la limite pour viscosité évanescente des solutions
d’équations de Navier-Stokes puisse servir de critère d’unicité pour les
solutions faibles des équations d’Euler.
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1 Introduction

Consider the incompressible Euler equations,

@
t

v + v ⋅ ∇v +∇p = 0
div v = 0, (1)

on the d-dimensional Torus Td = (−1�2,1�2)d, d ≥ 2. A weak solution (i.e.
a solution in the sense of distributions) v ∈ C([0, T ];L2

w

(Td)) is said to be
admissible if it satisfies the weak energy inequality, i.e. if

1

2

ˆ
Td

�v(x, t)�2dx ≤ 1

2

ˆ
Td

�v(x,0)�2dx (2)

for every t ∈ [0, T ]. Here, T ∈ (0,∞] and C([0, T ];L2
w

(Td)) denotes the space of
vector fields that are continuous as maps from [0, T ] into L2(Td) with respect
to the weak topology in L2.

It has been established in [4] and [11] (see Corollary 3 therein) that there
exists a large set of initial data which admit infinitely many admissible weak
solutions of (1). Notice that the cited results can be adapted to the case of
periodic boundary conditions, considered here, in a straightforward manner.
These initial data, however, are constructed in a rather abstract way. Recently,
L. Székelyhidi Jr. [10] exhibited the first example of concretely given initial data
with the above mentioned non-uniqueness property. More precisely, consider the
flat vortex sheet in two dimensions given by

v0(x) =
�������
e1 if x2 > 0−e1 if x2 < 0. (3)

Obviously, the stationary solution v(⋅, t) = v0 for all t > 0 satisfies the Cauchy
problem for the Euler equations in the weak sense. Székelyhidi’s result can be
stated as follows:

Theorem 1. There exist T > 0 and infinitely many weak solutions to the Euler
equations in T2 × [0, T ] with initial data v0 and pressure zero. Among these,
infinitely many conserve the kinetic energy in time, and infinitely many have
strictly decreasing energy.

Here, the kinetic energy is defined as in equation (2) above. Székelyhidi
also observed that, clearly, any sequence of the Leray-Hopf weak solutions of
the Navier-Stokes equations, corresponding to the initial data (3), converges
weak−∗ (in fact even strongly) in L∞([0, T ];L2(T2)) to the stationary solution
of the Euler equations, as the viscosity tends to zero. Hence, being a vanishing
viscosity limit distinguishes the stationary solution from all the other weak
solutions of the Euler equations stated in Theorem 1. The aim of the present
note is to prove a similar statement for the slightly more sophisticated case of
the three-dimensional shear flow.
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2 3D shear flow

In three dimensions, any initial data of the form v0(x) = (v1(x2),0, v3(x1, x2))
has the shear flow solution of the Euler equations given by

v(x, t) = (v1(x2),0, v3(x1 − tv1(x2), x2)) (4)

(see [2] and [6] for results concerning this shear flow). Note in particular that
v(x, t) is periodic in x if v0 is.

Székelyhidi’s result can now easily be extended to the case of three-dimensional
shear flows as follows:

Corollary 2. Let v0(x) = (v1(x2),0, v3(x1, x2)), where
v1(x2) =

�������
1 if 0 < x2 < 1�2−1 if −1�2 < x2 < 0,

extended periodically, with basic period (−1�2,1�2), and v3 ∈ L2
x1,x2
(T2) is arbi-

trary. Then there exist T > 0, and infinitely many admissible weak solutions of
the 3D Euler equations on T3 × [0, T ] with initial data v0.

Proof. Take u(x, t) = (u1(x1, x2, t), u2(x1, x2, t)) to be a solution to the 2D
vortex sheet problem as in Theorem 1. Then, the triple

(u1(x1, x2, t), u2(x1, x2, t),w(x1, x2, t))
will be a weak solution of the 3D Euler equations (with zero pressure and initial
data v0) if w is a weak solution of the 2D transport equation

@
t

w + u ⋅ ∇w = 0
w(t = 0) = v3. (5)

Such a solution w ∈ L∞((0, T );L2(T2)) exists; see Proposition II.1 in [5], which
clearly holds also in the periodic setting. Moreover, we may even assume w ∈
C((0, T );L2

w

(T2)), see Appendix A of [4]. Finally, as one can see from the proof
of the cited Proposition II.1, we have

�w(⋅, t)�
L

2(T2) ≤ �v3�L2(T2) for every t > 0
(this is due to the weak lower semi-continuity of the norm in L∞((0, T );L2(T2))).
Hence our solution (u1, u2,w) is an admissible weak solution of the 3D Euler
equations.

Remark 3. It is not possible to deduce from (5) that �w(⋅, t)�
L

2 is conserved
in time: For this to hold, w would have to be a renormalised solution in the
sense of DiPerna-Lions [5], which is ruled out by the irregularity of Székelyhidi’s
solutions.
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Before we state and prove the main result of this note, we need an auxiliary
result:

Lemma 4. Let v ∈ L2(T;R) and w0 ∈ L2(T2). Then the Cauchy problem for
the linear transport equation

@
t

w(x1, x2, t) + v(x2)@x1w(x1, x2, t) = 0
w(⋅,0) = w0

has a solution w ∈ C([0, T ];L2
w

(T2)), satisfying the equation in the sense of
distributions, and this solution is unique in the class L∞((0, T );L2(T2)).

We omit the elementary proof of the Lemma.

Theorem 5. Let again v0(x) = (v1(x2),0, v3(x1, x2)), where we assume v1 ∈
L2(T) and v3 ∈ L2(T2). Then, for every viscosity ⌫ > 0, there exists a unique
Leray-Hopf weak solution of the Navier-Stokes equations with viscosity ⌫ and
initial data v0, and these solutions u⌫ converge weak−∗ in L∞([0, T ];L2(T3))
to the shear flow (4) corresponding to v0, as ⌫ → 0.

Proof. Let ⌫ > 0. The intuition that the solution of Navier-Stokes should pre-
serve the particular structure of the initial data leads us to the ansatz

u⌫(x, t) = (u⌫

1(x2, t),0, u⌫

3(x1, x2, t))
and p⌫ = 0, where p⌫ denotes the pressure. Inserting this into the Navier-Stokes
equations gives the so called two-and-half Navier-Stokes equations

@
t

u⌫

1(x2, t) − ⌫@2
x2
u⌫

1(x2, t) = 0
@
t

u⌫

3(x1, x2, t) + u⌫

1(x2, t)@x1u
⌫

3(x1, x2, t) − ⌫�x1,x2u
⌫

3(x1, x2, t) = 0,
which is known to be globally well-posed for this kind of initial data (see, e.g., [6],
and see [3] for the global existence and uniqueness of weak solutions of the 2D
Navier-Stokes equations). For completion, we observe that the first equation
is simply the one-dimensional heat equation with initial data v1(x2), whose
solution obviously converges to the time-independent function v1(x2) strongly
in L2(T × [0, T ]), as the viscosity tends to zero. The second equation is an
advection-di↵usion equation. By standard parabolic theory (see e.g. Theorem
5 in Section 7.1.3 of [7], which again can be adapted to the periodic case, or the
2D Navier-Stokes theory) there exists a (unique) solution

u⌫

3 ∈ L2([0, T ];H1(T2))�C([0, T ];L2(T2))
(recall that the initial data v3 is in L2). Hence, for every fixed ⌫ > 0, we obtain
a Leray-Hopf weak solution with the initial data v0(x). Following ideas from [9]
(see, e.g., [1] and [8] for details) one can show that this solution is unique
within the class of all 3D Leray-Hopf weak solutions; moreover, this solution
depends continuously on the initial data, when the initial data is perturbed in
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the L2(T3) norm (see [1]). Furthermore, since the family of unique solutions, u⌫ ,
is uniformly bounded in L∞

t

L2
x

, there exists a subsequence u⌫k which converges
weak−∗ to u ∈ L∞

t

L2
x

, and u satisfies

u1(x2, t) = v1(x2)
u2 = 0

@
t

u3(x1, x2, t) + v1(x2)@x1u3(x1, x2, t) = 0
u3(x1, x2,0) = v3(x1, x2).

(6)

Indeed, the equation for u3 follows from u⌫

1u
⌫

3
∗⇀ u1u3, thanks to the strong

convergence of u⌫

1 to u1. Next, it follows from Lemma 4 above that system (6)
has a unique solution, and that this unique solution is given precisely by the
shear flow (4) (see [2]). Finally, this uniqueness implies that the whole sequence
u⌫ , and not just a subsequence, converges to the shear flow solution (4).

Combining the Corollary and the Proposition, we see that among the in-
finitely many admissible solutions of the Euler equations that are corresponding
to the shear flow initial data, v0(x) = (v1(x2),0, v3(x1)), the shear flow solution
given by (4) has the exclusive property of being a vanishing viscosity limit.

Acknowledgement. Part of this work was done while the third author
was a visitor to the project “Instabilities in Hydrodynamics” of the Fondation
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