Home page of the ANR BLANCHE project
KInetic models in Biology Or Related Domains
2014 - 2018

List of publications

  1. Laurent Desvillettes, Yong-Jung Kim et Ariane Trescases, Changwook Yoon, A logarithmic chemotaxis model featuring global existence and aggregation.
  2. Andrea Bondesan, Laurent Boudin, Bérénice Grec. A numerical scheme for a kinetic model for mixtures in the diffusive limit using the moment method. Numerical Methods for Partial Differential Equations, Wiley, 2018, in press.
  3. Laurent Boudin, Bérénice Grec, Vincent Pavan. Diffusion models for mixtures using a stiff dissipative hyperbolic formalism. Prépublication 2018.
  4. Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium Maxwell distributions. Prépublication 2018.
  5. E. Bouin, J. Dolbeault, and C. Schmeiser, A variational proof of Nash’s inequality, working paper or preprint, 2018.
  6. J. Dolbeault, M.J. Esteban, M. Loss and M. Muratori, Calculus of variations : Symmetry by flow. Oberwolfach Reports, 13(3):1980–1982, 2016.
  7. T. Lepoutre, Improved duality estimates: time discrete case and applications to a class of cross-diffusion systems, Commun. Math. Sci. to appear.
  8. V. Calvez, C. Henderson, S. Mirrahimi, O. Turanova and T. Dumont, Non-local competition slows down front acceleration during dispersal evolution, submitted.
  9. S. Mischler, C. Quininao, Q. Weng, Weak and strong connectivity regimes for a general time elapsed neuron network model, J. Stat. Phys. 173 (2018), no. 1, 77-98.
  10. Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, Ariane Trescases. Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations, submitted.
  11. Amic Frouvelle, Jian-Guo Liu. Long-time dynamics for a simple aggregation equation on the sphere, submitted
  12. Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, Ariane Trescases. Quaternions in Collective Dynamics. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2018, 16 (1), pp.28-77.
  13. G. Dumont and P. Gabriel. The mean-field equation of a leaky integrate-and-fire neural network: measure solutions and steady states, submitted.
  14. V. Bansaye, B. Cloez, and P. Gabriel. Ergodic behavior of non-conservative semigroups via generalized Doeblin's conditions, submitted.
  15. P. Gabriel and H. Martin. Steady distribution of the incremental model for bacteria proliferation, accepted for publication Networks and Heterogeneous Media.
  16. E. Bernard and P. Gabriel. Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate, submitted.
  17. Jose A. Carrillo, Matias G. Delgadino, Jean Dolbeault, Rupert L. Frank, Franca Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities, Preprint (2018).
  18. Jean Dolbeault and Xingyu Li. Phi-entropies for Fokker-Planck and kinetic Fokker-Planck equations, M3AS (2018).
  19. J. Dolbeault, M. J. Esteban, and M. Loss. Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs. Proc. Int. Cong. of Math., Rio de Janeiro, 3: 2279-2304, 2018.
  20. Emeric Bouin, Jean Dolbeault, Stephane Mischler, Clement Mouhot, Christian Schmeiser. Hypocoercivity without confinement, Preprint Ceremade no. 1702, (2018).
  21. J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincaré, 19 (5): 1439-1463, May 2018.
  22. Jean Dolbeault and An Zhang. Flows and functional inequalities for fractional operators. Applicable Analysis, 96 (9): 1547-1560, 2017.
  23. J. Dolbeault, M. J. Esteban, and M. Loss. Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization. Journal of elliptic and parabolic equations, 2: 267–295, 2016.
  24. Jean Dolbeault and An Zhang. Optimal functional inequalities for fractional operators on the sphere and applications. Advanced Nonlinear Studies, 16 (4): 863-880, 2016.
  25. J. Dolbeault, M. J. Esteban, M. Loss, and M. Muratori. Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities. Comptes Rendus Mathématique, 355 (2): 133 - 154, 2017.
  26. J. Dolbeault, M.J. Esteban, M. Loss. Symmetry of optimizers of the Caffarelli-Kohn-Nirenberg inequalities, Preprint (2016), Proceedings ICTP 2015.
