OPTIMAL DESIGN IN
SMALL AMPLITUDE HOMOGENIZATION

Grégoire ALLAIRE, Alex KELLY, CMAP, Ecole Polytechnique
Sergio GUTIERREZ, Universidad Catolica, Santiago
CONTENTS

3. Application to shape optimization.

4. Optimality conditions.

5. Numerical results.
We consider two-phase optimal design problems:

\[A_\chi(x) = (1 - \chi(x))A^0 + \chi(x)A^1, \quad \rho_\chi(x) = (1 - \chi(x))\rho^0 + \chi(x)\rho^1 \]

where \(\chi(x) = 0 \) or \(1 \) is a characteristic function.
State equation \(\equiv \) wave equation (work with A. Kelly):

\[
\begin{cases}
\rho \chi \frac{\partial^2 u}{\partial t^2} - \text{div} (A \chi \nabla u) = f \quad \text{in } \Omega \times (0, T) \\
u = 0 \quad \text{on } \Gamma_D \times (0, T) \\
A \chi \nabla u \cdot n = 0 \quad \text{on } \Gamma_N \times (0, T) \\
u(x, 0) = u_{\text{init}}(x) \quad \text{in } \Omega \\
\frac{\partial u}{\partial t}(x, 0) = v_{\text{init}}(x) \quad \text{in } \Omega
\end{cases}
\]

\[
\inf_{\chi \in \mathcal{U}_{ad}} J(\chi) = \int_0^T \int_{\Omega} j(u, \nabla u) \, dx \, dt
\]

\[\mathcal{U}_{ad} = \left\{ \chi \in L^\infty(\Omega; \{0, 1\}), \text{ such that } \int_{\Omega} \chi(x) \, dx = \Theta |\Omega| \right\} .\]
Linear elastodynamics and multiple loads optimization are also possible.

Previous work with S. Gutierrez: state equation \equiv steady-state elasticity.
Optimal design is ill-posed! Usually, no minimizer (counter-examples by F. Murat 72').

Minimizing sequences oscillate: the mixture of the two phases want to create a composite material.

Typical behavior for maximizing the vertical conductivity
The problem must be *relaxed* by introducing composite designs \(\equiv\) **homogenization method**.

Homogenization has been applied in the following cases:

- **Conductivity setting**: any objective function of the type
 \[
 J(\chi) = \int_0^T \int_\Omega j(\chi, u) \, dx \, dt
 \]

- **Elasticity setting**: only the stationary compliance
 \[
 J(\chi) = \int_\Omega f \cdot u \, dx
 \]

- In all known cases, the mere knowledge of **effective properties** (homogenized tensors) is enough.
What about elastodynamics or objective functions depending on the gradient?

\[J(\chi) = \int_0^T \int_\Omega j(\nabla u) \, dx \, dt \]

- Almost nothing is known! Noticeable and limited exceptions (in the stationary case): Lipton, Bellido-Pedregal, Tartar, Casado-Diaz et al.

- It seems that the relaxation does not depend only on homogenized tensors but also on correctors.

- This problem is too difficult for us: so we simplify it!
Simplifying assumption: following the lead of Tartar, we assume a low contrast between the two phases

\[A^1 = A^0(1+\eta) \Rightarrow A_\chi(x) = (1-\chi(x))A^0 + \chi(x)A^1 = A^0(1+\eta\chi(x)). \]

\[\rho^1 = \rho^0(1+\eta) \Rightarrow \rho_\chi(x) = (1-\chi(x))\rho^0 + \chi(x)\rho^1 = \rho^0(1+\eta\chi(x)). \]

Simplifying assumption: the two phases have a low contrast.

\[A^1 = A^0(1 + \eta) \quad \rho^1 = \rho^0(1 + \eta). \]

Second order expansion for small \(\eta \):

\[u = u^0 + \eta u^1 + \eta^2 u^2 + \mathcal{O}(\eta^3). \]

- Plug this ansatz in the state equation.
- Plug this ansatz in the objective function.
- Drop all terms of order \(\mathcal{O}(\eta^3) \) or higher.

