Mean field kinetic particles and the Vlasov-Fokker-Planck equation

Pierre Monmarché

CERMICS, École des Ponts ParisTech

groupe de travail de Probabilités du MAP5
1. Introduction
 - The model
 - Asymptotics and distances
 - Results

2. Preliminary considerations
 - Hypocoercivity without interaction
 - Interaction without hypocoercivity
 - Hamiltonian equilibrium

3. Chain of results

4. Conclusion
1. **Introduction**
 - The model
 - Asymptotics and distances
 - Results

2. **Preliminary considerations**
 - Hypocoercivity without interaction
 - Interaction without hypocoercivity
 - Hamiltonian equilibrium

3. **Chain of results**

4. **Conclusion**
Kinetic particle

- $X(t) \in \mathbb{R}^d$ position at time t
- $Y(t) \in \mathbb{R}^d$ velocity at time t
- $U : \mathbb{R}^d \to \mathbb{R}$ external potential
- $B(t)$ Brownian motion d-dimensional

Newton’s law of motion:

\[
\begin{align*}
\text{d}X &= Y\text{d}t \\
\text{d}Y &= -\nabla U(X)\text{d}t - Y\text{d}t + \sqrt{2}\text{d}B
\end{align*}
\]
Kinetic particle

- \(X(t) \in \mathbb{R}^d \) position at time \(t \)
- \(Y(t) \in \mathbb{R}^d \) velocity at time \(t \)
- \(U : \mathbb{R}^d \to \mathbb{R} \) external potential
- \(B(t) \) Brownian motion \(d \)-dimensional

Newton’s law of motion:

\[
\begin{cases}
 dX &= Y dt \\
 dY &= -\nabla U(X) dt - Y dt + \sqrt{2} dB
\end{cases}
\]

The law \(m_t = \mathcal{L}(X_t, Y_t) \) is a (weak) solution of

\[
\partial_t m_t + y \cdot \nabla_x m_t = \nabla_y \cdot (\nabla_y m_t + (\nabla U(x) + y) m_t),
\]

the Langevin (or kinetic Fokker-Planck) equation.
Law of large numbers

- \(Z_i = (X_i, Y_i) \) i.i.d. particles, \(i \in [1, N] \)

- empirical measure

\[
\pi_t^N = \frac{1}{N} \sum_{j=1}^{N} \delta_{Z_j}
\]

Morally,

\[
\pi_t^N \xrightarrow{N \to \infty} m_t.
\]
Mean field interaction

- $W : \mathbb{R}^d \to \mathbb{R}$ an even interaction potential

For $i \in [1, N]$,

$$dX_i = Y_i dt$$

$$dY_i = -\nabla U(X_i) dt - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) dt - Y_i dt + \sqrt{2} dB_i$$
Mean field interaction

- $W : \mathbb{R}^d \rightarrow \mathbb{R}$ an even interaction potential

For $i \in [1, N]$

\[
\begin{align*}
\mathrm{d}X_i &= Y_i \mathrm{d}t \\
\mathrm{d}Y_i &= -\nabla U(X_i) \mathrm{d}t - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) \mathrm{d}t - Y_i \mathrm{d}t + \sqrt{2} \mathrm{d}B_i \\
&= \int \nabla W(X_i - u) \pi_t^N(du, dv)
\end{align*}
\]
Mean field interaction

- $W : \mathbb{R}^d \rightarrow \mathbb{R}$ an even interaction potential

For $i \in [1, N]$,

$$
\begin{align*}
\text{d}X_i &= Y_i \text{d}t \\
\text{d}Y_i &= -\nabla U(X_i) \text{d}t - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) \text{d}t - Y_i \text{d}t + \sqrt{2} \text{d}B_i \\
&= \int \nabla W(X_i - u) \pi_t^N(\text{d}u, \text{d}v)
\end{align*}
$$

Assuming $\pi_t^N \xrightarrow{N \to \infty} m_t$,

$$
\partial_t m_t + y \cdot \nabla_x m_t = \nabla_y \cdot (\nabla_y m_t + (\nabla U + \nabla W \ast m_t + y) m_t)
$$

with $\nabla W \ast m_t(x) = \int \nabla W(x - u) m_t(u, v) \text{d}u \text{d}v$ (Vlasov-Fokker-Planck).
Non-linear process

For $i \in [1, N]$,

\[
\begin{align*}
\text{d} \tilde{X}_i &= \tilde{Y}_i \text{d}t \\
\text{d} \tilde{Y}_i &= -\nabla U \left(\tilde{X}_i \right) \text{d}t - (\nabla W * m_t) \left(\tilde{X}_i \right) - \tilde{Y}_i \text{d}t + \sqrt{2} \text{d}B_i \\
\text{m}_t &= \mathcal{L} \left(\tilde{X}_i(t), \tilde{Y}_i(t) \right)
\end{align*}
\]
Non-linear process

For $i \in [1, N]$,

\[
\begin{cases}
\quad \quad d\tilde{X}_i & = \quad \tilde{Y}_i dt \\
\quad d\tilde{Y}_i & = \quad -\nabla U (\tilde{X}_i) dt - (\nabla W \ast m_t) (\tilde{X}_i) - \tilde{Y}_i dt + \sqrt{2} dB_i \\
\quad m_t & = \quad \mathcal{L} (\tilde{X}_i(t), \tilde{Y}_i(t))
\end{cases}
\]

We are interested in :

- The law m_t that solves the non-linear PDE,
- The non-independent $Z_i = (X_i, Y_i)$ with $Z = (Z_1, \ldots, Z_N)$ Markov,
- The independent $\tilde{Z}_i = (\tilde{X}_i(t), \tilde{Y}_i(t))$ with law m_t, \tilde{Z} non Markov.
1 Introduction
 • The model
 • Asymptotics and distances
 • Results

2 Preliminary considerations
 • Hypocoercivity without interaction
 • Interaction without hypocoercivity
 • Hamiltonian equilibrium

3 Chain of results

4 Conclusion
Asymptotics

- \(N \to \infty \): propagation of chaos

- \(t \to \infty \): convergence to equilibrium

If the \(Z_i(0) = \tilde{Z}_i(0) \) are i.i.d. with law \(m_0 \), when \(N \to \infty \), \(\pi_N t = \frac{1}{N} \sum \delta_{Z_i} \) should converge to \(m_t \), \(Z_1 \) should behave like \(\tilde{Z}_1 \), \(m(N)(t) = L(Z_1(t)) \) should converge to \(m_{\infty} \).

If the potential \(U \) is confining enough, \(Z \) is ergodic.