  27. Matteo Bonforte, Jean Dolbeault, Matteo Muratori, and Bruno Nazaret. Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic and Related Models, 10 (1): 33-59, 2017.
  28. Matteo Bonforte, Jean Dolbeault, Matteo Muratori, and Bruno Nazaret. Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models, 10 (1): 61-91, 2017.
  29. J. Dolbeault, M. Muratori, and B. Nazaret. Weighted interpolation inequalities: a perturbation approach. Mathematische Annalen, pages 1-34, 2016.
  30. J. Dolbeault, M. J. Esteban, and M. Loss. Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d’interpolation sur la sphère : flots non-linéaires vs. flots linéaires). Annales de la faculté des sciences de Toulouse Sér. 6, 26 (2): 351-379, 2017.
  31. Jean Dolbeault, Maria J. Esteban, and Michael Loss. Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces. Invent. Math., 206 (2): 397-440, 2016.
  32. Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol, Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations, preprint.
  33. Christopher Henderson, Benoît Perthame, Panagiotis Souganidis, Super-linear propagation for a general, local cane toads model, preprint.
  34. Antoine Mellet, Benoît Perthame, Fernando Quiros, A Hele-Shaw Problem for Tumor Growth, Journal of Functional Analysis, Elsevier, 2017, 273, pp.3061-3093.
  35. Harold Moundoyi, Ayman Moussa, Benoît Perthame, Benoît Sarels, Analytical examples of diffusive waves generated by a traveling wave, Applicable Analysis, Taylor & Francis, 2017,
  36. Benoît Perthame, Panagiotis E. Souganidis, Rare mutations limit of a steady state dispersal evolution model, Mathematical Modelling of Natural Phenomena, EDP Sciences, 2016, 11 (4)
  37. Vincent Calvez, Benoît Perthame, Shugo Yasuda, Traveling Wave and Aggregation in a Flux-Limited Keller-Segel Model, Kinetic and Related Models , AIMS, 2018, 11 (4), pp.891-909.
  38. Benoît Perthame, Weiran Sun, Min Tang, The fractional diffusion limit of a kinetic model with biochemical pathway, Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2018, 69:6
  39. Benoît Perthame, Shugo Yasuda, Stiff-response-induced instability for chemotactic bacteria and flux-limited Keller-Segel equation, Nonlinearity, IOP Publishing, 2018, 31.
  40. Laurent Desvillettes, Klemens Fellner and Bao Quoc Tang, Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks. SIAM Journal on Mathematical Analysis, 49, (2017), 2666–2709.
  41. Stéphanie Jenouvrier, Jimmy Garnier, Florian Patout and Laurent Desvillettes: Influence of dispersal processes on the global dynamics of Emperor penguin, a species threatened by climate change. Biological Conservation, 212, (2017), 63-73.
  42. Etienne Bernard, Laurent Desvillettes, Francois Golse and Valeria Ricci, A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures. Kinetic and Related Models, 11, n.1, (2018), 43-69.
  43. Céline Baranger, Marzia Bisi, Stéphane Brull and Laurent Desvillettes, On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic and Related Models, 11, n.4, (2018), 821-855, special issue.
  44. Laurent Desvillettes, Michèle Grillot, Philippe Grillot and Simona Mancini, Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects, Discrete and Continuous Dynamical Systems, 38, n.9, (2018), 4675-4692.
  45. Laurent Desvillettes and Cinzia Soresina, Non triangular cross-diffusion systems with predator-prey reaction terms, to appear in Ricerche di Matematica, (special issue).
  46. Fiammetta Conforto, Laurent Desvillettes and Cinzia Soresina, About reaction-diffusion systems involving the Holling-type II and the Beddington-DeAngelis functional responses for predator-prey models, Nonlinear Differential Equations and Applications, 25, n.3, (2018), Art 24, 39.
  47. Laurent Desvillettes and Silvia Lorenzani, Homogenization of the discrete diffusive coagulation-fragmentation equations in perforated domains, Journal of Mathematical Analysis and Applications. 467, n.2, (2017), 1100--1128.