The result is called “small amplitude” optimal design problem.
State equation

\[
\begin{align*}
\rho \chi \frac{\partial^2 u}{\partial t^2} - \text{div} (A \chi \nabla u) &= f & \text{in } \Omega \times (0, T) \\
u &= 0 & \text{on } \Gamma_D \times (0, T) \\
A \chi \nabla u \cdot n &= 0 & \text{on } \Gamma_N \times (0, T) \\
u(x, 0) &= u_{\text{init}}(x) , \quad \frac{\partial u}{\partial t}(x, 0) &= v_{\text{init}}(x) & \text{in } \Omega
\end{align*}
\]

0-th order equation (without χ !)

\[
\begin{align*}
\rho^0 \frac{\partial^2 u^0}{\partial t^2} - \text{div} (A^0 \nabla u^0) &= f & \text{in } \Omega \times (0, T) \\
u^0 &= 0 & \text{on } \Gamma_D \times (0, T) \\
A^0 \nabla u^0 \cdot n &= 0 & \text{on } \Gamma_N \times (0, T) \\
u^0(x, 0) &= u_{\text{init}}(x) , \quad \frac{\partial u^0}{\partial t}(x, 0) &= v_{\text{init}}(x) & \text{in } \Omega
\end{align*}
\]
1-st order equation (linear in χ)

\[\left\{ \begin{align*}
\rho^0 \frac{\partial^2 u^1}{\partial t^2} - \text{div} \left(A^0 \nabla u^1 \right) &= -\rho^0 \chi \frac{\partial^2 u^0}{\partial t^2} + \text{div} \left(\chi A^0 \nabla u^0 \right) \quad \text{in } \Omega \times (0, T) \\
 u^1 &= 0 \quad \text{on } \Gamma_D \times (0, T) \\
 A^0 \nabla u^1 \cdot n &= -\chi A^0 \nabla u^0 \cdot n \quad \text{on } \Gamma_N \times (0, T) \\
 u^1(x, 0) &= 0, \quad \frac{\partial u^1}{\partial t}(x, 0) = 0 \quad \text{in } \Omega
\end{align*} \right. \]

2-nd order equation (quadratic in χ)

\[\left\{ \begin{align*}
\rho^0 \frac{\partial^2 u^2}{\partial t^2} - \text{div} \left(A^0 \nabla u^2 \right) &= -\rho^0 \chi \frac{\partial^2 u^1}{\partial t^2} + \text{div} \left(\chi A^0 \nabla u^1 \right) \quad \text{in } \Omega \times (0, T) \\
 u^2 &= 0 \quad \text{on } \Gamma_D \times (0, T) \\
 A^0 \nabla u^2 \cdot n &= -\chi A^0 \nabla u^1 \cdot n \quad \text{on } \Gamma_N \times (0, T) \\
 u^2(x, 0) &= 0, \quad \frac{\partial u^2}{\partial t}(x, 0) = 0 \quad \text{in } \Omega
\end{align*} \right. \]
Objective function

\[J(\chi) = \int_0^T \int_\Omega j(\nabla u) \, dx \, dt \quad \Rightarrow J(\chi) = J_{sa}(\chi) + O(\eta^3) \]

with

\[J_{sa}(\chi) = \int_0^T \int_\Omega j(\nabla u^0) \, dx \, dt + \eta \int_0^T \int_\Omega j'(\nabla u^0) \cdot \nabla u^1 \, dx \, dt \]
\[+ \eta^2 \int_0^T \int_\Omega \left(j'(\nabla u^0) \cdot \nabla u^2 + \frac{1}{2} j''(\nabla u^0) \nabla u^1 \cdot \nabla u^1 \right) \, dx \, dt. \]

Technical assumption: for any \(\lambda \in \mathbb{R}^N \),

\[|j(\lambda)| \leq C(|\lambda|^2 + 1), \quad |j'(\lambda)| \leq C(|\lambda| + 1), \quad |j''(\lambda)| \leq C. \]
Small amplitude optimal design

\[\inf_{\chi \in \mathcal{U}_{ad}} J_{sa}(\chi) \]

with \(\mathcal{U}_{ad} = \left\{ \chi \in L^\infty(\Omega; \{0, 1\}), \text{ such that } \int_{\Omega} \chi(x) \, dx = \Theta |\Omega| \right\} \).

Equations for \(u^0, u^1, u^2 \) have the same constant coefficients.

\(u^0 \) does not depend on \(\chi \), \(u^1 \) depends linearly on \(\chi \), \(u^2 \) depends quadratically on \(\chi \).

\(J_{sa}(\chi) \) depends quadratically on \(\chi \).
With some smoothness assumptions on the data, one can get a uniform error estimate of order η^3.

Still an ill-posed problem! Non existence of solutions.

Relaxation by means of H-measures.
H-measures (Gérard, Tartar)

It is a default measure which quantifies the lack of compactness of weakly converging sequences in $L^2(\mathbb{R}^N)$.

