Auteur(s):
Le document est une prépublication
Code(s) de Classification MSC:
Résumé:
Pour le problème de Stokes dans un ouvert borné
bi- ou
tridimensionnel, on propose une discréti\-sation par un nouvel élément fini
mixte, qui
utilise une approximation non conforme de la vitesse et une approximation
plus riche de
la pression. On prouve que les espaces discrets de vitesse et de pression sont
compatibles, au sens qu'ils vérifient une condition inf-sup de Babu\v ska
et Brezzi, et
on en déduit des majorations d'erreur.
.
Abstract:
For the Stokes problem in a two- or three-dimensional
bounded domain, we propose a new mixed finite element discretization which
relies on
a nonconforming approximation of the velocity and a more accurate
approximation of the
pressure. We prove that the velocity and pressure discrete spaces are
compatible, in the
sense that they satisfy an inf-sup condition of Babu\v ska and Brezzi type,
and we then
derive some error estimates.
Mots Clés: ;