  48. Esther Daus, Laurent Desvillettes and Ansgar Jüngel, Cross-diffusion systems and fast-reaction limits, Soumis au Bulletin des Sciences Mathématiques.
  49. Esther Daus, Laurent Desvillettes, and Helge Dietert, About the entropic structure of detailed balanced multi-species cross-diffusion equations, to appear in Journal of Differential Equations.
  50. S. Mirrahimi, Singular limits for models of selection and mutations with heavy tails, submitted.
  51. S. Mirrahimi and S. Gandon, Evolution of specialization in heterogeneous environments: equilibrium between selection, mutation and migration, submitted.
  52. S. Figueroa Iglesias and S. Mirrahimi, Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, to appear in SIAM J. Math. Anal.
  53. S. Mirrahimi, A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments, Mathematical Models and Methods in Applied Sciences, Vol. 27(13) (2017) 2425-2460.
  54. S. Gandon and S. Mirrahimi, A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, Comptes Rendus - Mathematique, Vol. 355(2), (2016), pp. 155-160
  55. P. Degond, S. Hecht, N. Vauchelet, Incompressible limit of a continuum model of tissue growth for two cell populations, submitted.
  56. B. Perthame, N. Vauchelet, Z. Wang, The Flux-Limited Keller-Segel system; properties and derivation from kinetic equations, submitted.
  57. M. Strugarek, L. Dufour, N. Vauchelet, L. Almeida, B. Perthame, D. Villela, Oscillatory regimes in a mosquito population model with larval feedback on egg hatching, submitted.
  58. F. Delarue, F. Lagoutière, N. Vauchelet, Convergence analysis of upwind type schemes for the aggregation equation with pointy potential, submitted.
  59. L. Gosse, N. Vauchelet, Some examples of kinetic schemes whose diffusion limit is Il'in's exponential-fitting, submitted.
  60. M. Strugarek, N. Vauchelet, J. P. Zubelli, Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model, Math. Biosci. Eng. 15 (2018), no 4, 961-991.
  61. G. Nadin, M. Strugarek, N. Vauchelet, Hindrances to bistable front propagation: application to Wolbachia invasion, J. Math. Biol. 76 (2018), no 6, 1489-1533.
  62. S. Hecht, N. Vauchelet, Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint, Commun. Math. Sci. (2017) Vol. 15, No 7, 1913-1932.
  63. T. Lepoutre, A. Moussa, Entropic structure and duality for multiple species cross-diffusion systems, Nonlinear Analysis, volume 159, 298-315, 2017.
  64. O. Glass, D. Han-Kwan, A. Moussa, The Vlasov-Navier-Stokes system in a 2D pipe : existence and stability of regular equilibria, Archive for Rational Mechanics and Analysis, Volume 230, Issue 2, pp 593–639, 2018.
  65. M. Hillairet, A. Moussa, F. Sueur, On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow, to appear in Kinetic and Related Models.
  66. D. Han-Kwan, E. Miot, A. Moussa, and I. Moyano, Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system, to appear in Revista Matemática Iberoamericana.
  67. A. Moussa, From non-local to classical SKT systems : triangular case with bounded coefficients, preprint.
  68. M. Breden and R. Castelli, Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof. Journal of Differential Equations, 2018, 264 (10), 618-645.
  69. P. Gabriel, Measure solutions to the conservative renewal equation, ESAIM ProcS, accepted.
  70. F. Salvarani, G. Turinici, Optimal individual strategies for influenza vaccines with imperfect efficacy and limited persistence, preprint.
  71. V. Calvez, P. Gabriel, A. M. Gonzalez, Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiffusion jump-renewal equation, preprint.
  72. E. Bernard, M. Doumic, P. Gabriel, Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts, Kinetic and Related Models, accepted.
  73. P. Degond, A. Frouvelle, S. Merino-Aceituno, A new flocking model through body attitude coordination, Math. Models Methods Appl. Sci., 2017, 27 (6), pp 1005-1049.
  74. S. Mischler, J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 3, 849-898
  75. S. Mischler, Q. Weng, On a linear runs and tumbles equation, Kinet. Relat. Models 10 (2017), no. 3, 799-822
  76. M. Burger, A. Lorz, M.-T. Wolfram, Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth, Kinetic and Related Models, Vol. 10, pp. 117-140, 2017.
