GRADIENT CONJECTURE OF R. THOM AND RELATED TOPICS

KRZYSZTOF KURDYKA

Let f be a C^2 function in an open set $U \subset \mathbb{R}^n$ and let ∇f be its gradient in the Euclidean metric. The trajectories of ∇f are the maximal curves $x(t)$ satisfying

$$\frac{dx}{dt}(t) = \nabla f(x(t)), \quad t \in [0, \beta).$$

If $\nabla f(x_0) = 0$, then clearly it is a very challenging problem to understand the behavior of the trajectories of ∇f in the neighborhood of the point x_0. For a general C^2 (or even C^∞) function its gradient trajectory may spiral, oscillate or may have infinite length. In sixties S. Lojasiewicz [L], [L1] proved the following result.

Lojasiewicz’s theorem: Let f be a real analytic function. If $x(t)$ has a limit point $x_0 \in U$, i.e. $x(t_\nu) \to x_0$ for some sequence $t_\nu \to \beta$, then the length of $x(t)$ is finite, moreover $\beta = \infty$. Therefore $x(t) \to x_0$ as $t \to \infty$. Note that $\nabla f(x_0) = 0$, since otherwise we could extend $x(t)$ through x_0.

Then in early seventies R. Thom wanted to obtain a more precise statement for the gradient trajectories (of an analytic function) when approaching a critical point x_0. He wanted to show that a trajectory cannot spiral in some sense. Precisely he formulated it as follows [Th].

Gradient Conjecture: Suppose that $x(t) \to x_0$. Then $x(t)$ has a tangent at x_0, that is the limit of secants

$$\lim_{t \to \infty} \frac{x(t) - x_0}{|x(t) - x_0|}$$

exists.

In other words, if $\tilde{x}(t)$ is the image of $x(t)$ under the radial projection $\mathbb{R}^n \setminus \{x_0\} \ni x \mapsto \frac{x - x_0}{|x - x_0|} \in S^{n-1}$, then the conjecture claims that $\tilde{x}(t)$ has a limit.

In a joint paper with T. Mostowski, A. Parusiński [KMP] we have answered positively the conjecture. Actually we have proved a stronger result: the length of $\tilde{x}(t)$ can be uniformly bounded for trajectories starting sufficiently close to x_0.

The goal of my lectures will be to present main ingredients of our proof, but also related topics and generalizations to a more general context like o-minimal geometry [K], [KP]. Lojasiewicz’s theorem is a consequence of his celebrate gradient inequality [L], [L1], [LT] which states that if f is analytic, then in a neighborhood of x_0

$$|\nabla f| \geq c|f - f(x_0)|^\rho,$$ (0.1)

for some $\rho < 1$ and $c > 0$. I will present also an alternative approach cf. [DD], to the estimate for the length of a trajectory of the gradient of an analytic function, which allows

Date: June 3, 2013.
to obtain uniform bounds for the length in the polynomial case. In fact inequality 0.1 has a generalization to the o-minimal case and even for maps. As consequence we obtain estimates for the length (or volume) of manifolds transverse to the fibers. I will explain important notion of asymptotical critical values and characteristic exponents.

Tentative plan:

(i) Basic facts in subanalytic geometry.
(ii) Łojasiewicz’s gradient inequality, quantitative aspects in the polynomial case. Generalizations to the o-minimal case. Generalizations for the maps.
(iii) Estimates for the length of gradient trajectories.
(iv) Asymptotical critical values and characteristic exponents.
(v) Proof of the gradient conjecture.

REFERENCES

Laboratoire de Mathématiques (LAMA), Université de Savoie, UMR 5127 CNRS, 73-376 Le Bourget-du-Lac cedex FRANCE

E-mail address: Krzysztof.Kurdyka@univ-savoie.fr