BLOW-UP SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS Haim BREZIS \& Juan Luis VAZQUEZ R\'esum\'e : On consid\`ere l'\'equation elliptique semilin\'eaire $- \Delta u = \lambda f(u) \; \hbox{sur} \; \Omega; \; u = 0 \; \hbox{sur} \; \partial\Omega$ dans un domaine born\'e r\'egulier $\Omega$ de $\R^n$ où $f$ est une fonction convexe, croissante, strictement positive sur $[0,+\infty[$ avec $f(s)/s \rightarrow + \infty$ quand $s \rightarrow + \infty$. On sait qu'il existe une valeur $\lambda^\star$ maximale (on dira aussi extr\'emale) du param\`etre $\lambda$ telle que le probl\`eme admette une solution. On s'int\'eresse \`a la situation o\`u la solution extr\'emale correspondante est singuli\`ere. On caract\'erise les solutions $u^\star$ extr\'emales singuli\`eres dans $H^1$ par deux conditions : (i) $u^\star \in H^1$, $u^\star \not\in L^\infty$, (ii) on a une in\'egalité de type Hardy $\int |\nabla \varphi|^2 - \lambda^\star \int f'(u^\star)\varphi^2 \geq 0, \; \forall \varphi \in H^1_0$ qui exprime que l'op\'erateur lin\'earis\'e a une premi\`ere valeur propre $\geq 0$. L'\'etude d'exemples classiques nous conduit \`a une version am\'elior\'ee de l'in\'egalit\'e de Hardy. Une autre propri\'et\'e surprenante est que l'op\'erateur lin\'earis\'e est formellement inversible et n\'eanmoins on ne peut appliquer ni le th\'eor\`eme des fonctions inverses, ni le th\'eor\`eme des fonctions implicites. non disponible sur ce serveur Abstract: We consider the semilinear elliptic equation $ - \Delta u = \lambda f(u)$, posed in a bounded domain $\Omega$ of $\R^n$ with smooth boundary $\partial\Omega$ with Dirichlet data $u_{|\partial\Omega} = 0$, and a continuous, positive, increasing and convex function $f$ on $[0,\infty)$ such that $f(s)/s \rightarrow \infty$ as $s \rightarrow \infty$. Under these conditions there is a maximal or extremal value of the parameter $\lambda > 0$ such that the problem has a solution. We investigate the existence and properties of the corresponding extremal solutions when they are unbounded (i.e. singular or blow-up solutions). We characterize the singular $H^1$ extremal solutions and the extremal value by a criterion consisting of two conditions : (i) they must be energy solutions, not in $L^\infty$, (ii) they must satisfy a Hardy inequality which translates the fac that the first eigenvalue of the linearized operator is nonnegative. In order to apply this characterization to the typical examples arising in the literature we need an improved version of the classical Hardy inequality with best constant. We establish such a result as a simultaneous generalization of Hardy's and Poincaré's inequalities for all dimensions $n \geq 2$. A striking property of some examples of unbounded extremal solutions is the fact that the linearization of the problem around them happens to be formally invertible and nevertheless the application of the Inverse and Implicit Function theorems fails to produce the usual existence or continuation results. We consider this question and explain the phenomenon as a lack of appropriate functional setting. not available on this server