Theorem. Let $u_\epsilon = (u^i_\epsilon)_{1 \leq i \leq p} \to 0$ weakly in $L^2(\mathbb{R}^N)^p$. There exist a subsequence and complex-valued Radon measures $(\mu_{ij}(x, \xi))_{1 \leq i, j \leq p}$ on $\mathbb{R}^N \times S_{N-1}$ such that, $\forall \phi_1(x), \phi_2(x) \in C_0(\mathbb{R}^N)$ and $\psi(\xi) \in C(S_{N-1})$, it satisfies

$$
\lim_{\epsilon \to 0} \int_{\mathbb{R}^N} \mathcal{F} \left(\phi_1 u^i_\epsilon \right)(\xi) \overline{\mathcal{F} \left(\phi_2 u^j_\epsilon \right)(\xi)} \psi \left(\frac{\xi}{|\xi|} \right) d\xi = \int_{\mathbb{R}^N} \int_{S_{N-1}} \phi_1(x) \overline{\phi_2(x)} \psi(\xi) \mu_{ij}(dx, d\xi)
$$

where $(\mathcal{F} \phi)(\xi) = \int_{\mathbb{R}^N} \phi(x) e^{-2i\pi x \cdot \xi} dx$ is the Fourier transform.

The matrix $\mu = (\mu_{ij})_{1 \leq i, j \leq p}$ is called the H-measure of u_ϵ.

It is hermitian and non-negative, $\mu_{ij} = \overline{\mu_{ji}}$, $\mu \lambda \cdot \overline{\lambda} \geq 0 \ \forall \lambda \in \mathbb{C}^p$.
An example just to understand... (Periodic oscillations)

\[u_\varepsilon(x) \equiv u_0 \left(x, \frac{x}{\varepsilon} \right) \]

with smooth \(u_0(x, y) \) defined on \(\mathbb{R}^N \times \mathbb{T}^N \) (i.e. periodic in \(y \)) and

\[\int_{\mathbb{T}^N} u_0(x, y) \, dy = 0 \quad \forall x \in \mathbb{R}^N. \]

It satisfies \(u_\varepsilon \to 0 \). Writing \(u_0 \) as a Fourier series in \(y \), i.e.

\[u_0(x, y) = \sum_{m \in \mathbb{Z}^N, m \neq 0} u^m(x) e^{2i\pi m \cdot y}, \]

the \(H \)-measure of the entire sequence \(u_\varepsilon(x) \) is

\[\mu(x, \xi) = \sum_{m \in \mathbb{Z}^N, m \neq 0} |u^m(x)|^2 \delta_{m/|m|}(\xi), \]

where \(\delta_{m/|m|} \) is the Dirac mass at \(\frac{m}{|m|} \).
A pseudo-differential operator \(q \) is defined through its symbol \((q_{ij}(x, \xi))_{1 \leq i, j \leq p} \in C^\infty(\mathbb{R}^N \times \mathbb{R}^N) \) by

\[
(q(u))_i(x) = \sum_{j=1}^{p} \mathcal{F}^{-1}(q_{ij}(x, \cdot) \mathcal{F}u_j(\cdot))(x)
\]

We consider only pseudo-differential operators with symbol, homogeneous of degree 0 in \(\xi \).

Theorem (Gérard, Tartar). Let \(u_\epsilon \to 0 \) weakly in \(L^2(\mathbb{R}^N)^p \).

There exist a subsequence and an \(H \)-measure \(\mu \) such that, for any polyhomogeneous pseudo-differential operator \(q \) of degree 0 with symbol \((q_{ij}(x, \xi))_{1 \leq i, j \leq p} \),

\[
\lim_{\epsilon \to 0} \int_{\mathbb{R}^N} q(u_\epsilon) \cdot \bar{u}_\epsilon \, dx = \int_{\mathbb{R}^N} \int_{\mathbb{S}^{N-1}} \sum_{i,j=1}^{p} q_{ij}(x, \xi) \mu_{ij}(dx, d\xi).
\]
The case of characteristic functions

Lemma (Kohn, Tartar). Let $\chi_\varepsilon(x)$ be a sequence of characteristic functions converging weakly-* to a limit θ in $L^\infty(\Omega; [0, 1])$. The H-measure of $(\chi_\varepsilon - \theta)$ is

$$\mu(x, \xi) = \theta(x)(1 - \theta(x))\nu(x, \xi)$$

where $\xi \rightarrow \nu$ is a probability measure on the unit sphere S_{N-1}, i.e.

$$\nu(\xi) \geq 0 \ \forall \xi \in S_{N-1}, \text{ and } \int_{S_{N-1}} d\nu(\xi) = 1.$$

Furthermore, any such measure can be attained as the H-measure of a sequence χ_ε of characteristic functions.
III- APPLICATION

Computation of the relaxation of small-amplitude optimal design.