The law \(m(N)(t) = L(Z(t)) \) converges to a unique equilibrium \(m_\infty \).

Behaviour of \(m_t \)? possibly several equilibria...

Goal: quantitative estimates for the speed of these convergences.
Asymptotics

- $N \to \infty$: propagation of chaos

 If the $Z_i(0) = \tilde{Z}_i(0)$ are i.i.d. with law m_0, when $N \to \infty$,

 $\pi^N_t = \frac{1}{N} \sum \delta_{Z_i}$ should converge to m_t,

 Z_1 should behave like \tilde{Z}_1,

 $m^{(1,N)}_t = \mathcal{L}(Z_1(t))$ should converge to m_t.

- $t \to \infty$: convergence to equilibrium

 If the potential U is confining enough, Z is ergodic

 The law $m^{(N)}_t = \mathcal{L}(Z)$ converges to a unique equilibrium $m^{(N)}_{\infty}$

 Behaviour of m_t? possibly several equilibria...
Asymptotics

- $N \to \infty$: propagation of chaos

 If the $Z_i(0) = \widetilde{Z}_i(0)$ are i.i.d. with law m_0, when $N \to \infty$,
 - $\pi_t^N = \frac{1}{N} \sum \delta_{Z_i}$ should converge to m_t,
 - Z_1 should behave like \widetilde{Z}_1,
 - $m_t^{(1,N)} = \mathcal{L}(Z_1(t))$ should converge to m_t.

- $t \to \infty$: convergence to equilibrium

 If the potential U is confining enough, Z is ergodic
 - The law $m_t^{(N)} = \mathcal{L}(Z)$ converges to a unique equilibrium $m_\infty^{(N)}$
 - Behaviour of m_t? possibly several equilibria...
Asymptotics

- \(N \to \infty \): propagation of chaos

 If the \(Z_i(0) = \tilde{Z}_i(0) \) are i.i.d. with law \(m_0 \), when \(N \to \infty \),

 - \(\pi_t^N = \frac{1}{N} \sum \delta_{Z_i} \) should converge to \(m_t \),
 - \(Z_1 \) should behave like \(\tilde{Z}_1 \),
 - \(m_t^{(1,N)} = \mathcal{L}(Z_1(t)) \) should converge to \(m_t \).

- \(t \to \infty \): convergence to equilibrium

 If the potential \(U \) is confining enough, \(Z \) is ergodic

 - The law \(m_t^{(N)} = \mathcal{L}(Z) \) converges to a unique equilibrium \(m_\infty^{(N)} \)
 - Behaviour of \(m_t \)? possibly several equilibria...

Goal: quantitative estimates for the speed of these convergences.
Distances

Coupling of two laws:

\[\Pi(\mu, \nu) = \{(Q, R) \text{ r.v. such that } \mathcal{L}(Q) = \mu, \mathcal{L}(R) = \nu\} . \]

- Total variation distance:

\[d_{VT}(\mu, \nu) = \inf_{\Pi(\mu, \nu)} \mathbb{P}(Q \neq R) \]

\[= \frac{1}{2} \|\mu - \nu\|_1 \quad \text{(if density)} \]

Pierre Monmarché (CERMICS)
Distances

Coupling of two laws :

\[\Pi(\mu, \nu) = \{ (Q, R) \text{ r.v. such that } \mathcal{L}(Q) = \mu, \mathcal{L}(R) = \nu \} . \]

- Total variation distance :

\[d_{VT}(\mu, \nu) = \inf_{\Pi(\mu, \nu)} \mathbb{P}(Q \neq R) \]

\[= \frac{1}{2} \| \mu - \nu \|_1 \quad \text{(if density)} \]

- Wasserstein \(\mathcal{W}_2 \) distance :

\[\mathcal{W}_2^2(\mu, \nu) = \inf_{\Pi(\mu, \nu)} \mathbb{E} \left(|Q - R|^2 \right) \]
Distances

Coupling of two laws:

\[\Pi(\mu, \nu) = \{ (Q, R) \text{ r.v. such that } \mathcal{L}(Q) = \mu, \mathcal{L}(R) = \nu \} . \]

- Total variation distance:

\[d_{VT}(\mu, \nu) = \inf_{\Pi(\mu, \nu)} \mathbb{P}(Q \neq R) \]

\[= \frac{1}{2} \| \mu - \nu \|_1 \quad \text{(if density)} \]

- Wasserstein \(\mathcal{W}_2 \) distance:

\[\mathcal{W}_2^2(\mu, \nu) = \inf_{\Pi(\mu, \nu)} \mathbb{E} \left(|Q - R|^2 \right) \]

- Relative entropy (Kullback-Leibler divergence):

\[\mathcal{H}(\mu \mid \nu) = \int \ln \left(\frac{d\mu}{d\nu} \right) d\mu \]
Dependency in N

If

- $Q = (Q_1, \ldots, Q_N)$ of law $\mu^{(N)}$ with exchangeable Q_i's
- $R = (R_1, \ldots, R_N)$ of law $\nu \otimes N$ with i.i.d. R_i's

Then

$$\mathbb{E} (|Q - R|^2) = \sum_{i=1}^{N} \mathbb{E} (|Q_i - R_i|^2) = N \mathbb{E} (|Q_1 - R_1|^2)$$

Hence denoting by $\mu^{(1,N)}$ the law of Q_1,

$$\mathcal{W}_2^2 \left(\mu^{(1,N)}, \nu \right) \leq \frac{1}{N} \mathcal{W}_2^2 \left(\mu^{(N)}, \nu \otimes N \right).$$

If moreover the Q_i are independent with law μ,

$$\mathcal{W}_2^2 \left(\mu, \nu \right) = \frac{1}{N} \mathcal{W}_2^2 \left(\mu \otimes N, \nu \otimes N \right).$$
Dependency in N

With again exchangeable Q_i’s and i.i.d. R_i’s (Csiszár’s Inequality):

$$\mathcal{H} \left(\mu^{(1,N)} \mid \nu \right) \leq \frac{2}{N} \mathcal{H} \left(\mu^{(N)} \mid \nu^\otimes N \right)$$

Under our assumptions (to come), there will exist K independent from N such that

$$\mathcal{H} \left(m_0^\otimes N \mid m^{(N)}_\infty \right) \leq KN.$$
Dependency in N

With again exchangeable Q_i's and i.i.d. R_i's (Csiszár's Inequality):

$$\mathcal{H}\left(\mu^{(1,N)} \mid \nu\right) \leq \frac{2}{N} \mathcal{H}\left(\mu^{(N)} \mid \nu \otimes N\right)$$

