On the discontinuous Galerkin finite element method for nonstationary convection-diffusion problems

Theory and applications to compressible flow

*Presented at the Univ. Paris VI, 16 June 2008

Miloslav Feistauer
Charles University Prague
Faculty of Mathematics and Physics

In cooperation with V. Dolejší, V. Kučera, V. Sobotíková and K. Švadlenka
Goal: to work out a sufficiently accurate, robust and theoretically based method for the numerical solution of compressible flow with a wide range of Mach numbers and Reynolds numbers.

Difficulties:
- nonlinear convection dominating over diffusion
- boundary layers, wakes for large Reynolds numbers
- shock waves, contact discontinuities for large Mach numbers
- instabilities caused by acoustic effects for low Mach numbers
One of promising, efficient methods for the solution of compressible flow is the **discontinuous Galerkin finite element method (DGFEM)** using piecewise polynomial approximation of a sought solution without any requirement on the continuity between neighbouring elements.

- Cockburn & Shu 1989, Bassi & Rebay, Baumann & Oden 1997, ... Hartmann, Houston, ... van der Vegt, ... M.F., Dolejší, Kučera
- theory for elliptic or parabolic problems: Arnold, Brezzi, Marini, et al, Schwab, Suli, ..., Wheeler, Girault, Riviere, ...
- theory for nonstationary (nonlinear) convection-diffusion problems: M.F., Dolejší, Schwab, Sobotíková, Švadlenka, Hájek, Kučera
Here:

- analysis of the DGFEM for the solution of a nonlinear nonstationary convection-diffusion equation (= a simple prototype of the compressible Navier-Stokes system)

- applications to the simulation of compressible flow
Continuous model problem

Find \(u : Q_T = \Omega \times (0, T) \rightarrow \mathbb{R} \) such that

\[
a) \quad \frac{\partial u}{\partial t} + \sum_{s=1}^{d} \frac{\partial f_s(u)}{\partial x_s} = \varepsilon \Delta u + g \quad \text{in} \quad Q_T, \quad (1) \\
b) \quad u|_{\partial \Omega_D \times (0,T)} = u_D, \\
c) \quad \varepsilon \frac{\partial u}{\partial n}|_{\partial \Omega_N \times (0,T)} = g_N, \\
d) \quad u(x, 0) = u^0(x), \; x \in \Omega.
\]

\(\Omega \subset \mathbb{R}^d, \; d = 2, 3 \) - a bounded polygonal (if \(d = 2 \)) or polyhedral (if \(d = 3 \)) domain with Lipschitz-continuous boundary \(\partial \Omega = \partial \Omega_D \cup \partial \Omega_N, \; \partial \Omega_D \neq \emptyset \) and \(T > 0 \)

\(\varepsilon > 0 \) - a given constant, \(g : Q_T \rightarrow \mathbb{R}, \; u_D : \partial \Omega_D \times (0, T) \rightarrow \mathbb{R}, \; g_N : \partial \Omega_N \times (0, T) \rightarrow \mathbb{R}, \; u^0 : \Omega \rightarrow \mathbb{R} \) - given functions, \(f_s \in C^1(\mathbb{R}), \; s = 1, \ldots, d, \) - prescribed fluxes
DG space semidiscretization

Let T_h ($h > 0$) be a *partition* of the closure $\overline{\Omega}$ of the domain Ω into a finite number of closed triangles ($d = 2$) or tetrahedra ($d = 3$) K with mutually disjoint interiors such that

$$\overline{\Omega} = \bigcup_{K \in T_h} K.$$ \hspace{1cm} (2)

We call T_h a *triangulation* of Ω and do not require the standard conforming properties from the finite element method.

$h_K = \text{diam}(K), \quad h = \max_{K \in T_h} h_K, \quad \rho_K = \text{largest ball inscribed into } K$

$K, K' \in T_h$ - *neighbours* - they have a common face
\(\mathcal{F}_h = \) the system of all faces of all elements \(K \in \mathcal{T}_h \),

the set of all inner faces:

\[
\mathcal{F}^I_h = \{ \Gamma \in \mathcal{F}_h; \ \Gamma \subset \Omega \},
\]

the set of all “Dirichlet” boundary faces:

\[
\mathcal{F}^D_h = \{ \Gamma \in \mathcal{F}_h; \ \Gamma \subset \partial \Omega_D \},
\]

the set of all “Neumann” boundary faces:

\[
\mathcal{F}^N_h = \{ \Gamma \in \mathcal{F}_h, \ \Gamma \subset \partial \Omega_N \}.
\]

Obviously, \(\mathcal{F}_h = \mathcal{F}^I_h \cup \mathcal{F}^D_h \cup \mathcal{F}^N_h \). For a shorter notation we put

\[
\mathcal{F}^{ID}_h = \mathcal{F}^I_h \cup \mathcal{F}^D_h, \quad \mathcal{F}^{DN}_h = \mathcal{F}^D_h \cup \mathcal{F}^N_h.
\]

For each \(\Gamma \in \mathcal{F}_h \) we define a \textit{unit normal vector} \(n_{\Gamma} \).