  77. Marie Doumic, Mathieu Mezache, Benoît Perthame, Edouard Ribes, Delphine Salort, Strategic Workforce Planning and sales force : a demographic approach to productivity, preprint.
  78. M. Doumic, B. Perthame, E. Ribes, D. Salort, N. Toubiana, Toward an integrated workforce planning framework using structured equations, European Journal of Operational Research, Elsevier, 2017, 262.
  79. B. Perthame, D. Salort and G. Wainrib, Distributed synaptic weights in a LIF neural network and learning rules, Physica D: Nonlinear Phenomena, Elsevier, 2017, 353-354, pp.20-30.
  80. F. Camilli & L. Corrias, Parabolic models for chemotaxis on weighted networks, Journal de Mathématiques Pures et Appliquées, Volume 108, Issue 4, Octobre 2017, pages 459-480.
  81. S. Mancini, R.-M. Mège, B. Sarels, P.-O. Strale, A phenomenological model of cell-cell adhesion mediated by cadherins, J. Math. Biol., 74(7), pp. 1657-1678, (2017).
  82. C. Di Russo, Existence and asymptotic behavior of solutions to a semilinear hyperbolic- parabolic model of chemotaxis, Indiana U. Math. J. Vol. 65, No. 2 : 493-533 (2016).
  83. Etienne Bernard, Laurent Desvillettes, Francois Golse, Valeria Ricci, A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory, Communications in Mathematical Sciences, 15, n.5, (2017), 1703--1741.
  84. Fiammetta Conforto, Laurent Desvillettes, Roberto Monaco, Some asymptotic limits of reaction-diffusion systems appearing in reversible chemistry, Ricerche di Matematica, 66, n.1, (2017), 99--111 (special issue).
  85. Tommaso Lorenzi, Rebecca H. Chisholm, Laurent Desvillettes, Barry D. Hughes, Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences, Zeitschrift für Andgewandte Mathematik und Physik, 67, n.4, (2016), Art. 100, 34.
  86. Angel Calsina, Sílvia Cuadrado, Laurent Desvillettes, Gael Raoul, Asymptotic profile in selection-mutation equations: Gauss versus Cauchy distributions, Journal of Mathematical Analysis and Applications, 444, n.2, (2016), 1515-1441.
  87. Laurent Desvillettes, Klemens Fellner, Duality and Entropy Methods for Reversible Reaction-Diffusion Equations with Degenerate Diffusion, Mathematical Methods in the Applied Sciences, 38, n.16, (2015), 3432-3443, special issue.
  88. Inwon C. Kim, Benoit Perthame, Panagiotis E. Souganidis, Free boundary problems for Tumor growth: a viscosity solutions approach, Nonlinear Analysis Series A: Theory, Methods & Applications 138 (2016), 207-228.
  89. T. Lorenzi, A. Lorz and B. Perthame, On interfaces between cell populations with different mobilities, Kinetic and Related Models , AIMS, 2017, 10 (1), pp.299-311.
  90. Samuel Nordmann, Benoît Perthame, Cécile Taing, Dynamics of concentration in a population model structured by age and a phenotypical trait, Acta Applicandae Mathematicae, Springer Verlag, 2018, 155 (1).
  91. Alexander Lorz, Benoit Perthame, Cecile Taing, Dirac concentrations in a chemostat model of adaptive evolution, Chinese Ann. Appl. Math. In press.
  92. J. Haskovec, P. Markowich, B. Perthame, M. Schlottbom, Notes on a PDE System for Biological Network Formation, Nonlinear analysis, 138 (2016) 127-155.
  93. M. Breden, Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion, Kinetic and Related Models, 2018, 11(2): 279-301.
  94. J. Dolbeault, M. J. Esteban, and G. Jankowiak. The Moser-Trudinger-Onofri inequality. Chinese Annals of Math. B, 36(5):777–802, 2015.
  95. L. Boudin, F. Salvarani, Compactness of linearized kinetic operators, Proceedings of Particle Systems and Partial Differential Equations III (2016).
