### Well-Posedness theory for geometry compatible hyperbolic conservation laws on manifolds

**Auteur(s): **

**Le document est une prépublication**
**Code(s) de Classification MSC:**

**Code(s) de Classification CR:**

**Résumé:**

**Abstract:** Motivated by many applications (geophysical ﬂows,general relativity), we attempt to set the foundations for a study of entropy solutions to nonlinear hyperbolic conservation laws posed on a (Riemannian or Lorentzian) manifold. The ﬂux of the conservation laws is viewed as a vector-ﬁeld on the manifold and depends on the unknown function as a parameter. We introduce notions of entropy solutions in the class of bounded measurable functions and in the class of measure-valued mappings. We establish the well-posedness theory for conservation laws on a manifold, by generalizing both Kruzkov's and DiPerna's theories originally developed in the Euclidian setting. The class of geometry-compatible(as we call it) conservation laws is singled out as an important case of interest, which leads to robust Lp estimates independent of the geometry of the manifold. On the other hand, general conservation laws solely enjoy the L1 contraction property and leads to a unique contractive semi-group of entropy solutions. Our framework allows us to construct entropy solutions on a manifold via the vanishing diﬀusion method or the ﬁnite volume method.

**Mots Clés:** *;*

**Date:** 2006-12-18