For \(\Gamma \subset \partial \Omega \) - \(n_{\Gamma} = \) unit outer normal to \(\partial \Omega \).

\(d(\Gamma) = \) diameter of \(\Gamma \in \mathcal{F}_h \).
Elements with hanging nodes
Broken Sobolev spaces

Over a triangulation \mathcal{T}_h we define the so-called *broken Sobolev space*

$$H^k(\Omega, \mathcal{T}_h) = \{ v; v|_K \in H^k(K) \ \forall \ K \in \mathcal{T}_h \}$$

(7)

with the norm

$$\|v\|_{H^k(\Omega, \mathcal{T}_h)} = \left(\sum_{K \in \mathcal{T}_h} \|v\|_{H^k(K)}^2 \right)^{1/2}$$

(8)

and the seminorm

$$|v|_{H^k(\Omega, \mathcal{T}_h)} = \left(\sum_{K \in \mathcal{T}_h} |v|^2_{H^k(K)} \right)^{1/2}.$$

(9)
For each $\Gamma \in \mathcal{F}^I_h$ there exist two neighbours adjacent to Γ: $K_{\Gamma}^{(L)}, K_{\Gamma}^{(R)} \in \mathcal{T}_h$

convention: $K_{\Gamma}^{(R)}$ lies in the direction of n_{Γ} and $K_{\Gamma}^{(L)}$ lies in the opposite direction to n_{Γ}

For $\Gamma \subset \partial \Omega$ there exists an element $K_{\Gamma}^{(L)}$ adjacent to Γ, i.e. $\Gamma \subset \partial \Omega \cap \partial K_{\Gamma}^{(L)}$.
Let \(v \in H^1(\Omega, T_h) \), \(\Gamma \in \mathcal{F}_h^{I} \) - notation:

\[
v|^{(L)}_{\Gamma} = \text{the trace of } v|^{(L)}_{K_{\Gamma}} \text{ on } \Gamma, \tag{10}
\]

\[
v|^{(R)}_{\Gamma} = \text{the trace of } v|^{(R)}_{K_{\Gamma}} \text{ on } \Gamma,
\]

\[
\langle v \rangle_{\Gamma} = \frac{1}{2} \left(v|^{(L)}_{\Gamma} + v|^{(R)}_{\Gamma} \right), \quad [v]_{\Gamma} = v|^{(L)}_{\Gamma} - v|^{(R)}_{\Gamma}.
\]

The approximate solution — sought in the space of discontinuous piecewise polynomial functions

\[
S_h = S_{h}^{p,-1} = \{ v; v|_{K} \in P^{p}(K) \ \forall K \in T_h \},
\]

\(p > 0 \) — integer, \(P^{p}(K) \) — the space of all polynomials on \(K \) of degree at most \(p \).

Derivation of the discrete problem

Assume that \(u \) — sufficiently regular exact solution

— multiply the PDE by any \(\varphi \in H^2(\Omega, T_h) \)

— integrate over \(K \in T_h \)

— apply Green’s theorem

— sum over all \(K \in T_h \)
After some manipulation we obtain the identity

\[
\int_{\Omega} \frac{\partial u}{\partial t} \varphi \, dx
\]

\[+ \sum_{K \in T_h} \left(\sum_{\Gamma \in F_h} \int_{\Gamma} \sum_{s=1}^{d} f_s(u) (n_{\partial K})_s \varphi_{|_{\Gamma}} \, dS \right) \]

\[- \sum_{K \in T_h} \int_{K} \sum_{s=1}^{d} f_s(u) \frac{\partial \varphi}{\partial x_s} \, dx \]

\[+ \sum_{K \in T_h} \int_{K} \varepsilon \nabla u \cdot \nabla \varphi \, dx \]

\[- \sum_{\Gamma \in F_h^{I}} \int_{\Gamma} \varepsilon \langle \nabla u \rangle \cdot n_{\Gamma}[\varphi] \, dS \]

\[- \sum_{\Gamma \in F_h^{D}} \int_{\Gamma} \varepsilon \nabla u \cdot n_{\Gamma} \varphi \, dS \]

\[= \int_{\Omega} g \varphi \, dx + \sum_{\Gamma \in F_h^{N}} \int_{\Gamma} \varepsilon \nabla u \cdot n_{\Gamma} \varphi \, dS. \]
In view of the Neumann condition, the second term on the right-hand side of (11) reads

\[\sum_{\Gamma \in \mathcal{F}_h^N} \int_{\Gamma} \varepsilon \nabla u \cdot n_{\Gamma} \varphi \, dS = \int_{\partial \Omega_N} g_N \varphi \, dS. \] \hspace{1cm} (12)

