Greedy bisection generates optimally adapted triangulations


Le document est une prépublication

Code(s) de Classification MSC:

Code(s) de Classification CR:


Abstract: We study the properties of a simple greedy algorithm for the generation of data-adapted anisotropic triangulations. Given a function f, the algorithm produces nested triangulations and corresponding piecewise polynomial approximations of f. The refinement procedure picks the triangle which maximizes the local Lp approximation error, and bisect it in a direction which is chosen so to minimize this error at the next step. We study the approximation error in the Lp norm when the algorithm is applied to C2 functions with piecewise linear approximations. We prove that as the algorithm progresses, the triangles tend to adopt an optimal aspect ratio which is dictated by the local hessian of f. For convex functions, we also prove that the adaptive triangulations satisfy a convergence bound which is known to be asymptotically optimal among all possible triangulations.

Mots Clés: