Dimensionality reduction for periodic magnetostatic fields

Dimensionality reduction using an edge finite element method for periodic magnetostatic fields in a symmetric domain

C.G. Albert1 O. Biro2 M.F. Heyn1 W. Kernbichler1 S.V. Kasilov1,3 P. Lainer1

1Fusion@ÖAW, Institute of Theoretical and Computational Physics
2Institute of Fundamentals and Theory in Electrical Engineering
Graz University of Technology

3Institute of Plasma Physics, National Science Center
Kharkov Institute of Physics and Technology

8th FreeFEM++ workshop, Dec 8th 2016
Who are we?

- Theoretical plasma physics group at TU Graz

General topic: **magnetic confinement fusion**
- Trap a hot plasma to allow for nuclear fusion
- Work within the **EUROfusion** framework (ITER, W7-X, ...)

C.G. Albert, O. Biro, M.F. Heyn, W. Kernbichler, S.V. Kasilov, P. Lainer, 8th FreeFEM++ workshop, Dec 8th 2016
What do we do?

- Our tasks include:
 - Understand non-axisymmetric perturbations in tokamaks
 - Compute transport and 3D equilibria in stellarators

- Our strategy:
 - Use a kinetic Monte Carlo model for the plasma
 - Couple to Maxwell’s equations solved by FEM

- More complete but slower than magnetohydrodynamics
 - optimisations needed
Tokamak and stellarator geometry

- make use of axisymmetry / periodicity
About today’s talk

- Most things are well-known
- **Goal**: calculate **3D magnetic field** from known **currents**
- Systematic way of "2.5D" reduction of **curl curl** equation
 - Starting from Maxwell’s equations
 - **symmetric** and **oscillatory** part (Fourier series)
- Generalisation to **curvilinear** coordinates
- Efficient realisation with edge elements in **FreeFEM++**
Maxwell’s equations of electrodynamics

\[
\begin{align*}
\text{div } \varepsilon \mathbf{E} &= \rho \quad (1) \\
\text{curl } \mathbf{E} + \partial_t \mathbf{B} &= 0 \quad (2) \\
\text{curl } \nu \mathbf{B} - \partial_t (\varepsilon \mathbf{E}) &= \mathbf{J} \quad (3) \\
\text{div } \mathbf{B} &= 0 \quad (4)
\end{align*}
\]

- Unknowns: Electric field \(\mathbf{E} \) and magnetic field \(\mathbf{B} \)
- Source terms: Free charge density \(\rho \), currents density \(\mathbf{J} \)
- Material parameters: Permittivity \(\varepsilon \), inverse permeability \(\nu = \mu^{-1} \)
 - Can lead to discontinous (weak) solutions for \(\mathbf{E} \) and \(\mathbf{B} \)
- Continuity equation for charges as a consequence:
 \[
 \frac{\partial \rho}{\partial t} + \text{div} \mathbf{J} = 0
 \]
Scalar and vector potential

\[\text{div } \varepsilon \mathbf{E} = \rho \]
\[\text{curl } \mathbf{E} + \partial_t \mathbf{B} = 0 \]
\[\text{curl } \nu \mathbf{B} - \partial_t (\varepsilon \mathbf{E}) = \mathbf{J} \]
\[\text{div } \mathbf{B} = 0. \]

- Simply connected domains: can find potentials \(\Phi \) and \(\mathbf{A} \) with

\[E = -\text{grad } \Phi - \partial_t \mathbf{A}, \quad B = \text{curl } \mathbf{A} \quad (5) \]

- Equations fulfilled since \(\text{curl } \text{grad } \Phi = 0 \) and \(\text{div } \text{curl } \mathbf{A} = 0 \) \(\forall \Phi, \mathbf{A} \)

- Proof: special case of Poincaré lemma
Potential equations

\[- \text{div} \, \varepsilon \text{grad} \Phi - \text{div} \, \varepsilon \partial_t A = \rho \]
\[\text{curl} \, \nu \text{curl} A - \partial_t \varepsilon \text{grad} \Phi + \partial_t \varepsilon \partial_t A = J\]

with \(E = - \text{grad} \Phi - \frac{\partial A}{\partial t} \), \(B = \text{curl} A \)

- **Singular** (non-unique solution) due to gauge freedom

\[A = A' + \text{grad} \chi , \quad \Phi = \Phi' + \frac{\partial \chi}{\partial t} \]

since \(\text{curl} \, \text{grad} \chi = 0 \)
Dimensionality reduction for periodic magnetostatic fields

Textbook example: Lorenz gauge

- For constant ε, ν, $c^2 := \nu/\varepsilon$ decouple equations by gauge

\[
\text{div} \ A + \partial_t \Phi / c^2 = 0
\]

- Wave equations follow with Laplacian $\Delta \Phi := \text{div} \ \text{grad} \ \Phi$
 and Vector Laplacian $\Delta A := \text{grad} \ \text{div} \ A - \text{curl} \ \text{curl} \ A$

\[
-\Delta \Phi - \partial_t^2 \Phi / c^2 = \rho / \varepsilon \quad (8)
\]

\[
-\Delta A + \partial_t^2 A / c^2 = J / \nu \quad (9)
\]