To the left-hand side of (11) we add now the terms

\[-\theta \sum_{\Gamma \in \mathcal{F}_h^I} \int_{\Gamma} \varepsilon \langle \nabla \varphi \rangle \cdot n_{\Gamma}[u] \, dS = 0. \] \hspace{1cm} (13)

To the left-hand side and the right-hand side of (11) we add the identical terms

\[-\theta \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \varepsilon \nabla \varphi \cdot n_{\Gamma} u \, dS \text{ and } -\theta \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \varepsilon \nabla \varphi \cdot n_{\Gamma} u_D \, dS, \] \hspace{1cm} (14)

respectively.
Because of the stabilization of the scheme we introduce the \textit{interior penalty}

\[\varepsilon \sum_{\Gamma \in \mathcal{F}_h^I} \int_{\Gamma} \sigma [u] [\varphi] \, dS \quad (= 0) \quad (15) \]

and the \textit{boundary penalty}

\[\varepsilon \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \sigma u \varphi \, dS = \varepsilon \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \sigma u_D \varphi \, dS, \quad (16) \]

where \(\sigma \) is a suitable \textit{weight}.

On the basis of above considerations for \(u, \varphi \in H^2(\Omega, \mathcal{T}_h) \) we define the forms:

\((\cdot, \cdot) - L^2(\Omega)\)-scalar product,
\[a_h(u, \varphi) = \sum_{K \in T_h} \int_K \varepsilon \nabla u \cdot \nabla \varphi \, dx \]
\[- \sum_{\Gamma \in \mathcal{F}_h^I} \int_{\Gamma} \varepsilon \langle \nabla u \rangle \cdot n_\Gamma [\varphi] \, dS \]
\[-\theta \sum_{\Gamma \in \mathcal{F}_h^I} \int_{\Gamma} \varepsilon \langle \nabla \varphi \rangle \cdot n_\Gamma [u] \, dS \]
\[- \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \varepsilon \nabla u \cdot n_\Gamma \varphi \, dS \]
\[-\theta \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \varepsilon \nabla \varphi \cdot n_\Gamma u \, dS \]

diffusion form

\[J_h^\sigma(u, \varphi) = \sum_{\Gamma \in \mathcal{F}_h^I} \int_{\Gamma} \sigma[u] [\varphi] \, dS + \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \sigma u \varphi \, dS \]

interior and boundary penalty
\[\ell_h(\varphi)(t) = \int_{\Omega} g(t) \varphi \, dx + \int_{\partial \Omega_N} g_N(t) \varphi \, dS \]
\[-\theta \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \varepsilon \nabla \varphi \cdot n_\Gamma u_D(t) \, dS \]
\[+ \varepsilon \sum_{\Gamma \in \mathcal{F}_h^D} \int_{\Gamma} \sigma u_D(t) \varphi \, dS \]

right-hand side form

\(\theta = -1 \) nonsymmetric discretization of diffusion terms (NIPG)
\(\theta = 1 \) symmetric discretization of diffusion terms (SIPG)
\(\theta = 0 \) incomplete discretization of diffusion terms (IIPG)
Finally, the **convective terms** are approximated with the aid of a **numerical flux** $H = H(u, v, n)$ by the form

\[
b_h(u, \varphi) = - \sum_{K \in T_h} \int_K \sum_{s=1}^d f_s(u) \frac{\partial \varphi}{\partial x_s} \, dx + \sum_{\Gamma \in F_h^{I}} \int_{\Gamma} H \left(u^{(L)}|_{\Gamma}, u^{(R)}|_{\Gamma}, n_{\Gamma} \right) \left[\varphi \right]|_{\Gamma} \, dS \\
+ \sum_{\Gamma \in F_h^{DN}} \int_{\Gamma} H \left(u^{(L)}|_{\Gamma}, u^{(R)}|_{\Gamma}, n_{\Gamma} \right) \varphi^{(L)}|_{\Gamma} \, dS
\]

(20)

convective form

Definition of the boundary state $u^{(R)}|_{\Gamma}$ for $\Gamma \subset \partial \Omega : u^{(R)}|_{\Gamma} := u^{(L)}|_{\Gamma}$ (extrapolation)
Assumptions (H):

1. **$H(u, v, n)$ is defined in $\mathbb{R}^2 \times B_1$, where $B_1 = \{ n \in \mathbb{R}^d; |n| = 1 \}$, and Lipschitz-continuous with respect to u, v:**

 $$|H(u, v, n) - H(u^*, v^*, n)| \leq C_L (|u - u^*| + |v - v^*|),$$
 $$u, v, u^*, v^* \in \mathbb{R}, \ n \in B_1.$$

2. **$H(u, v, n)$ is consistent:**

 $$H(u, u, n) = \sum_{s=1}^{d} f_s(u) n_s, \quad u \in \mathbb{R}, \ n = (n_1, \ldots, n_d) \in B_1.$$

3. **$H(u, v, n)$ is conservative:**

 $$H(u, v, n) = -H(v, u, -n), \quad u, v \in \mathbb{R}, \ n \in B_1.$$
The **exact sufficiently regular solution** u satisfies the identity

$$
\left(\frac{\partial u(t)}{\partial t}, \varphi_h \right) + b_h(u(t), \varphi_h) + a_h(u(t), \varphi_h) + \varepsilon J^\sigma_h(u(t), \varphi_h)
= \ell_h(\varphi_h)(t) \quad \text{for all } \varphi_h \in S_h \text{ and for a.e. } t \in (0, T).
$$

Discrete problem

We say that u_h is a DG approximate solution of the convection-diffusion problem (1), if

a) \quad $u_h \in C^1([0, T]; S_h)$, \quad (21)

b) \quad $\left(\frac{\partial u_h(t)}{\partial t}, \varphi_h \right) + a_h(u_h(t), \varphi_h) + b_h(u_h(t), \varphi_h) + J^\sigma_h(u_h(t), \varphi_h)
= \ell_h(\varphi_h)(t) \quad \forall \varphi_h \in S_h, \forall t \in (0, T),$

\hspace{1cm} (21)

c) \quad $u_h(0) = u_0^h = S_h$–approximation of u^0.\hspace{1cm} (21)
The discrete problem is equivalent to a large system of nonlinear ordinary differential equations.

In practical computations: suitable time discretization is applied, e.g.
- Euler forward or backward scheme,
- Runge–Kutta methods,
- discontinuous Galerkin time discretization

The forward Euler and Runge-Kutta schemes are conditionally stable – time step is strongly restricted by the CFL-stability condition.

Suitable: semi-implicit scheme - leads to a linear algebraic system on each time level

Integrals are evaluated with the aid of numerical integration.
Error analysis

Assumptions

– Assumptions (H)
– The weak solution \(u \) of problem (1) is regular, namely

\[
\frac{\partial u}{\partial t} \in L^2(0, T; H^{p+1}(\Omega)). \tag{22}
\]

Then

\[
\left(\frac{\partial u(t)}{\partial t}, \varphi_h \right) + a_h(u(t), \varphi_h) + \varepsilon J^\sigma_h(u(t), \varphi_h) \\
+ b_h(u(t), \varphi_h) = \ell_h(\varphi_h)(t), \quad \forall \varphi_h \in S_h, \text{ for a.a. } t \in (0, T). \tag{23}
\]

– \(\{\mathcal{T}_h\}_{h \in (0, h_0)}, \ h_0 > 0, \) - **regular system** of triangulations of the domain \(\Omega \): there exists \(C_T > 0 \) such that

\[
\frac{h_K}{\rho_K} \leq C_T \quad \forall K \in \mathcal{T}_h \quad \forall h \in (0, h_0). \tag{24}
\]
Some auxiliary results

Multiplicative trace inequality:
There exists a constant $C_M > 0$ independent of v, h and K such that

\[\frac{\|v\|^2_{L^2(\partial K)}}{\|v\|^2_{L^2(K)}} \leq C_M \left(\|v\|_{L^2(K)} \|v\|_{H^1(K)} + h_K^{-1} \|v\|^2_{L^2(K)} \right), \]

$K \in \mathcal{T}_h$, $v \in H^1(K)$, $h \in (0, h_0)$.

Inverse inequality:
There exists a constant $C_I > 0$ independent of v, h, and K such that

\[|v|_{H^1(K)} \leq C_I h_K^{-1} \|v\|_{L^2(K)}, \quad v \in P^p(K), \ K \in \mathcal{T}_h, \ h \in (0, h_0). \]
S_h-interpolation:
For $v \in L^2(\Omega)$ we denote by $\Pi_h v$ the $L^2(\Omega)$-projection of v on S_h:

$$\Pi_h v \in S_h, \quad (\Pi_h v - v, \varphi_h) = 0 \quad \forall \varphi_h \in S_h. \quad (27)$$

Properties of the operator Π_h:
There exists a constant $C_A > 0$ independent of h, K, v such that

$$\|\Pi_h v - v\|_{L^2(K)} \leq C_A h_K^{k+1} |v|_{H^{k+1}(K)}, \quad (28)$$
$$|\Pi_h v - v|_{H^1(K)} \leq C_A h_K^k |v|_{H^{k+1}(K)},$$
$$|\Pi_h v - v|_{H^2(K)} \leq C_A h_K^{k-1} |v|_{H^{k+1}(K)},$$

for all $v \in H^{k+1}(K), \ K \in T_h$ and $h \in (0, h_0)$, where $k \in [1, p]$ is an integer.
Coercivity:

An important step in the analysis of error estimates is the *coercivity of the form*

\[A_h(u, v) = a_h(u, v) + \varepsilon J^\sigma_h(u, v), \quad (29) \]

which reads

\[A_h(\varphi_h, \varphi_h) \geq \frac{\varepsilon}{2} \left(|\varphi_h|^2_{H^1(\Omega, T_h)} + J^\sigma_h(\varphi_h, \varphi_h) \right), \quad (30) \]

\[\varphi \in S_h, \ h \in (0, h_0). \]

We shall discuss the validity of estimate (30) in various situations.
(I) Conforming mesh \mathcal{T}_h

Let the mesh \mathcal{T}_h have the standard properties from the finite element method:
if $K, K' \in \mathcal{T}_h$, $K \neq K'$, then $K \cap K' = \emptyset$ or $K \cap K'$ is a common vertex or $K \cap K'$ is a common side of K and K'.
In this case we set

$$\sigma|_{\Gamma} = \frac{C_W}{d(\Gamma)}, \quad \Gamma \in \mathcal{F}_h. \quad (31)$$

Then the coercivity inequality (30) holds under the following choice of the constant C_W:

$$C_W > 0 \text{ (e.g. } C_W = 1) \text{ for NIPG version, } \quad (32)$$
$$C_W \geq 4C_M(1 + C_I) \text{ for SIPG version, } \quad (33)$$
$$C_W \geq 2C_M(1 + C_I) \text{ for IIPG version, } \quad (34)$$

where C_M and C_I are constants from (25) and (26), respectively.
(II) Nonconforming mesh \mathcal{T}_h

In this case \mathcal{T}_h is formed by closed triangles with mutually disjoint interiors with hanging nodes in general. Then the coercivity inequality (30) is guaranteed under conditions (32) – (34). However, in this case it is necessary to assume that

$$h_K \leq C_D d(\Gamma), \quad \Gamma \in \mathcal{F}_h, \Gamma \subset \partial K,$$

(35)

in order to prove the estimate

$$J^\sigma_h (u - \Pi_h u, u - \Pi_h u) \leq Ch^p |u|_{H^p+1(\Omega)}. \quad (36)$$
(III) Nonconforming mesh T_h without assumption (35)

It is obvious that condition (35) is rather restrictive in some cases. In order to avoid it, we change the definition of the weight σ:

\[
\sigma|_{\Gamma} = \begin{cases}
\frac{2C_W}{h_{K_{\Gamma}^{(L)}} + h_{K_{\Gamma}^{(R)}}}, & \Gamma \in \mathcal{F}_h^I, \\
\frac{C_W}{h_{K_{\Gamma}^{(L)}}}, & \Gamma \in \mathcal{F}_h^D.
\end{cases}
\]
Due to theoretical analysis, it is necessary to introduce the assumption of a “local quasiuniformity” of the mesh:

\[h_{K^{(L)}} \leq C_N h_{K^{(R)}}, \quad \Gamma \in F^I_h. \]

(Hence, \(C_N \geq 1 \).) Then the coercivity inequality (30) holds under the following choice of \(C_W \):

\[C_W > 0 \quad (\text{e.g. } C_W = 1) \quad \text{for NIPG version,} \]
\[C_W \geq 2C_M(1 + C_I)(1 + C_N) \quad \text{for SIPG version,} \]
\[C_W \geq C_M(1 + C_I)(1 + C_N) \quad \text{for IIPG version.} \]
If \(u \) and \(u_h \) denote the exact and approximate solutions, then we set
\[
\eta(t) = \Pi_h u(t) - u(t), \quad \xi(t) = u_h(t) - \Pi_h u(t) (\in S_h)
\]
for a.e. \(t \in (0, T) \).

Truncation error in the convection form: If \(\partial \Omega_D = \partial \Omega, \partial \Omega_N = \emptyset \), then
\[
|b_h(u, \xi) - b_h(u_h, \xi)| \leq C \left(\|\xi\|^2_{H^1(\Omega, T_h)} + J_h^\sigma(\xi, \xi) \right)^{1/2} \left(h^{p+1} |u|_{H^{p+1}(\Omega)} + \|\xi\|_{L^2(\Omega)} \right).
\]

If \(\partial \Omega_N \neq \emptyset \), then
\[
|b_h(u, \xi) - b_h(u_h, \xi)| \leq C \left(\|\xi\|^2_{H^1(\Omega, T_h)} + J_h^\sigma(\xi, \xi) \right)^{1/2} \left(h^{p+1/2} |u|_{H^{p+1}(\Omega)} + \|\xi\|_{L^2(\Omega)} \right).
\]
Error estimates

Assumptions:

- (H),
- regularity of u,
- regularity of the mesh,
- $u_h^0 = \Pi_h u^0$,
- $\sigma, d(\Gamma), h_K$ and C_W satisfy assumptions from the cases (I) or (II) or (III).