  96. L. Boudin, B. Grec, V. Pavan, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections, Nonlinear Anal. 159, 40–61 (2017).
  97. L. Boudin, C. Grandmont, A. Moussa, Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain, Journal of Differential Equations, volume 262 (3), 1317-1340, 2017.
  98. E. Bernard, P. Gabriel, Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate, J. Funct. Anal., Vol.272, No.8 (2017), pp.3455-3485.
  99. F. Delarue, F. Lagoutière, N. Vauchelet, Convergence order of upwind type schemes for transport equations with discontinuous coefficients, J. Math. Pures Appl. (9) 108 (2017), no 6, 918-951.
  100. C. Emako-Kazianou, C. Gayrard, A. Buguin, L. Neves de Almeida, N. Vauchelet, Traveling pulses for a two-species chemotaxis model, PLOS Comput. Biol. (2016) 12(4): e1004843.
  101. L. Gosse, N. Vauchelet, Numerical high-field limits in two-stream kinetic models and 1D aggregation equations, SIAM J. Sci. Comput. 38(1) (2016) A412-A434.
  102. Henri Berestycki, Laurent Desvillettes, Odo Diekmann, Can climate change lead to gap formation?, Ecological Complexity 20, (2014), 264-270, special issue.
  103. L. Desvillettes, Entropy dissipation estimates for the Landau equation: General cross sections, Proceedings of PSPDE III, Braga, 2014.
  104. Tommaso Lorenzi, Rebecca H. Chisholm, Laurent Desvillettes, Barry D. Hughes, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments, Journal of Theoretical Biology, 386 (2015), 166-176.
  105. M. Breden, J.-P. Lessard and J.D. Mireles James, Computation of maximal local (un)stable manifold patches by the parameterization method, Indagationes Mathematicae, 2016, 27(1), 340-367.
  106. A. Lorz, B. Perthame, C. Taing, Dirac concentrations in a chemostat model of adaptive evolution, Chinese Annals of Mathematics, Series B, Vol. 38, pp. 513-538, 2017.
  107. R.H. Chisholm, T. Lorenzi, A. Lorz, Effects of an advection term in nonlocal Lotka-Volterra equations, Communications in Mathematical Sciences, Vol 14, pp 1181-1188, 2016.
  108. T. Lorenzi, R.H. Chisholm, M. Melensi, A. Lorz, M. Delitala, Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion, Immunology, Vol 146, pp 271-280, 2015.
  109. M. Burger, A. Lorz, M.-T. Wolfram, On a Boltzmann mean field model for knowledge growth, SIAM Journal on Applied Mathematics, Vol. 76, pp. 1799-1818, 2016.
  110. Jean Dolbeault, Maria J. Esteban, and Michael Loss, Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders, Comptes Rendus Mathématique, 353 (9): 813 -818, 2015.
  111. Jean Dolbeault and Giuseppe Toscani, Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays, Nonlinear Analysis: Theory, Methods & Applications, 138: 31–43, 6 2016.
  112. Jean Dolbeault, Michal Kowalczyk, Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates, Annales de la faculté des sciences de Toulouse Sér. 6, 26 (4): 949-977, 2017.
  113. J. Dolbeault, M. Esteban, S. Filippas, and A. Tertikas, Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Calculus of Variations and Partial Differential Equations, 54(3):2465–2481, Nov 2015.
  114. Jean Dolbeault and Giuseppe Toscani, Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities, Int. Math. Res. Not. IMRN, (2): 473-498, 2016.
  115. J. Dolbeault and G. Toscani, Best matching Barenblatt profiles are delayed, Journal of Physics A: Mathematical and Theoretical, 48 (6): 065206, 2015.
  116. Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak, Onofri inequalities and rigidity results. Discrete and Continuous Dynamical Systems, 37 (6): 3059-3078, 2017.
  117. M. Chyba, J.-M. Coron, P. Gabriel, Y. Mileyko, Identication of the Fragmentation Role in the Amyloid Assembling Processes and Application to their Optimization, Proceedings SIAM CT'15, pp. 348-355.
  118. S. Mirrahimi and J.-M. Roquejoffre, A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach, Journal of Differential Equations, 250(5) (2016), 4717-4738.
