Comparison among different models

Full 3D/FSI model 3D/FSI-ID model 3D/FSI-ID model with tapering

Good agreement between the simplified model with tapering in the ID model and the full model

Comparison among different models

Mean pressure and flow rate at the internal carotid (up) and at the external carotid (bottom)

Alfio Quarteroni

Blood Flow and Oxygen Transport in the Brain

ID (vessels) and 3D (brain tissue) blood pressures with pulsatile input blood flow rate and left carotid artery occlusion

Alfio Quarteroni

A realistic time-dependent ID-3D model:

$$\begin{cases} C_{\mathsf{t}} \frac{\partial}{\partial t} p_{\mathsf{t}} + \nabla \cdot (K_{\mathsf{t}} \nabla p_{\mathsf{t}}) + \alpha p_{\mathsf{t}} - \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \delta_{\mathsf{\Lambda}} = 0 \ t > 0, \ \mathbf{x} \in \Omega, \\ \frac{\partial}{\partial t} \begin{bmatrix} p_{\mathsf{v}} \\ q_{\mathsf{v}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{c} \\ \frac{1}{l} & 0 \end{bmatrix} \frac{\partial}{\partial s} \begin{bmatrix} p_{\mathsf{v}} \\ q_{\mathsf{v}} \end{bmatrix} + \begin{bmatrix} \frac{1}{c} \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \\ rq_{\mathsf{v}} \end{bmatrix} = \mathbf{0}, \qquad t > 0, s \in \mathsf{\Lambda}, \end{cases}$$

Alfio Quarteroni

A realistic time-dependent ID-3D model:

$$\begin{cases} C_{\mathsf{t}} \frac{\partial}{\partial t} p_{\mathsf{t}} + \nabla \cdot (K_{\mathsf{t}} \nabla p_{\mathsf{t}}) + \alpha p_{\mathsf{t}} - \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \delta_{\mathsf{\Lambda}} = 0 \ t > 0, \ \mathbf{x} \in \Omega, \\ \frac{\partial}{\partial t} \left[\frac{p_{\mathsf{v}}}{q_{\mathsf{v}}} \right] + \left[\begin{matrix} 0 & \frac{1}{c} \\ \frac{1}{l} & 0 \end{matrix} \right] \frac{\partial}{\partial s} \left[\begin{matrix} p_{\mathsf{v}} \\ q_{\mathsf{v}} \end{matrix} \right] + \left[\begin{matrix} \frac{1}{c} \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \\ rq_{\mathsf{v}} \end{matrix} \right] = \mathbf{0}, \qquad t > 0, s \in \mathsf{\Lambda}, \end{cases}$$

 $p_{t}: \Omega \to \mathbb{R} \text{ blood pressure in the tissue (3D)}$ $p_{v}: \Lambda \to \mathbb{R} \text{ blood pressure in the vessel (ID)}$ $q_{v}: \Lambda \to \mathbb{R} \text{ blood flow rate in the vessel (ID)}$ $\phi: \Lambda \to \mathbb{R} \text{ the exchange term}$

Flow model

$$\begin{cases} C_{\mathsf{t}} \frac{\partial}{\partial t} p_{\mathsf{t}} + \nabla \cdot (K_{\mathsf{t}} \nabla p_{\mathsf{t}}) + \alpha p_{\mathsf{t}} - \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \delta_{\mathsf{\Lambda}} = 0 \ t > 0, \ \mathbf{x} \in \Omega, \\ \frac{\partial}{\partial t} \begin{bmatrix} p_{\mathsf{v}} \\ q_{\mathsf{v}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{c} \\ \frac{1}{l} & 0 \end{bmatrix} \frac{\partial}{\partial s} \begin{bmatrix} p_{\mathsf{v}} \\ q_{\mathsf{v}} \end{bmatrix} + \begin{bmatrix} \frac{1}{c} \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \\ r q_{\mathsf{v}} \end{bmatrix} = \mathbf{0}, \qquad t > 0, s \in \mathsf{\Lambda}, \end{cases}$$

Venous transmission coefficients [range: 10⁻³ kPa⁻¹ s⁻¹]

Capillary compliance [10⁻³ kPa⁻¹]

Tissue conductivity [0.05 mm² kPa⁻¹ s⁻¹]

Vessel Windkessel parameters

ID-3D mass transport and diffusion models:

$$\begin{cases} \frac{\partial}{\partial t} u_{\mathsf{t}} - D_{\mathsf{t}} \Delta u_{\mathsf{t}} + \mathbf{v} \cdot \nabla u_{\mathsf{t}} - \boldsymbol{\theta}(u_{\mathsf{t}}, u_{\mathsf{v}}) \delta_{\mathsf{\Lambda}} = f, \ t > 0, \ \mathbf{x} \in \Omega, \\ A_{0} \frac{\partial}{\partial t} u_{\mathsf{v}} - A_{0} D_{\mathsf{v}} \frac{\partial^{2} u_{\mathsf{v}}}{\partial s^{2}} + q_{\mathsf{v}} \frac{\partial}{\partial s} u_{\mathsf{v}} = 0, \qquad t > 0, s \in \mathsf{\Lambda}, \end{cases}$$

$$\begin{split} u_{\mathsf{t}}: \Omega \to \mathbb{R} \text{ mass concentration in the tissue (3D)} \\ u_{\mathsf{V}}: \Lambda \to \mathbb{R} \text{ mass concentration in the vessel (ID)} \\ \theta &= \frac{1}{\epsilon} (u_{\mathsf{V}} - \bar{u}_{\mathsf{t}}) \text{ is a penalization term.} \\ &\quad - \text{ Same form as } \phi \\ &\quad - \text{ Enforces} \qquad u_{\mathsf{V}} = \bar{u}_{\mathsf{t}} \end{split}$$

Alfio Quarteroni