Take a minimizing sequence $\chi_n \rightarrow \theta$ in $L^\infty(\Omega; [0, 1])$ weakly-*.

While u^0 is does not depend on χ_n, u^1_n, u^2_n are bounded.

\[
\begin{cases}
\rho^0 \frac{\partial^2 u^1_n}{\partial t^2} - \text{div} (A^0 \nabla u^1_n) = -\rho^0 \chi_n \frac{\partial^2 u^0}{\partial t^2} + \text{div} (\chi_n A^0 \nabla u^0), \\
\rho^0 \frac{\partial^2 u^2_n}{\partial t^2} - \text{div} (A^0 \nabla u^2_n) = -\rho^0 \chi_n \frac{\partial^2 u^1_n}{\partial t^2} + \text{div} (\chi_n A^0 \nabla u^1_n).
\end{cases}
\]

We can pass to the limit for u^1_n by weak convergence and for u^2_n thanks to H-measures.
Relaxation of the objective function

\[J_{sa}(\chi_n) = \int_0^T \int_{\Omega} j(\nabla u^0) \, dx \, dt + \eta \int_0^T \int_{\Omega} j'(\nabla u^0) \cdot \nabla u_1^n \, dx \, dt \]
\[+ \eta^2 \int_0^T \int_{\Omega} \left(j'(\nabla u^0) \cdot \nabla u_2^n + \frac{1}{2} j''(\nabla u^0) \nabla u_1^n \cdot \nabla u_1^n \right) \, dx \, dt. \]

We can pass to the limit for \(u_1^n \) by weak convergence.

We can pass to the limit for \(u_2^n \) and the quadratic term in \(u_1^n \) thanks to \(H \)-measures.

In the end, the limits will depend on the \(H \)-measure of the sequence \(\chi_n \) (which is thus a new variable for optimization).
Main idea for passing to the limit (steady-state case)

Recall that \(-\text{div} \left(A^0 \nabla u^1_n \right) = \text{div} \left(\chi_n A^0 \nabla u^0 \right)\).

If \(\Omega = \mathbb{R}^N\) and \(\nabla u^0\) is constant, the solution is explicitly given by

\[F(\nabla u^1_n) = -F(\chi_n) \frac{A^0 \nabla u^0 \cdot \xi}{A^0 \xi \cdot \xi} \xi. \]

A “similar” computation shows that \(\nabla u^1_n\) depends linearly on \(\chi_n\) through the pseudo-differential operator

\[q(x, \xi) = -\frac{A^0 \nabla u^0(x) \cdot \xi}{A^0 \xi \cdot \xi} \xi. \]
Therefore, we deduce that

\[
\lim_{n \to +\infty} \int_{\Omega} \chi_n A^0 \nabla u^1_n \cdot \nabla \phi \, dx = \int_{\Omega} \theta A^0 \nabla u^1 \cdot \nabla \phi \, dx \\
- \int_{\Omega} \int_{\mathbb{S}^{N-1}} \theta (1 - \theta) \left(\frac{A^0 \nabla u^0 \cdot \xi}{A^0 \xi \cdot \xi} \right) \nu(dx, d\xi)
\]

where \(\theta (1 - \theta)\nu\) is the \(H\)-measure of \((\chi_n - \theta)\).
What is different or not with the wave equation?

✔ The sequence $\chi_n(x)$ oscillates only in space, not in time.

✗ There is a serious difficulty with a priori estimates!
Lemma. Let \(u(\eta) \) be the unique solution in \(H^1_0(\Omega) \) of
\[
- \text{div} \left(A(\eta) \nabla u(\eta) \right) = f.
\]
If \(\eta \to A(\eta) \) is analytic, so is \(\eta \to u(\eta) \).

This result is false with the solution of
\[
\frac{\partial^2 u}{\partial t^2} - c^2(\eta) \Delta u = f.
\]
In 1-d with \(f = 0 \), the solution is \(u(t, x) = u^+(x - ct) + u^-(x + ct) \)
which, upon differentiation with respect to \(c \), looses one degree of regularity.
Consequence of the poor a priori estimates

Some smoothness assumptions on the data are necessary to establish the relaxed problem.

However, strong assumptions are required to prove that the small-amplitude problem is close to the original one, i.e., there exists $C > 0$ such that, for any χ,

$$|J(\chi) - J_{sa}(\chi)| \leq C\eta^3.$$

In particular we need $u_{\text{init}} = 0$ and $v_{\text{init}} = 0$ for the gradient-based objective function!
Relaxed state equations

For a limit density \(\theta(x) \in L^\infty(\Omega; [0, 1]) \) and probability measure \(\nu(x, \xi) \), the relaxed state equations are

\[
\begin{align*}
\rho^0 \frac{\partial^2 u^0}{\partial t^2} - \text{div} \left(A^0 \nabla u^0 \right) &= f, \\
\rho^0 \frac{\partial^2 u^1}{\partial t^2} - \text{div} \left(A^0 \nabla u^1 \right) &= \text{div} \left(\theta A^0 \nabla u^0 \right), \\
\rho^0 \frac{\partial^2 u^2}{\partial t^2} - \text{div} \left(A^0 \nabla u^2 \right) &= \text{div} \left(\theta A^0 \nabla u^1 \right) - \text{div} \left(\theta(1 - \theta) A^0 M A^0 \nabla u^0 \right),
\end{align*}
\]

with

\[
M(x) = \int_{S^{N-1}} \frac{\xi \otimes \xi}{A^0 \xi \cdot \xi} \nu(x, d\xi).
\]

This last term is the "trace" of homogenization!

\(\theta \) "replaces" \(\chi \) and \(\nu \) is a new variable of optimization.
Relaxed objective function

Passing to the limit in the objective function, using again H-measures, we obtain

$$J_{sa}^*(\theta, \nu) = \int_0^T \int_\Omega j(\nabla u^0) \, dx \, dt + \eta \int_0^T \int_\Omega j'(\nabla u^0) \cdot \nabla u^1 \, dx \, dt$$

$$+ \eta^2 \int_0^T \int_\Omega \left(j'(\nabla u^0) \cdot \nabla u^2 + \frac{1}{2} j''(\nabla u^0) \nabla u^1 \cdot \nabla u^1 \right) \, dx \, dt$$

$$+ \eta^2 \int_0^T \int_\Omega \theta(1 - \theta) A^0 N A^0 \nabla u^0 \cdot \nabla u^0 \, dx \, dt,$$

with

$$N(x) = \frac{1}{2} \int_{S^{N-1}} \frac{j''(\nabla u^0) \xi \cdot \xi}{(A^0 \xi \cdot \xi)^2} \xi \otimes \xi \nu(x, d\xi)$$

This last term is the "trace" of correctors in homogenization!
Relaxed small-amplitude optimal design

\[
\min_{(\theta, \nu) \in U_{ad}^*} J_{sa}^*(\theta, \nu)
\]

with

\[U_{ad}^* = \left\{ (\theta, \nu) \in L^\infty(\Omega; [0, 1]) \times \mathcal{P}(\Omega, \mathbb{S}_{N-1}) \text{ such that } \int_\Omega \theta(x) \, dx = \Theta |\Omega| \right\}\]

\[\mathcal{P}(\Omega, \mathbb{S}_{N-1}) = \left\{ \nu(x, \xi) \text{ Radon measure on } \Omega \times \mathbb{S}_{N-1} \text{ such that: } \begin{array}{l}
\nu(x, \xi) \geq 0, \quad \int_{\mathbb{S}_{N-1}} \nu(x, \xi) \, d\xi = 1 \text{ a.e. } x \in \Omega
\end{array} \right\}.\]
Theorem. The relaxed problem is a true relaxation in the sense that

1. it admits at least one minimizer \((\theta, \nu)\),

2. any minimizer \((\theta, \nu)\) is the limit of a minimizing sequence \(\chi_n\) of the original problem, i.e.
 \[
 \chi_n \rightharpoonup \theta, \quad \nu = H\text{-measure of } (\chi_n - \theta), \quad \lim_{n \to +\infty} J_{sa}(\chi_n) = J_{sa}^*(\theta, \nu),
 \]

3. any minimizing sequence \(\chi_n\) of the original problem converges in the previous sense to a minimizer \((\theta, \nu)\).

Well-posed problem! But still complicated...
Theorem.
Rank-one laminates are optimal in the relaxed problem.