  119. S. Mirrahimi and J.-M. Roquejoffre, Uniqueness in a class of Hamilton-Jacobi equations with constraints, Comptes Rendus Mathematique, Vol. 353 (2015), pp. 489-494.
  120. Breden Maxime, Desvillettes Laurent, Lessard Jean-Philippe, Rigorous numerics for nonlinear operators with tridiagonal dominant linear parts, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) Vol 35 no 10 (2015).
  121. B. Andrianov, C. Cancès, A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs, Journal of Functional Analysis, volume 273, 3633-3670, 2017.
  122. D. Bonazzi, A. Haupt, H. Tanimoto, D. Delacourt, D. Salort, N. Minc, Actin-based transport adapts polarity domain size to local cellular curvature, Current Biology (2015).
  123. Laurent Desvillettes, François Golse, Valeria Ricci, A formal passage from a system of Boltzmann equations for mixtures towards a Vlasov-Euler system of compressible fliuds, Accepted for publication in Acta Mathematicae Applicatae Sinica.
  124. J.A. Carrillo, B. Perthame, D. Salort, D. Smets, Qualitative Properties of Solutions for the Noisy Integrate & Fire model in Computational Neuroscience, Nonlinearity 28, pp 3365 (2015).
  125. A. Trescases, On triangular reaction cross-diffusion systems with possible self-diffusion, Bull. Sci. Math. 140 (2016) no. 7 pp.796–829.
  126. Berry, Hugues, Lepoutre, Thomas, et Gonzàlez, Alvaro Mateos, Quantitative convergence towards a self similar profile in an age-structured renewal equation for subdiffusion, Acta Applicandae Mathematicae 145, pp 15-45 2016.
  127. S. Mischler, Q. Weng, Relaxation in time elapsed neuron network models in the weak connectivity regime, Acta Appl. Math. 157 (2018), 45-74.
  128. F. James, N. Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM J. Numer. Anal., Vol 53 no 2 (2015), 895-916.
  129. B. Perthame, M. Tang, N. Vauchelet, Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway, J. Math. Biol. 73 (2016), no 5, 1161-1178.
  130. Laurent Boudin, Francesco Salvarani, Opinion dynamics: kinetic modelling with mass media, application to the scottish independence referendum, Physica A 444, 448-457 (2016).
  131. Pierre Gabriel, Global stability for the prion equation with general incidence, Mathematical Bioscience and Engineering, Vol 12, no 4, 2015, 789-801.
  132. Pierre Degond, Amic Frouvelle, Gaël Raoul, Local stability of perfect alignment for a spatially homogeneous kinetic model, J. Stat. Phys., 2014, 157 (1), pp.84-112.
  133. J. Haskovec, P. Markowich, B. Perthame, Mathematical analysis of a system for biological network formation, Comm. in PDEs, 40:5, 918-956, (2015).
  134. R.H. Chisholm, T. Lorenzi, A. Lorz, A. Larsen, L. Almeida, A. Escargueil, J. Clairambault, Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation, Cancer Research, Vol. 75, pp. 930-939, 2015.
  135. A. Lorz, and B. Perthame, Long-term behaviour of phenotypically structured models, Proceedings of the Royal Society A, Vol. 470, no. 2167, 2014
  136. A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame, Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull Math Biol (2015) 77:1–22. DOI 10.1007/s11538-014-0046-4
  137. Laurent Desvillettes, Ariane Trescases, New results for triangular reaction cross diffusion system, Journal of Mathematical Analysis and Applications 430 (2015), 32-59.
  138. Laurent Desvillettes, Thomas Lepoutre, Ayman Moussa, Ariane Trescases, On the entropic structure of reaction-cross diffusion systems, Comm. Partial Differential Equations 40 (2015), no. 9, 1705–1747.
  139. S. Mirrahimi and B. Perthame, Asymptotic analysis of a selection model with space , J. Math. Pures Appl. (2015) doi:10.1016/j.matpur.2015.07.006
  140. H. Leman, S. Méléard and S. Mirrahimi, Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system, Discrete and Continuous Dynamical Systems - B (DCDS-B), Vol 20 no 2 (2015), 469-493.
