Chiffres-clé
Chiffres clefs
189 personnes travaillent au LJLL
86 permanents
80 chercheurs et enseignants-chercheurs permanents
6 ingénieurs, techniciens et personnels administratifs
103 personnels non permanents
74 doctorants
15 post-doc et ATER
14 émérites et collaborateurs bénévoles
Chiffres janvier 2022
Nos thèmes de recherche
Retrouvez la page du Laboratoire Jacques-Louis Lions sur HAL
Nos themes de recherche
- Optimal control
- Homogenization
- Asymptotic analysis
- Fluid-structure interaction
- Mathematical biology
- Finite element method
- Shape optimization
- Controllability
- Navier-Stokes equations
- Partial differential equations
- Wave equation
- Domain decomposition
- Inverse problem
- Stability
- Finite elements
- Viscosity solutions
- Data assimilation
- Finite volume method
- Hyperbolic systems
- Hamilton-Jacobi equations
- Heat equation
- Nonlinear elasticity
- Numerical analysis
- Shells
- Cancer
- Chemotaxis
- Elasticity
- Stabilization
- Transport equation
- Error estimates
- Reaction-diffusion equations
- Linear elasticity
- Analyse asymptotique
- Backstepping
- Level set method
- Mathematical modeling
- Neural networks
- Numerical simulations
- Optimization
- Schrödinger equation
- Tumor growth
- Blood flow
- Calculus of variations
- Control
- Gross-Pitaevskii equation
- Hemodynamics
- Inverse problems
- Null controllability
- Numerical methods
- Numerical simulation
- Analyse numérique
- Domain decomposition methods
- Finite volume
- Finite volume scheme
- Hamilton-Jacobi equation
- Traveling waves
- Asymptotic behavior
- Boltzmann equation
- Gamma-convergence
- Kinetic equations
- Population dynamics
- Adaptive evolution
- Cell population dynamics
- Dimension reduction
- Incompressible fluid
- Integro-differential equations
- Maxwell equations
- Mean field games
- Modeling
- Modélisation
- Observability
- Periodic homogenization
- Uncertainty quantification
- Finite element
- FreeFem++
- Grenoble
- Imaging in complex media
- Interaction fluide-structure
- Maximum principle
- Pontryagin maximum principle
- Relaxation
- Structured populations
- A posteriori error estimate
- A posteriori error estimates
- Asymptotics
- Boundary conditions
- Cardiac electrophysiology
- Cell division cycle
- Computational fluid dynamics
- Contact
- Contrôle optimal
- Convergence
- Discontinuous Galerkin
- Décomposition de domaine
- Existence
- Exponential stability
- Finite volumes
- Free surface flows
- General relativity
- Gradient flow