There exist minimizers such that the probability measure \(\nu \) is a Dirac mass (in \(\xi \)). Furthermore, the optimal Dirac mass \(H \)-measure does not depend on the density \(\theta \).

Remarks.

\[\blacktriangleright \text{Design parameters: density } \theta, \text{ single lamination direction } \xi^*. \]

\[\blacktriangleright \text{Rank-one laminates are always optimal! Same result for elasticity, multiple loads, etc.} \]
Proof

\[J_{sa}^*(\theta, \nu) = \int_0^T \int_{\Omega} j(\nabla u^0) \, dx \, dt + \eta \int_0^T \int_{\Omega} j'(\nabla u^0) \cdot \nabla u^1 \, dx \, dt \]
\[+ \eta^2 \int_0^T \int_{\Omega} \left(j'(\nabla u^0) \cdot \nabla u^2 + \frac{1}{2} j''(\nabla u^0) \nabla u^1 \cdot \nabla u^1 \right) \, dx \, dt \]
\[+ \eta^2 \int_0^T \int_{\Omega} \theta(1 - \theta) A^0 N A^0 \nabla u^0 \cdot \nabla u^0 \, dx \, dt, \]

\(J_{sa}^* \) depends linearly on the \(H \)-measure \(\nu \) because \(u^2 \) and \(N \) depend linearly on \(\nu \in \mathcal{P}(\Omega, S_{N-1}) \).

A linear function on the convex set \(\mathcal{P} \) is minimal on the extremal points of \(\mathcal{P} \) which are Dirac masses.

\[\Rightarrow \quad \nu = \delta_{\xi^*} \]
-V- NUMERICAL RESULTS

Numerical algorithm (steepest descent):

- **Initialization:** We introduce an adjoint to compute the optimal direction of lamination ξ^* which is independent of θ. The microstructure (lamination) is computed once.

- **Iterations for $k \geq 1$:** We introduce another adjoint to compute $\nabla_{\theta} J^*_{sa}(\theta_k)$ and update θ_{k+1}. The two adjoints are integrated backwards with a stored state.
Tricks

- **Finite element solver:** FreeFem++, P_2/P_0 FEM.

- In the end we **penalize the composite zones**, e.g., by adding to the objective function a term of the type
 \[
 \int_{\Omega} \theta(1 - \theta) \, dx
 \]
 or by changing the density at each step
 \[
 \theta_{pen} = \frac{1 - \cos(\pi \theta_{opt})}{2}
 \]

- **Black** = strong phase on the pictures.

- All computations are done for the **elasticity system**.
Compliance minimization for the long cantilever with $\eta = 0.99$ and volume=60%: relaxed (left), penalized (right).
Cantilever: dynamic case

\[T = 10, \ \Delta t = 0.25 \]

\[f(t, x) = (\sin \frac{\pi t}{20}) f(x) \]

\[u_{\text{init}} = v_{\text{init}} = 0 \]

\[J(\chi) = \int_0^T \int_{\Omega} \partial_t u \cdot f \, dx \, dt = \frac{1}{2} \int_{\Omega} \left(\rho \chi \left(\frac{\partial u}{\partial t} \right)^2 + A \chi e(u) \cdot e(u) \right) (T) \, dx \]

\[\eta = 0.90 \text{ and volume}=50\%: \]
Maximization of the dissipation for the long cantilever: relaxed (left), penalized (right).
Same case with $f(t,x) = (\sin \pi t/5) f(x)$
Strain minimization: steady-state case

Square fixed at the bottom, vertically loaded at the top with $\eta = 0.1$ and volume=50%.
Strain minimization: dynamic case

\[T = 10, \quad f(t, x) = f(x), \quad u_{\text{init}} = v_{\text{init}} = 0, \quad J(\chi) = \int_0^T \int_{\Omega} |e(u)|^2 \, dx \, dt \]
Stress minimization: steady-state case

Square fixed at the bottom, vertically loaded at the top with $\eta = 0.1$ and volume=50%.
Stress minimization: dynamic case

\[T = 10, \quad f(t, x) = f(x), \quad u_{\text{init}} = v_{\text{init}} = 0, \quad J(\chi) = \int_0^T \int_{\Omega} |Ae(u)|^2 \, dx \, dt \]
Minimal dissipation of a wheel

\[T = 2\pi, \quad f(t, x) = (\sin t, \cos t), \quad u_{\text{init}} = v_{\text{init}} = \text{solution after 100 rotations}, \quad J(\chi) = \int_0^T \int_\Omega f \cdot \partial_t u \, dt \, dx \]