Then the error $e_h = u - u_h$ satisfies the estimate

$$
\text{max}_{t \in [0,T]} \| e_h(t) \|_{L^2(\Omega)}^2 \\
+ \frac{\varepsilon}{2} \int_0^t \left(|e_h(\vartheta)|_{H^1(\Omega, I_h)}^2 + J^\sigma_h(e_h(\vartheta), e_h(\vartheta)) \right) d\vartheta \\
\leq C h^{2p}, \quad h \in (0, h_0),
$$

with a constant $C > 0$ independent of h.

Sketch of the proof

– Subtract the relations valid for the exact and approximate solutions, set \(\varphi_h = \xi_h \) and use the coercivity inequality:

\[
\frac{1}{2} \frac{d}{dt} \| \xi(t) \|^2_{L^2(\Omega)} + \frac{\varepsilon}{2} |\xi(t)|^2_{H^1(\Omega,T_h)} + \frac{\varepsilon}{2} J^\sigma_h(\xi(t),\xi(t)) \leq b_h(u(t),\xi(t)) - b_h(u_h(t),\xi(t)) - \left(\frac{\partial \eta(t)}{\partial t}, \xi(t) \right) - a_h(\eta(t),\xi(t)) - \varepsilon J^\sigma_h(\eta(t),\xi(t)) \quad \text{for a.a. } (0,T).
\]

– Estimate individual terms in (46):

\[
\frac{d}{dt} \| \xi \|^2_{L^2(\Omega)} + \varepsilon |\xi|^2_{H^1(\Omega,T_h)} + \varepsilon J^\sigma_h(\xi,\xi)
\]

\[
\leq C \left\{ \left(J^\sigma_h(\xi,\xi)^{1/2} + |\xi|_{H^1(\Omega,T_h)} \right) \left\| \xi \right\|_{L^2(\Omega)} + h^{p+1} |u|_{H^{p+1}(\Omega)} \right\}
\]

\[
+ h^{p+1} |\partial u/\partial t|_{H^{p+1}(\Omega)} \| \xi \|_{L^2(\Omega)} + \varepsilon h^p |u|_{H^{p+1}(\Omega)} \left(J^\sigma_h(\xi,\xi)^{1/2} + |\xi|_{H^1(\Omega,T_h)} \right) \}
\]

– Apply Young’s inequality, integrate from 0 to \(t \in [0,T] \) and use Gronwall’s lemma:
\[\begin{align*}
\|\xi(t)\|^2_{L^2(\Omega)} + \frac{\varepsilon}{2} \int_0^t \left(|\xi(\vartheta)|^2_{H^1(\Omega, T_h)} + J_h^\sigma(\xi(\vartheta), \xi(\vartheta)) \right) d\vartheta \\
\leq \mathcal{C} \left(\left(\varepsilon + \frac{h^2}{\varepsilon} \right) \|u\|^2_{L^2(0, T; H^{p+1}(\Omega))} + h^2 \|\partial u / \partial t\|^2_{L^2(0, T; H^{p+1}(\Omega))} \right) \\
\times h^{2p} \exp \left(\frac{\tilde{\mathcal{C}}}{\varepsilon} \left(1 + \frac{\varepsilon}{t} \right) \right), \quad t \in [0, T],
\end{align*} \]

(\mathcal{C} \text{ and } \tilde{\mathcal{C}} \text{ are constants independent of } t, h, \varepsilon, u).

- **Use** \(e_h = \xi + \eta \) and thus,

\[\begin{align*}
\|e_h\|^2_{L^2(\Omega)} &\leq 2 \left(\|\xi\|^2_{L^2(\Omega)} + \|\eta\|^2_{L^2(\Omega)} \right), \\
|e_h|^2_{H^1(\Omega, T_h)} &\leq 2 \left(|\xi|^2_{H^1(\Omega, T_h)} + |\eta|^2_{H^1(\Omega, T_h)} \right), \\
J_h^\sigma(e_h, e_h) &\leq 2 \left(J_h^\sigma(\xi, \xi) + J_h^\sigma(\eta, \eta) \right).
\end{align*} \]

- **Combine** the above results and **estimate the terms with** \(\eta \).
Optimal error estimates

The error estimate (44) is **optimal** in the $L^2(H^1)$-norm, but **suboptimal** in the $L^\infty(L^2)$-norm. We carried out the analysis of the $L^\infty(L^2)$-optimal error estimate under the following assumptions.

Assumptions (B):
- the discrete diffusion form a_h is symmetric (i.e. we consider the SIPG version),
- consider a regular system of conforming meshes without hanging nodes,
- $\sigma|_\Gamma = C_W/d(\Gamma)$ and $C_W \geq 4(C_M(1+C_I))$,
- the polygonal domain Ω is convex,
- the exact solution u satisfies the regularity condition,
- conditions (H) are satisfied,
- $u^0_h = \Pi_h u^0$,
- $\partial\Omega_D = \partial\Omega$ and $\partial\Omega_N = \emptyset$.
The application of the Aubin-Nitsche technique based on the use of the elliptic dual problem considered for each \(z \in L^2(\Omega) \):

\[
-\Delta \psi = z \quad \text{in } \Omega, \quad \psi|_{\partial \Omega} = 0.
\]

(50)

Then the weak solution \(\psi \in H^2(\Omega) \) and there exists a constant \(C > 0 \), independent of \(z \), such that

\[
\|\psi\|_{H^2(\Omega)} \leq C \|z\|_{L^2(\Omega)}.
\]

(51)

For each \(h \in (0, h_0) \) and \(t \in [0, T] \) we define the function \(u_h^*(t) \) as the “\(A_h \)-projection” of \(u(t) \) on \(S_h \), i.e. a function satisfying the conditions

\[
u_h^*(t) \in S_h, \quad A_h(u_h^*(t), \varphi_h) = A_h(u(t), \varphi_h) \quad \forall \varphi_h \in S_h, \quad (52)
\]

and set \(\chi = u - u_h^* \).

Using the elliptic dual problem (50), we prove the existence of a constant \(C > 0 \) such that

\[
\|\chi\|_{L^2(\Omega)} \leq C h^{p+1} |u|_{H^p+1(\Omega)},
\]

(53)

\[
\|\chi_t\|_{L^2(\Omega)} \leq C h^{p+1} |u_t|_{H^p+1(\Omega)}, \quad h \in (0, h_0).
\]

(54)
This, the estimate of the truncation error in the form b_h (43), multiple application of Young's inequality and Gronwall's lemma \[\Rightarrow\]

Theorem. Let assumptions \mathcal{B} be fulfilled. Then the error $e_h = u - u_h$ satisfies the estimate

\[
\|e_h\|_{L^\infty(0,T;L^2(\Omega))} \leq C h^{p+1},
\]

(55) with a constant $C > 0$ independent of h.
Numerical examples

2D viscous Burgers equation

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x_1} + u \frac{\partial u}{\partial x_2} = \varepsilon \Delta u + g \quad \text{in} \quad \Omega \times (0, T), \]

\(\Omega = (0, 1)^2, T = 10, \varepsilon = 0.01 \) and define the function \(g \) and the initial and boundary conditions in such a way that the exact solution has the form

\[u(x_1, x_2, t) = (1 - e^{-10t}) \hat{u}(x_1, x_2), \]

\[\hat{u}(x_1, x_2) = 2r^{\alpha}x_1x_2(1 - x_1)(1 - x_2) \]

\[= r^{\alpha + 2} \sin(2\varphi)(1 - x_1)(1 - x_2), \]

\((r, \varphi) \ (r \equiv (x_1^2 + x_2^2)^{1/2}) \) are the polar coordinates and \(\alpha \in \mathbb{R} \) is a constant.

\(\alpha = 4 \) - regular solution

\(\alpha = -3/2 \) - singularity at 0
Computational errors and orders of convergence of P_1, P_2 and P_3 approximations in L^2-norm for

$$\alpha = 4 \text{ (left) and } \alpha = -3/2 \text{ (right) at } t = 10$$

Remark The constant C in the error estimates is of the order $O(\exp(\tilde{C}T/\varepsilon))$, which **blows up** for $\varepsilon \to 0^+$.

\Rightarrow a consequence of the application of necessary tools for overcoming the nonlinear convective terms, namely Young’s inequality and Gronwall’s lemma.
Improved estimates for a linear model convection-diffusion-reaction problem

Find $u : Q_T = \Omega \times (0, T) \to \mathbb{R}$ such that

$$\frac{\partial u}{\partial t} + v \cdot \nabla u - \varepsilon \Delta u + cu = g \quad \text{in } Q_T,$$

$$u = u_D \quad \text{on } \Gamma_D \times (0, T),$$

$$\varepsilon \frac{\partial u}{\partial n} = u_N \quad \text{on } \Gamma_N \times (0, T),$$

$$u(x, 0) = u_0(x), \quad x \in \Omega.$$

$\Gamma_D = \text{inlet, where } v \cdot n < 0$

In the case $\varepsilon = 0$ we put $u_N = 0$ and ignore the Neumann condition; $\Gamma_D = \text{inlet: } v \cdot n < 0$