Under our assumptions (to come), there will exist K independent from N such that

$$\mathcal{H}\left(m_0 \otimes N \mid m^{(N)}\right) \leq KN.$$

Bad candidate, albeit usual quantity:

$$\text{Var}_{\nu}(\mu) = \int \left(\frac{d\mu}{d\nu} - 1\right)^2 d\nu$$

\Rightarrow Hilbert norm, spectral theory, long-time convergence... but

$$\text{Var}_{\nu \otimes N}(\mu \otimes N) = (\text{Var}_{\nu}(\mu) + 1)^N - 1$$
Functional inequalities

- Pinsker’s Inequality:

\[\|\mu - \nu\|_1^2 \leq \frac{1}{2} \mathcal{H}(\mu | \nu). \]
Functional inequalities

- Pinsker’s Inequality:
 \[\|\mu - \nu\|_1^2 \leq \frac{1}{2} \mathcal{H}(\mu \mid \nu). \]

- We say \(\nu \) satisfies a log-Sobolev inequality if \(\exists C \) s.t. \(\forall \mu \prec \nu \),
 \[\mathcal{H}(\mu \mid \nu) \leq C \int \left| \nabla \ln \frac{d\mu}{d\nu} \right|^2 d\mu. \]
Functional inequalities

- Pinsker’s Inequality:

\[
\|\mu - \nu\|_1^2 \leq \frac{1}{2} \mathcal{H}(\mu \mid \nu).
\]

- We say \(\nu\) satisfies a log-Sobolev inequality if \(\exists C\) s.t. \(\forall \mu \prec \nu\),

\[
\mathcal{H}(\mu \mid \nu) \leq C \int \left| \nabla \ln \frac{d\mu}{d\nu} \right|^2 d\mu.
\]

- A log-Sobolev inequality implies a Talagrand’s \(T_2\) one: \(\forall \mu\),

\[
\mathcal{W}_2^2(\mu, \nu) \leq C \mathcal{H}(\mu \mid \nu).
\]
1 Introduction
 • The model
 • Asymptotics and distances
 • Results

2 Preliminary considerations
 • Hypocoercivity without interaction
 • Interaction without hypocoercivity
 • Hamiltonian equilibrium

3 Chain of results

4 Conclusion
Assumptions

A

- The external potential U is convex ($\nabla^2 U \geq c_1 > 0$) and $\nabla^2 W \geq -c_2$ with $c_2 < \frac{1}{2}c_1$. Moreover $\nabla^2 U$ and $\nabla^2 W$ are bounded.
- The law m_0 has a Lebesgue density, a finite 2nd moment and $\int m_0 \ln m_0 < \infty$.

Remarks:

- Forbid the Coulomb interaction $W_c(x-y) = \pm \frac{1}{|x-y|}$, but allow $\xi^* W_c$ with a smooth kernel, provided U is convex enough.
- W_c small enough is not needed (contrary to [Villani 2007, Bolley-Guillin-Malrieu 2010, Hérau-Thomann 2015]).
Assumptions

The external potential U is convex ($\nabla^2 U \geq c_1 > 0$) and $\nabla^2 W \geq -c_2$ with $c_2 < \frac{1}{2}c_1$. Moreover $\nabla^2 U$ and $\nabla^2 W$ are bounded.

The law m_0 has a Lebesgue density, a finite 2nd moment and $\int m_0 \ln m_0 < \infty$.

Remarks:

- Forbid the Coulomb interaction $W_c(x - y) = \pm \frac{1}{|x-y|}$, but allow $\xi * W_c$ with a smooth kernel, provided U is convex enough.
- $\ll W$ small enough \gg not needed (contrary to [Villani 2007, Bolley-Guillin-Malrieu 2010, Hérau-Thomann 2015]).
Results

Theorem (M., 2016)

Under Assumption A, the exist $C, \chi > 0$ which depend neither on t, nor N, nor m_0, and there exists K that depends on m_0 but not on t, N, such that

- For the particle system, $m^{(N)}_\infty$ satisfies a log-Sobolev inequality with constant independent from N and

\[
\mathcal{H} \left(m^{(N)}_t \mid m^{(N)}_\infty \right) \leq C e^{-\chi t} \mathcal{H} \left(m^{(N)}_0 \mid m^{(N)}_\infty \right).
\]

- The Vlasov-Fokker-Planck PDE admits a unique equilibrium m_∞ and

\[
\| m_t - m_\infty \|_1 \leq K e^{-\chi t}, \quad \mathcal{W}_2 \left(m_t, m_\infty \right) \leq K e^{-\chi t}.
\]
Results

Theorem (M., 2016)

Under Assumption A, there exist $b, \alpha, > 0$ that depend neither on t, nor N, nor m_0, and there exists K that depends on m_0 but not on t, N, such that

- **Uniform in time propagation of chaos**:

 $$W_2 \left(m_t^{(1,N)}, m_t \right) \leq K \min \left(\frac{e^{bt}}{N}, \frac{1}{N^\alpha} \right)$$

 and

 $$\| m_t^{(1,N)} - m_t \|_1 \leq \frac{K}{N^\alpha}.$$

- **Numerical error bound** (cf. Bolley-Guillin-Villani 2006) :

 $$\mathbb{P} \left(W_2 \left(\pi^N_t, m_\infty \right) \geq \varepsilon \right) \leq \frac{K}{\varepsilon^2} \left(e^{-\chi t} + \frac{1}{N} \right)$$
1 Introduction
 - The model
 - Asymptotics and distances
 - Results

2 Preliminary considerations
 - Hypocoercivity without interaction
 - Interaction without hypocoercivity
 - Hamiltonian equilibrium

3 Chain of results

4 Conclusion
1 Introduction
 - The model
 - Asymptotics and distances
 - Results

2 Preliminary considerations
 - Hypocoercivity without interaction
 - Interaction without hypocoercivity
 - Hamiltonian equilibrium

3 Chain of results

4 Conclusion
Coercivity without interaction

\[
\begin{aligned}
\begin{cases}
 dX &= Y dt \\
 MdY &= -\nabla U(X) dt - Y dt + \sqrt{2} dB
\end{cases}
\end{aligned}
\]

When the mass \(M \to 0 \), overdamped Langevin (or Fokker-Planck) diffusion:

\[
\begin{aligned}
dX &= -\nabla U(X) dt + \sqrt{2} dB
\end{aligned}
\]

with equilibrium \(\rho_\infty(dx) = e^{-U(x)} dx \) and whose law \(\rho_t \) satisfies

\[
\begin{aligned}
\partial_t \rho_t &= \nabla \cdot (\rho_t \nabla U + \nabla \rho_t).
\end{aligned}
\]
Coercivity without interaction

\[
\begin{align*}
\left\{
 \begin{aligned}
 dX &= Y dt \\
 M dY &= -\nabla U(X) dt - Y dt + \sqrt{2} dB
 \end{aligned}
\right.
\]

