1) LPPR/retraites :
Le Laboratoire Jacques Louis Lions soutient la motion du CoNRS (https://www.cnrs.fr/comitenational/struc_coord/cpcn/motions/200117_Motion_LPPR_vf.pdf)
Recherche/evenements/article/lppr>(suite...)
Plusieurs postes ouverts au recrutement au Laboratoire Jacques-Louis Lions
Attention postes au fil de l’eau Date limite de candidature : jeudi 5 mars 2020 à 16h
Chiffres-clé
Chiffres clefs
189 personnes travaillent au LJLL
90 permanents
82 chercheurs et enseignants-chercheurs permanents
8 ingénieurs, techniciens et personnels administratifs
99 personnels non permanents
73 doctorants
14 post-doc et ATER
12 émérites et collaborateurs bénévoles
Chiffres mars 2019
Nos thèmes de recherche
Retrouvez la page du Laboratoire Jacques-Louis Lions sur HAL
Nos themes de recherche
- Optimal control
- Homogenization
- Asymptotic analysis
- Fluid-structure interaction
- Finite element method
- Shape optimization
- Domain decomposition
- Navier-Stokes equations
- Wave equation
- Mathematical biology
- Controllability
- Inverse problem
- Partial differential equations
- Viscosity solutions
- Finite elements
- Stability
- Hamilton-Jacobi equations
- Hyperbolic systems
- Nonlinear elasticity
- Shells
- Data assimilation
- Finite volume method
- Heat equation
- Cancer
- Chemotaxis
- Elasticity
- Linear elasticity
- Error estimates
- Stabilization
- Transport equation
- Analyse asymptotique
- Hemodynamics
- Numerical analysis
- Backstepping
- Gross-Pitaevskii equation
- Level set method
- Reaction-diffusion equations
- Blood flow
- Finite volume scheme
- Hamilton-Jacobi equation
- Mathematical modeling
- Schrödinger equation
- Tumor growth
- Calculus of variations
- Gamma-convergence
- Null controllability
- Numerical methods
- Numerical simulation
- Population dynamics
- Analyse numérique
- Boltzmann equation
- Cell population dynamics
- Control
- Finite volume
- Incompressible fluid
- Maxwell equations
- Mean field games
- Modeling
- Numerical simulations
- Periodic homogenization
- Traveling waves
- Adaptive evolution
- Dimension reduction
- Discontinuous Galerkin
- Domain decomposition methods
- Finite element
- FreeFem++
- Grenoble
- Imaging in complex media
- Integro-differential equations
- Interaction fluide-structure
- Inverse problems
- Optimization
- Pontryagin maximum principle
- Relaxation
- Structured populations
- A posteriori error estimate
- A posteriori error estimates
- Asymptotic behavior
- Asymptotics
- Boundary conditions
- Cardiac electrophysiology
- Computational fluid dynamics
- Décomposition de domaine
- Finite volumes
- Free surface flows
- Maximum principle
- Mesh adaptation
- Modélisation
- Neural networks
- Optimisation de forme
- Robustness
- Travelling waves
- Uncertainty quantification
- Asymptotic behaviour
- CFD
- Cell division
- Conservation laws
- Contact
- Contrôle optimal