Assumptions on data (A)

a) some regularity of g, u^0, u_D, u_N, v, c

b) $c - \frac{1}{2} \text{div} v \geq \gamma_0 > 0$ in Q_T with a constant γ_0.

c) $\varepsilon \geq 0$.
M.F. & K. Švadlenka: Error estimate

\[\max_{t \in [0, T]} \| e_h(t) \|_{L^2(\Omega)}^2 \]
\[+ \, \varepsilon \int_0^T \left(|e_h(\vartheta)|^2_{H^1(\Omega, T_h)} + J_h^\sigma(e_h(\vartheta), e_h(\vartheta)) \right) d\vartheta \]
\[\leq C(\varepsilon + h)h^{2p}, \]

with \(C \) independent of \(\varepsilon \to 0^+ \).
Further results:
– the effect of numerical integration (M.F., V. Sobotíková)
– optimal error estimates on nonconforming meshes (M.F.,
 V. Dolejší, V. Kučera, V. Sobotíková)
– analysis of problem with nonlinear convection and diffusion
 (M.F., V. Kučera)
– analysis of the hp-version of the DGFEM (V. Dolejší)
Applications to compressible flow with a wide range of Mach numbers

Standard numerical methods have difficulties with the solution of low Mach number flows

⇒ various modifications of the Euler (Navier-Stokes) equations are introduced (e.g. R. Klein, C.-D. Munz,...) allowing the solution of low Mach number flows

M.F., V. Dolejší, V. Kučera: DG unconditionally stable scheme for the solution of compressible flow using conservative variables – allowing the solution of flow with all positive Mach numbers

Main ingredients:

- semi-implicit time stepping based on homogeneity of fluxes
 Vijayasundaram numerical flux
- characteristic treatment of the boundary conditions
- limiting of order of accuracy in order to avoid the Gibbs phenomenon
- isoparametric elements at curved boundaries
Examples
quadratic triangular elements

1) Inviscid flow
a) Low Mach number flow at incompressible limit
Stationary flow past a Joukowski profile
constant far field quantities \implies the flow is irrotational and homoentropic

complex function method: exact solution of incompressible inviscid irrotational flow satisfying the Kutta–Joukowski trailing condition, provided the velocity circulation around the profile, related to the magnitude of the far field velocity, $\gamma_{\text{ref}} = 0.7158$

Compressible flow:

$M_{\infty} = 10^{-4}$, $\#T_h = 5418$

The maximum density variation in compressible flow $\rho_{\text{max}} - \rho_{\text{min}} = 1.04 \cdot 10^{-8}$.

Computed velocity circulation related to the magnitude of the far field velocity: $\gamma_{\text{refcomp}} = 0.7205$, \implies the relative error 0.66%
Compressible low Mach flow past a Joukowski profile, approximate solution, streamlines
Velocity distribution along the profile: ◦ ◦ ◦ – exact solution of incompressible flow, ——— – approximate solution of compressible low Mach flow
b) **Transonic and hypersonic flow with shock waves past the Joukowski profile**

with far field Mach number $M_\infty = 0.8$ and $M_\infty = 2.0$, respectively

The maximum density variation: $\rho_{\text{max}} - \rho_{\text{min}} = 0.94$ for $M_\infty = 0.8$ and $\rho_{\text{max}} - \rho_{\text{min}} = 2.61$ for $M_\infty = 2.0$
Entropy isolines of the flow past a Joukowski profile with $M_\infty = 0.8$ (left) and $M_\infty = 2.0$ (right)
c) Transonic nonstationary flow past NACA0012 profile

far field Mach number \(M_\infty = 0.8 \)

angle of attack \(\alpha \) oscillating according to the formula

\[
\alpha = \alpha_0 \sin \left(\frac{2\pi t}{\omega} \right),
\]

with \(\alpha_0 = 1.25^\circ \) and \(\omega = 10 \)

initial condition: stationary solution for \(\alpha = 0 \).
Distribution of the Mach number at $t_k = 50, 51, 52, \ldots, 61$

$\rho_{\text{max}} - \rho_{\text{min}} = 0.76$
2) Hypersonic viscous compressible flow

Flow past NACA0012 profile:
Far field Mach number $M_\infty = 2, \alpha = 10^\circ$
Reynolds number = 1000

Mesh for viscous flow - constructed by AMA
Mach number isolines for viscous flow

Distribution of the Mach number for viscous flow
Conclusion

- DGFEM is rather robust and efficient technique for the numerical solution of convection-diffusion problems and compressible flow
- developed method allows to solve compressible flow with all Mach numbers without any modification of governing equations

Further goals

- optimal error estimates for mixed Dirichlet-Neumann boundary conditions
- analysis of error estimates for solutions with a weak regularity
- applications to fluid-structure interaction problems (in progress)