When the mass $M \to 0$, overdamped Langevin (or Fokker-Planck) diffusion:

\[
dX = -\nabla U(X) dt + \sqrt{2} dB
\]

with equilibrium $\rho_\infty(dx) = e^{-U(x)} dx$ and whose law ρ_t satisfies

\[
\partial_t \rho_t = \nabla \cdot (\rho_t \nabla U + \nabla \rho_t).
\]

Large-time convergence, assuming a log-Sobolev inequality holds:

\[
\partial_t \left(\mathcal{H} \left(\rho_t \mid \rho_\infty \right) \right) = -\int \left| \nabla \ln \frac{d\rho_t}{d\rho_\infty} \right|^2 d\rho_t \leq -\frac{1}{C} \mathcal{H} \left(\rho_t \mid \rho_\infty \right)
\]

\[
\Rightarrow \quad \mathcal{H} \left(\rho_t \mid \rho_\infty \right) \leq e^{-\frac{t}{C}} \mathcal{H} \left(\rho_0 \mid \rho_\infty \right).
\]
Hypoercivity without interaction

\[\begin{align*}
\{ & \quad \text{d}X = Y \text{d}t \\
& \quad \text{d}Y = -\nabla U(X) \text{d}t - Y \text{d}t + \sqrt{2} \text{d}B
\end{align*}\]

The entropy dissipation may vanish outside of equilibrium:

\[\partial_t (\mathcal{H} (m_t | m_\infty)) = - \int \left| \nabla_y \ln \frac{d m_t}{d m_\infty} \right|^2 d m_t.\]
Hypoercivity without interaction

\[
\begin{aligned}
\begin{cases}
\frac{dX}{dt} &= Y \\
\frac{dY}{dt} &= -\nabla U(X) dt - Y dt + \sqrt{2} dB
\end{cases}
\end{aligned}
\]

The entropy dissipation may vanish outside of equilibrium:

\[
\partial_t (H(m_t | m_\infty)) = - \int \left| \nabla_y \ln \frac{d m_t}{d m_\infty} \right|^2 d m_t.
\]

Modified entropy (Hérau 2006, Villani 2007): set \(h_t = \frac{d m_t}{d m_\infty} \) and

\[
\mathcal{N}(h) := \int h \ln h d m_\infty + \int |P \nabla \ln h|^2 h d m_\infty.
\]

With a well-chosen \(P \) and log-Sobolev inequality,

\[
\partial_t (\mathcal{N}(h_t)) \leq -c \int |\nabla \log h_t|^2 d m_t \leq -c' \mathcal{N}(h_t)
\]
Hypoercivity without interaction

\[
\begin{aligned}
\left\{ \begin{array}{l}
\mathrm{d}X &= Y \mathrm{d}t \\
\mathrm{d}Y &= -\nabla U(X) \mathrm{d}t - Y \mathrm{d}t + \sqrt{2} \mathrm{d}B
\end{array} \right.
\end{aligned}
\]

The entropy dissipation may vanish outside of equilibrium:

\[
\partial_t (\mathcal{H}(m_t \mid m_\infty)) = - \int \left| \nabla_y \ln \frac{d m_t}{d m_\infty} \right|^2 d m_t.
\]

Modified entropy (Hérau 2006, Villani 2007): set \(h_t = \frac{d m_t}{d m_\infty} \) and

\[
\mathcal{N}(h) := \int h \ln h d m_\infty + \int |P \nabla \ln h|^2 h d m_\infty.
\]

With a well-chosen \(P \) and log-Sobolev inequality,

\[
\partial_t (\mathcal{N}(h_t)) \leq -c \int |\nabla \log h_t|^2 d m_t \leq -c' \mathcal{N}(h_t)
\]

\[
\Rightarrow \quad \mathcal{N}(h_t) \leq e^{-\frac{(t-t_0)}{c'}} \mathcal{N}(h_{t_0})
\]
Hypoercivity without interaction

\[
\begin{align*}
 \text{d}X &= Y \text{d}t \\
 \text{d}Y &= -\nabla U(X) \text{d}t - Y \text{d}t + \sqrt{2} \text{d}B
\end{align*}
\]

The entropy dissipation may vanish outside of equilibrium:

\[
\partial_t \left(\mathcal{H} \left(m_t \mid m_\infty \right) \right) = - \int \left| \nabla_y \ln \frac{dm_t}{dm_\infty} \right|^2 \text{d}m_t.
\]

Modified entropy (Hérau 2006, Villani 2007): set \(h_t = \frac{dm_t}{dm_\infty} \) and

\[
\mathcal{N}(h) := \int h \ln h \text{d}m_\infty + \int |P \nabla \ln h|^2 h \text{d}m_\infty.
\]

With a well-chosen \(P \) and log-Sobolev inequality,

\[
\partial_t \left(\mathcal{N}(h_t) \right) \leq -c \int |\nabla \log h_t|^2 \text{d}m_t \leq -c' \mathcal{N}(h_t)
\]

\[
\Rightarrow \mathcal{H} \left(m_t \mid m_\infty \right) \leq \mathcal{N}(h_t) \leq e^{-\frac{(t-t_0)}{c'}} \mathcal{N}(h_{t_0})
\]

Hypoercivity without interaction

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{dX}{dt} = Y \\
\frac{dY}{dt} = -\nabla U(X) dt - Y dt + \sqrt{2} dB
\end{array} \right.
\]

The entropy dissipation may vanish outside of equilibrium:

\[
\partial_t \left(\mathcal{H} \left(m_t \mid m_\infty \right) \right) = - \int \left| \nabla_y \ln \frac{dm_t}{dm_\infty} \right|^2 dm_t.
\]

Modified entropy (Hérau 2006, Villani 2007): set \(h_t = \frac{dm_t}{dm_\infty} \) and

\[
\mathcal{N}(h) := \int h \ln h dm_\infty + \int |P \nabla \ln h|^2 h dm_\infty.
\]

With a well-chosen \(P \) and log-Sobolev inequality,

\[
\partial_t \left(\mathcal{N}(h_t) \right) \leq -c \int \left| \nabla \log h_t \right|^2 dmt \leq -c' \mathcal{N}(h_t)
\]

\[
\Rightarrow \mathcal{H}(m_t \mid m_\infty) \leq \mathcal{N}(h_t) \leq e^{-\frac{(t-t_0)}{c'}} \mathcal{N}(h_{t_0}) \overset{\text{regul.}}{\leq} Ce^{-\frac{t}{c'}} \mathcal{H}(m_0 \mid m_\infty)
\]
1 Introduction
 • The model
 • Asymptotics and distances
 • Results