  141. S. Méléard and S. Mirrahimi, Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, Communications in Partial Differential Equations Vol 40 no 5 (2015), 957-993.
  142. L. Boudin, C. Grandmont, A. Lorz, A. Moussa, Modelling and numerics for respiratory aerosols, Commun. Comput. Phys, vol 18 (3), 2015, 723-756.
  143. A. Moussa, Some variants of the classical Aubin-Lions Lemma, Journal of Evolution Equations, (2016) vol 16 (1), 65-93.
  144. J. A. Carrillo, F. James, F. Lagoutière, N. Vauchelet, The Filippov characteristic flow for the aggregation equation with mildly singular potentials, J. Differential Equations. 260 (2016) no 1, 304-338.
  145. L. Almeida, C. Emako, N. Vauchelet, Existence and diffusive limit of a two-species kinetic model of chemotaxis, Kin. Rel. Models. Vol 8 no 2 (2015), 359-380.
  146. B. Perthame, N. Vauchelet, Incompressible limit of mechanical model of tumor growth with viscosity, Philosophical Trans. R. Soc. A 373: 20140283 (2015). DOI 10.1098/rsta.2014.0283
  147. S. Mischler, C. Quininao, J. Touboul, On a kinetic FitzHugh-Nagumo model for neural networks , Comm. Math. Phys. 342 (2016), no. 3, 1001-1042.
  148. Benoît Perthame, Cristobal Quininao, Jonathan Touboul, Competition and boundary formation in heterogeneous media: Application to neuronal differentiation, Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2015, 25 (13), pp.2477-2502.
  149. K. Carrapatoso, S. Mischler, Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation, Comm. Partial Differential Equations 42 (2017), no. 2, 291-345.
  150. B. Perthame, D. Salort, On a voltage-conductance kinetic system for integrate and fire neural networks, Kin. Rel. Models (2013) 6 (4), 841-864.
  151. P. Gabriel, F. Salvarani, Exponential relaxation to self-similarity for the superquadratic fragmentation equation, Appl. Math. Lett. 27 (2014), 74-78
  152. L. Corrias, M. Escobedo, J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations 257 (2014), 1840-1878.
  153. M. Kolwalczyk, B. Perthame, N. Vauchelet, Transversal instability for the thermodiffusive reaction-diffusion system, Chin. Ann. Math. B 36 (2015), no 5, 871-882.
  154. B. Perthame, M. Tang, N. Vauchelet, Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient, Math. Meth. Mod. in Appl. Sc., Vol 24 No 13 (2014), 489-508.
  155. B. Perthame, F. Quiros, M. Tang, N. Vauchelet, Derivation of a Hele-Shaw type system from a cell model with active motion, Interfaces and Free Boundaries 16 (2014), 489-508.
  156. Jean Dolbeault and Gaspard Jankowiak. Sobolev and Hardy-Littlewood-Sobolev inequalities, Journal of Differential Equations (2014) 257 (6), 1689-1720.
  157. Jean Dolbeault, Maria J. Esteban, Michal Kowalczyk, and Michael Loss. Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7(4):695-724, August 2014.
  158. Jean Dolbeault and Robert Stanczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi-Dirac statistics, Discrete and Continuous Dynamical Systems A 35 (2015), 139-154 :: doi arxiv:1309.1930.
  159. Jean Dolbeault, Maria J. Esteban, Ari Laptev and Michael Loss. One-dimensiol Gagliardo-Nirenberg-Sobolev inequalities: Remarks on duality and flows, Journal of the London Mathematical Society, 90(2):525-550, 2014.
  160. L. Desvillettes, K. Fellner; Exponential Convergence to Equilibrium for a Nonlinear Reaction-Diffusion Systems Arising in Reversible Chemistry, Proceedings of IFIP Advances in Information and Communication Technology 01/2014; System Modeling and Optimization, 2013.
  161. L. Desvillettes, Th. Lepoutre, A. Moussa; Entropy, duality and Cross Diffusion, SIAM Journal of Mathematical Analysis (2014) 46 (1) 820-853.