2 Preliminary considerations
 • Hypocoercivity without interaction
 • Interaction without hypocoercivity
 • Hamiltonian equilibrium

3 Chain of results

4 Conclusion
The McKean-Vlasov equation

Overdamped mean-field particles: for $i \in [1, N]$,

$$dX_i = -\nabla U(X_i) dt - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) dt + \sqrt{2} dB_i$$

$$d\tilde{X}_i = -\nabla U(\tilde{X}_i) dt - \int \nabla W(\tilde{X}_i - u) \rho_t(u) du dt + \sqrt{2} dB_i$$

$$\rho_t = L(\tilde{X}_1) .$$

Elliptic but non-linear EDP:

$$\partial_t \rho_t = \nabla \cdot (\nabla \rho_t + (\nabla U + \nabla W * \rho_t) \rho_t) .$$

Parallel coupling: same Brownian motions B_i for both X_i and \tilde{X}_i.
Propagation of chaos

Denote by

\[\alpha(t) = \mathbb{E} \left(\left| X_1(t) - \tilde{X}_1(t) \right|^2 \right) = \frac{1}{N} \mathbb{E} \left(\left| X(t) - \tilde{X}(t) \right|^2 \right). \]

Parallel coupling and convexity assumption (Malrieu 2001):

\[\alpha'(t) \leq -c\alpha(t) + \frac{K}{\sqrt{N}} \sqrt{\alpha(t)} \]
Propagation of chaos

Denote by

\[\alpha(t) = \mathbb{E}\left(\left| X_1(t) - \tilde{X}_1(t) \right|^2 \right) = \frac{1}{N} \mathbb{E}\left(\left| X(t) - \tilde{X}(t) \right|^2 \right). \]

Parallel coupling and convexity assumption (Malrieu 2001):

\[\alpha'(t) \leq -c\alpha(t) + \frac{K}{\sqrt{N}} \sqrt{\alpha(t)} \quad \Rightarrow \quad \sqrt{\alpha(t)} \leq \frac{K}{c\sqrt{N}} \]

Consequences:

\[W_2^2(\rho(1,N)^t,\rho^t) \leq K N W_2^2(\rho(1,\infty)^\infty,\rho^\infty) \leq K N \quad \text{for a unique } \rho^\infty; \text{ moreover a log-Sobolev inequality for } \rho(\infty) \text{ independently from } N, \text{ and for } \rho^\infty \]
Propagation of chaos

Denote by

$$\alpha(t) = \mathbb{E} \left(|X_1(t) - \tilde{X}_1(t)|^2 \right) = \frac{1}{N} \mathbb{E} \left(|X(t) - \tilde{X}(t)|^2 \right).$$

Parallel coupling and convexity assumption (Malrieu 2001):

$$\alpha'(t) \leq -c\alpha(t) + \frac{K}{\sqrt{N}} \sqrt{\alpha(t)} \quad \Rightarrow \quad \sqrt{\alpha(t)} \leq \frac{K}{c\sqrt{N}}$$

Consequences:

$$\mathcal{W}_2^2 \left(\rho_t^{(1,N)}, \rho_t \right) \leq \frac{K}{N}$$

$$\mathcal{W}_2^2 \left(\rho_\infty^{(1,N)}, \rho_\infty \right) \leq \frac{K}{N}$$

(for a unique ρ_∞; moreover a log-Sobolev inequality for $\rho_\infty^{(N)}$ independently from N, and for ρ_∞)
1 Introduction
 • The model
 • Asymptotics and distances
 • Results

2 Preliminary considerations
 • Hypocoercivity without interaction
 • Interaction without hypocoercivity
 • Hamiltonian equilibrium

3 Chain of results

4 Conclusion
Without interaction

\[
\begin{aligned}
 \left\{ \begin{array}{ll}
 \frac{dX}{dt} &= Y dt \\
 \frac{dY}{dt} &= -\nabla U(X) dt - Y dt + \sqrt{2} dB.
 \end{array} \right.
\end{aligned}
\]

Denoting by \(\gamma \) the standard Gaussian density, the equilibrium is

\[
m_\infty(dx, dy) = \left(e^{-U(x)} dx \right) \otimes \gamma(dy)
= \rho_\infty(dx) \otimes \gamma(dy)
\]

where \(\rho_\infty \) is the invariant measure of

\[
\frac{dX}{dt} = -\nabla U(X) dt + \sqrt{2} dB.
\]
With interaction

\[
\begin{aligned}
\text{d}\tilde{X} &= \tilde{Y}\,dt \\
\text{d}\tilde{Y} &= -\nabla U(\tilde{X})\,dt - (\nabla W \ast m_t)(\tilde{X}) - \tilde{Y}\,dt + \sqrt{2}\,dB \\
m_t &= \mathcal{L}(\tilde{X}(t),\tilde{Y}(t)).
\end{aligned}
\]

Then (Duong-Tugaut 2016)

\[
m_\infty(dx,dy) = \rho_\infty(dx) \otimes \gamma(dy)
\]

is a bijection between the equilibria \(m_\infty\) and the equilibria \(\rho_\infty\) of

\[
\text{d}\tilde{X} = -\nabla U(\tilde{X})\,dt - \int \nabla W(\tilde{X} - u)\,\rho_t(u)\,du\,dt + \sqrt{2}\,dB.
\]
1 Introduction
- The model
- Asymptotics and distances
- Results

2 Preliminary considerations
- Hypocoercivity without interaction
- Interaction without hypocoercivity
- Hamiltonian equilibrium

3 Chain of results

4 Conclusion
Large time for the particle system

- The system $Z = (X, Y) \in \mathbb{R}^{2dN}$ satisfies a Langevin SDE

\[
\begin{align*}
 dX &= Y \, dt \\
 dY &= -\nabla U_N(X) dt - Y \, dt + \sqrt{2} \, dB
\end{align*}
\]

with $U_N(x) = \frac{1}{2N} \sum_{i,j=1}^{N} (U(x_i) + U(x_j) + W(x_i - x_j))$.
Large time for the particle system

- The system \(Z = (X, Y) \in \mathbb{R}^{2dN} \) satisfies a Langevin SDE
 \[
 \begin{align*}
 \text{d}X &= Y \text{d}t \\
 \text{d}Y &= -\nabla U_N(X) \text{d}t - Y \text{d}t + \sqrt{2} \text{d}B
 \end{align*}
 \]
 with \(U_N(x) = \frac{1}{2N} \sum_{i,j=1}^{N} (U(x_i) + U(x_j) + W(x_i - x_j)) \),

- Convexity \(\Rightarrow \) log-Sobolev independent from \(N \) for \(\rho^{(N)} = e^{-U_N} \)
Large time for the particle system

- The system \(Z = (X, Y) \in \mathbb{R}^{2dN} \) satisfies a Langevin SDE
 \[
 \begin{aligned}
 dX &= Y dt \\
 dY &= -\nabla U_N(X) dt - Y dt + \sqrt{2} dB
 \end{aligned}
 \]
 with \(U_N(x) = \frac{1}{2N} \sum_{i,j=1}^{N} (U(x_i) + U(x_j) + W(x_i - x_j)) \),

- Convexity \(\Rightarrow \) log-Sobolev independent from \(N \) for \(\rho_\infty^{(N)} = e^{-U_N} \)

- \(\Rightarrow \) log-Sobolev independent from \(N \) for \(m_\infty^{(N)} = \rho_\infty^{(N)} \otimes \gamma \) (\& unique)
Large time for the particle system

- The system $Z = (X, Y) \in \mathbb{R}^{2dN}$ satisfies a Langevin SDE

 \[
 \begin{aligned}
 dX &= Y \, dt \\
 dY &= -\nabla U_N(X) \, dt - Y \, dt + \sqrt{2} \, dB
 \end{aligned}
 \]

 with $U_N(x) = \frac{1}{2N} \sum_{i,j=1}^{N} (U(x_i) + U(x_j) + W(x_i - x_j))$,

- Convexity \Rightarrow log-Sobolev independent from N for $\rho^{(N)}_\infty = e^{-U_N}$

- \Rightarrow log-Sobolev independent from N for $m^{(N)}_\infty = \rho^{(N)}_\infty \otimes \gamma$ (& unique)

- + modified entropy + mean field,

 \Rightarrow \[
 \mathcal{H} \left(m^{(N)}_t \mid m^{(N)}_\infty \right) \leq C e^{-\chi t} \mathcal{H} \left(m^{\otimes N}_0 \mid m^{(N)}_\infty \right)
 \]
Large time for the particle system

- The system \(Z = (X, Y) \in \mathbb{R}^{2dN} \) satisfies a Langevin SDE

\[
\begin{align*}
 dX &= Y \, dt \\
 dY &= -\nabla U_N(X) \, dt - Y \, dt + \sqrt{2} \, dB
\end{align*}
\]

with \(U_N(x) = \frac{1}{2N} \sum_{i,j=1}^{N} (U(x_i) + U(x_j) + W(x_i - x_j)) \),

- Convexity \(\Rightarrow \) log-Sobolev independent from \(N \) for \(\rho_{\infty}^{(N)} = e^{-U_N} \)
- \(\Rightarrow \) log-Sobolev independent from \(N \) for \(m_{\infty}^{(N)} = \rho_{\infty}^{(N)} \otimes \gamma \) (\& unique)
- + modified entropy + mean field,

\[
\mathcal{H} \left(m_t^{(N)} \mid m_{\infty}^{(N)} \right) \leq C e^{-\chi t} \mathcal{H} \left(m_0^{\otimes N} \mid m_{\infty}^{(N)} \right) \leq K Ne^{-\chi t}
\]

with \(C, \chi, K \) independent from \(t \) and \(N \).
Large time for the particle system

- The system $Z = (X, Y) \in \mathbb{R}^{2dN}$ satisfies a Langevin SDE
 \[
 \begin{cases}
 dX = Y \, dt \\
 dY = -\nabla U_N(X) \, dt - Y \, dt + \sqrt{2} \, dB
 \end{cases}
 \]
 with $U_N(x) = \frac{1}{2N} \sum_{i,j=1}^{N} (U(x_i) + U(x_j) + W(x_i - x_j))$,

- Convexity \Rightarrow log-Sobolev independent from N for $\rho_{\infty}^{(N)} = e^{-U_N}$

- \Rightarrow log-Sobolev independent from N for $m_{\infty}^{(N)} = \rho_{\infty}^{(N)} \otimes \gamma$ (\& unique)

- + modified entropy + mean field,

 \[
 \Rightarrow \quad \mathcal{H} \left(m_t^{(N)} \mid m_{\infty}^{(N)} \right) \leq C e^{-\chi t} \mathcal{H} \left(m_0^{\otimes N} \mid m_{\infty}^{(N)} \right) \leq K Ne^{-\chi t}
 \]

 with C, χ, K independent from t and N.

- + Talagrand Inequality independent from N,

 \[
 \mathcal{W}_2^2 \left(m_t^{(N)}, m_{\infty}^{(N)} \right) \leq K Ne^{-\chi t}.
 \]
Crude propagation of chaos

Parallel coupling between

\[
\begin{align*}
\text{d}X_i &= Y_i \text{d}t \\
\text{d}Y_i &= -\nabla U(X_i) \text{d}t - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) \text{d}t - Y_i \text{d}t + \sqrt{2} \text{d}B_i
\end{align*}
\]

and

\[
\begin{align*}
\text{d}\tilde{X}_i &= \tilde{Y}_i \text{d}t \\
\text{d}\tilde{Y}_i &= -\nabla U(\tilde{X}_i) \text{d}t - (\nabla W \ast m_t)(\tilde{X}_i) - \tilde{Y}_i \text{d}t + \sqrt{2} \text{d}B_i.
\end{align*}
\]

If the forces were close to be linear (Bolley-Guillin-Malrieu 2010) we could have a coercive drift.
Crude propagation of chaos

Parallel coupling between

\[
\begin{align*}
\frac{dX_i}{dt} &= Y_i dt \\
\frac{dY_i}{dt} &= -\nabla U(X_i) dt - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) dt - Y_i dt + \sqrt{2} dB_i
\end{align*}
\]

and

\[
\begin{align*}
\frac{d\tilde{X}_i}{dt} &= \tilde{Y}_i dt \\
\frac{d\tilde{Y}_i}{dt} &= -\nabla U(\tilde{X}_i) dt - (\nabla W \ast m_t)(\tilde{X}_i) - \tilde{Y}_i dt + \sqrt{2} dB_i.
\end{align*}
\]

If the forces were close to be linear (Bolley-Guillin-Malrieu 2010) we could have a coercive drift. Here we simply say

\[
\alpha'(t) \leq b\alpha(t) + \frac{K}{\sqrt{N}} \sqrt{\alpha(t)}
\]
Crude propagation of chaos

Parallel coupling between

\[
\begin{align*}
 dX_i &= Y_i dt \\
 dY_i &= -\nabla U(X_i) dt - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) dt - Y_i dt + \sqrt{2} dB_i
\end{align*}
\]

and

\[
\begin{align*}
 d\tilde{X}_i &= \tilde{Y}_i dt \\
 d\tilde{Y}_i &= -\nabla U(\tilde{X}_i) dt - (\nabla W \ast m_t)(\tilde{X}_i) - \tilde{Y}_i dt + \sqrt{2} dB_i.
\end{align*}
\]

If the forces were close to be linear (Bolley-Guillin-Malrieu 2010) we could have a coercive drift. Here we simply say

\[
\alpha'(t) \leq b\alpha(t) + \frac{K}{\sqrt{N}} \sqrt{\alpha(t)}
\]

\[
\Rightarrow \quad \mathbb{E} \left(\left| Z_1(t) - \tilde{Z}_1(t) \right|^2 \right) \leq \frac{K e^{bt}}{N}.
\]
Large-time in \mathcal{W}_2 for the non-linear process

At fixed t and for all N,

$$\mathcal{W}_2 (m_t, m_\infty)$$

$$\leq \mathcal{W}_2 (m_t, m_t^{(1,N)}) + \mathcal{W}_2 (m_t^{(1,N)}, m_\infty^{(1,N)}) + \mathcal{W}_2 (m_\infty^{(1,N)}, m_\infty)$$
At fixed t and for all N,

\[\mathcal{W}_2(m_t, m_\infty) \]

\[\leq \mathcal{W}_2\left(m_t, m_t^{(1,N)}\right) + \mathcal{W}_2\left(m_t^{(1,N)}, m_\infty^{(1,N)}\right) + \mathcal{W}_2\left(m_\infty^{(1,N)}, m_\infty\right) \]

- crude prop chaos
- large time Markov
- prop chaos equilibrium
Large-time in \mathcal{W}_2 for the non-linear process

At fixed t and for all N,

$$\mathcal{W}_2 (m_t, m_\infty)$$

\[
\leq \quad \mathcal{W}_2 \left(m_t, m_t^{(1,N)} \right) + \mathcal{W}_2 \left(m_t^{(1,N)}, m_\infty^{(1,N)} \right) + \mathcal{W}_2 \left(m_\infty^{(1,N)}, m_\infty \right)
\]

\[
\leq \quad Ke^{bt} + Ke^{-\chi t} + \frac{K}{N}
\]
At fixed t and for all N,

$$\mathcal{W}_2 (m_t, m_\infty)$$

\[
\leq \mathcal{W}_2 \left(m_t, m_t^{(1,N)} \right) + \mathcal{W}_2 \left(m_t^{(1,N)}, m_\infty^{(1,N)} \right) + \mathcal{W}_2 \left(m_\infty^{(1,N)}, m_\infty \right)
\]

- crude prop chaos
- large time Markov
- prop chaos equilibrium

\[
\leq \frac{K e^{bt}}{N} + K e^{-\chi t} + \frac{K}{N}
\]

$$N \rightarrow \infty \quad K e^{-\chi t}.$$
Uniform propagation of chaos in \mathcal{W}_2

For $t \leq \epsilon \ln N$,

For $t \geq \epsilon \ln N$,
Uniform propagation of chaos in \mathcal{W}_2

For $t \leq \varepsilon \ln N$, parallel coupling:

$$\mathcal{W}_2^2 \left(m_t^{(1,N)}, m_t \right) \leq \frac{K e^{bt}}{N} \leq \frac{K}{N^{1-b\varepsilon}}.$$

For $t \geq \varepsilon \ln N$,

Conclusion, for all time,

$$\mathcal{W}_2^2 \left(m_t^{(1,N)}, m_t \right) \leq K N^{\alpha}.$$
Uniform propagation of chaos in \mathcal{W}_2

For $t \leq \varepsilon \ln N$, parallel coupling:

$$\mathcal{W}_2^2 \left(m_t^{(1,N)}, m_t \right) \leq \frac{Ke^{bt}}{N} \leq \frac{K}{N^{1-b\varepsilon}}.$$

For $t \geq \varepsilon \ln N$, coupling through the equilibria:

$$\mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right) \leq \mathcal{W}_2 \left(m_t^{(1,N)}, m_\infty \right) + \mathcal{W}_2 \left(m_\infty^{(1,N)}, m_\infty \right) + \mathcal{W}_2 \left(m_\infty, m_t \right)$$
Uniform propagation of chaos in \mathcal{W}_2

For $t \leq \varepsilon \ln N$, parallel coupling:

$$\mathcal{W}_2^2 \left(m_t^{(1,N)}, m_t \right) \leq \frac{Ke^{bt}}{N} \leq \frac{K}{N^{1-b\varepsilon}}.$$

For $t \geq \varepsilon \ln N$, coupling through the equilibria:

$$\mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right)$$

$$\leq \mathcal{W}_2 \left(m_t^{(1,N)}, m_\infty^{(1,N)} \right) + \mathcal{W}_2 \left(m_\infty^{(1,N)}, m_\infty \right) + \mathcal{W}_2 \left(m_\infty, m_t \right)$$

$$\leq Ke^{-\chi t} + \frac{K}{N} + Ke^{-\chi t}$$
Uniform propagation of chaos in \mathcal{W}_2

For $t \leq \varepsilon \ln N$, parallel coupling:

\[
\mathcal{W}_2^2 \left(m_t^{(1,N)}, m_t \right) \leq \frac{Ke^{bt}}{N} \leq \frac{K}{N^{1-b\varepsilon}}.
\]

For $t \geq \varepsilon \ln N$, coupling through the equilibria:

\[
\mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right) \\
\leq \mathcal{W}_2 \left(m_t^{(1,N)}, m_\infty^{(1,N)} \right) + \mathcal{W}_2 \left(m_\infty^{(1,N)}, m_\infty \right) + \mathcal{W}_2 \left(m_\infty, m_t \right) \\
\leq Ke^{-\chi t} + \frac{K}{N} + Ke^{-\chi t} \\
\leq \frac{3K}{N^{\varepsilon\chi}}
\]
Uniform propagation of chaos in \mathcal{W}_2

For $t \leq \epsilon \ln N$, parallel coupling:

$$\mathcal{W}_2^2 \left(m_t^{(1,N)}, m_t \right) \leq \frac{Ke^{bt}}{N} \leq \frac{K}{N^{1-b\epsilon}}.$$

For $t \geq \epsilon \ln N$, coupling through the equilibria:

$$\mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right) \leq \mathcal{W}_2 \left(m_t^{(1,N)}, m_\infty^{(1,N)} \right) + \mathcal{W}_2 \left(m_\infty^{(1,N)}, m_\infty \right) + \mathcal{W}_2 \left(m_\infty, m_t \right)$$

$$\leq Ke^{-\chi t} + \frac{K}{N} + Ke^{-\chi t}$$

$$\leq \frac{3K}{N^{\epsilon\chi}}$$

Conclusion, for all time, $\mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right) \leq \frac{K}{N^\alpha}$.
Total variation

Based on Malrieu’s 2001 guideline,

\[
\partial_t \left(\mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \right) \leq KNW_2 \left(m_t^{(1,N)}, m_t \right) \leq KN^{1-\alpha}
\]
Total variation

Based on Malrieu’s 2001 guideline,

\[
\frac{\partial}{\partial t} \left(\mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \right) \leq KN \mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right) \leq KN^{1-\alpha}
\]

hence

\[
\left\| m_t^{(1,N)} - m_t \right\|_1^2 \leq \frac{1}{N} \mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \leq \frac{Kt}{N^{\alpha}}
\]
Total variation

Based on Malrieu’s 2001 guideline,

$$\partial_t \left(\mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \right) \leq KN \mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right) \leq KN^{1-\alpha}$$

hence

$$\|m_t^{(1,N)} - m_t\|_1^2 \leq \frac{1}{N} \mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \leq \frac{Kt}{N^\alpha}$$

Not uniform, but sufficient:

$$\|m_t - m_\infty\|_1 \leq \|m_t - m_t^{(1,N)}\|_1 + \|m_t^{(1,N)} - m^{(1,N)}_\infty\|_1 + \|m^{(1,N)}_\infty - m_\infty\|_1$$
Total variation

Based on Malrieu’s 2001 guideline,

\[\partial_t \left(\mathcal{H} \left(m_t^{(N)} \mid m_t^{\otimes N} \right) \right) \leq K N W_2 \left(m_t^{(1,N)}, m_t \right) \leq K N^{1-\alpha} \]

hence

\[\| m_t^{(1,N)} - m_t \|_2^2 \leq \frac{1}{N} \mathcal{H} \left(m_t^{(N)} \mid m_t^{\otimes N} \right) \leq \frac{K t}{N^\alpha} \]

Not uniform, but sufficient:

\[\| m_t - m_\infty \|_1 \]
\[\leq \| m_t - m_t^{(1,N)} \|_1 + \| m_t^{(1,N)} - m_\infty^{(1,N)} \|_1 + \| m_\infty^{(1,N)} - m_\infty \|_1 \]
\[\leq \frac{\sqrt{K t}}{N^{\frac{\alpha}{2}}} + \sqrt{K N e^{-\frac{1}{2} \chi t}} + \frac{K}{\sqrt{N}} \]
Total variation

Based on Malrieu’s 2001 guideline,

\[
\partial_t \left(\mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \right) \leq K N W_2 \left(m_t^{(1,N)}, m_t \right) \leq K N^{1-\alpha}
\]

hence

\[
\| m_t^{(1,N)} - m_t \|_1^2 \leq \frac{1}{N} \mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \leq \frac{K t}{N^\alpha}
\]

Not uniform, but sufficient: for \(N \) of order \(e^{\frac{\chi t}{\alpha+1}} \).

\[
\| m_t - m_\infty \|_1 \leq \| m_t - m_t^{(1,N)} \|_1 + \| m_t^{(1,N)} - m_\infty^{(1,N)} \|_1 + \| m_\infty^{(1,N)} - m_\infty \|_1 \leq \sqrt{K t} \leq N^{\alpha/2} + \sqrt{K N} e^{-\frac{1}{2} \chi t} + \frac{K}{\sqrt{N}} \leq K e^{-\chi' t}.
\]
Total variation

Based on Malrieu’s 2001 guideline,

\[\partial_t \left(\mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \right) \leq K N \mathcal{W}_2 \left(m_t^{(1,N)}, m_t \right) \leq K N^{1-\alpha} \]

hence

\[\| m_t^{(1,N)} - m_t \|_1^2 \leq \frac{1}{N} \mathcal{H} \left(m_t^{(N)} \mid m_t \otimes N \right) \leq \frac{K t}{N^\alpha} \]

Not uniform, but sufficient : for \(N \) of order \(e^{\frac{\chi t}{\alpha + 1}} \).

\[
\| m_t - m_\infty \|_1 \\
\leq \| m_t - m_t^{(1,N)} \|_1 + \| m_t^{(1,N)} - m_\infty^{(1,N)} \|_1 + \| m_\infty^{(1,N)} - m_\infty \|_1 \\
\leq \frac{\sqrt{K t}}{N^\frac{\alpha}{2}} + \sqrt{K N} e^{-\frac{1}{2} \chi t} + \frac{K}{\sqrt{N}} \leq K e^{-\chi' t}.
\]

(\(\Rightarrow \) uniform in time propagation of chaos in the total variation sense...)
1 Introduction
 - The model
 - Asymptotics and distances
 - Results

2 Preliminary considerations
 - Hypocoercivity without interaction
 - Interaction without hypocoercivity
 - Hamiltonian equilibrium

3 Chain of results

4 Conclusion
Without convexity

If U has several minima and the interaction is attractive, in the small noise regime, the non-linear PDE has several distinct equilibria, but there is unicity for a large enough noise

- If uniqueness, uniform estimates, with respect to t or N?
- Without uniqueness, replace THE invariant measure by quasi-stationary ones? Are there two regimes

$$t \ll e^{aN} \Rightarrow \mathcal{W}_2 \left(m_{t}^{(1,N)}, m_t \right) \leq \frac{K}{N}$$

$$t \gg e^{aN} \Rightarrow \mathcal{W}_2 \left(m_{t}^{(1,N)}, m_t \right) \geq K$$

and convergence of the QSD towards the equilibria of the PDE?

- toy model (Curie-Weiss).
References

F. Bolley, A. Guillin, and F. Malrieu.
Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation.

F. Bolley, A. Guillin, and C. Villani.
Quantitative concentration inequalities for empirical measures on non-compact spaces.

M. H. Duong and J. Tugaut.
Stationary solutions of the Vlasov-Fokker-Planck equation : existence, characterization and phase-transition.

F. Hérau and L. Thomann.
On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential.

F. Malrieu.
Logarithmic Sobolev inequalities for some nonlinear PDE’s.