- Often better to stay with curl curl equation
 - $\Delta A = \Delta A_x e_x + \Delta A_y e_y + \Delta A_z e_z$ only in Cartesian coords
 - Numerical troubles of (9) in nodal basis (spurious modes)
Dimensionality reduction for periodic magnetostatic fields

Static case

\[-\text{div} \varepsilon \text{grad} \Phi - \text{div} \varepsilon \partial_t \mathbf{A} = \rho \] \hspace{1cm} (10)

\[\text{curl} \nu \text{curl} \mathbf{A} - \partial_t \varepsilon \text{grad} \Phi - \partial_t \varepsilon \partial_t \mathbf{A} = \mathbf{J} \] \hspace{1cm} (11)

- Changes of fields over time are neglected
- Relevant to find equilibrium configurations
- Equations decouple into electrostatics and magnetostatics
- In particular, Eq. (11) leads to

\[\text{div} \mathbf{J} = 0 \] \hspace{1cm} (12)

(continuity equation without sources)
FEM for the 3D curl-curl equation – weak form

\[\text{curl } \nu \text{curl } A = J \] \hspace{1cm} (13)

- Standard procedure: domain \(\Omega \) with Neumann data \(A_N \times n \) on \(\Gamma_N \)

1. Scalar multiplication by test function \(W \)
2. Do partial integration \(\Rightarrow \) weak form

\[\int_{\Omega} \text{curl } W \cdot \nu \text{curl } A \, d\Omega = \int_{\Omega} W \cdot J \, d\Omega - \int_{\Gamma_N} \nu \, W \cdot \text{curl } A_N \times n \, d\Omega \] \hspace{1cm} (14)

3. Discretise locally on mesh by Galerkin method
FEM for the 3D curl-curl equation – discretisation

\[\int_{\Omega} \text{curl } W \cdot \nu \text{curl } A \, d\Omega = \int_{\Omega} W \cdot J \, d\Omega - \int_{\Gamma_N} \nu W \cdot \text{curl } A_N \times n \, d\Gamma_N \]

- **Edge** (Nédélec) elements for \(A, \ W \in H_{\text{curl}} \)
 - DOFs: integral of vector along edges
 - Stokes’ law \(\oint A \cdot d\ell = \int \text{curl } A \cdot dS \) given directly

- **Face** (Raviart-Thomas) elements for \(B = \text{curl } A \in H_{\text{div}} \)
 - DOFs: integral of vector across faces
 - Gauss’ law \(\oint A \cdot dS = \int \text{div } A \, dV \) given directly

- Either gauged (tree-cotree) or ungauged (iterative solver)
Example: Cartesian coordinates

- Prism with BCs and parameters 2π-periodic in z
Dimensionality reduction for periodic magnetostatic fields

Reduction to 2D - symmetric part (z-independent)

- Curl splits into independent transversal b and longitudinal $B_z e_z$

$$
B = \text{curl } A = \partial_y A_z e_x - \partial_x A_z e_y + (\partial_x A_y - \partial_y A_x) e_z
$$

- Two distinct equations follow from \textbf{curl curl} Eq. (13)

$$
\text{curl}_t \nu \text{curl}_t a = j \quad (15)
\text{curl}_t \nu \text{curl}_t A_z = J_z \quad (16)
$$

- Weak forms of homogenous Neumann problems:

$$
\int_\Omega \text{curl}_t w \nu \text{curl}_t a \, d\Omega_t = \int_\Omega w \cdot j \, d\Omega_t \quad (\rightarrow \text{edge elements})
$$

$$
\int_\Omega \text{curl}_t W \cdot \nu \text{curl}_t A_z \, d\Omega_t = \int_\Omega W J_z \, d\Omega_t \quad (\rightarrow \text{nodal elements})
$$
Dimensionality reduction for periodic magnetostatic fields

Reduction to 2D - oscillatory part

- All quantities oscillatory in symmetry direction, e.g. z

$$f(x, y, z) = \text{Re} \sum_{n \neq 0} f_n(x, y) \exp(inz)$$

- Curl also contains extra terms with $\partial_z = in$

$$B = (\partial_y A_z - inA_y)e_x + (inA_x - \partial_x A_z)e_y + (\partial_x A_y - \partial_y A_x)e_z$$

- $n \neq 0$ – why not eliminate A_z by gauge transformation?

$$A \rightarrow A + \text{grad} \chi,$$

$$\chi = - \int A_z dz = - \frac{A_z}{in} \quad \text{(single harmonic)}$$
Dimensionality reduction for periodic magnetostatic fields

Reduction to 2D - oscillatory part

- Now only transversal \(\mathbf{a} \perp \mathbf{b} \) remains

\[
\mathbf{B} = -in a_y \mathbf{e}_x + in a_x \mathbf{e}_y + (\partial_x a_y - \partial_y a_x) \mathbf{e}_z
\]

- Splits into "Helmholtz" (+ means decay here) and other

\[
\text{curl}_t \nu \text{curl}_t \mathbf{a} + n^2 \nu \mathbf{a} = \mathbf{j} \quad (17)
\]

\[
- in \text{div}_t \nu \mathbf{a} = J_z \quad (18)
\]

- Eq. (18) automatically fulfilled with Eq. (17) & \(\text{div} \mathbf{J} = 0 \)

- Weak form for homogenous Neumann problem

\[
\int_{\Omega} \text{curl}_t \mathbf{w} \nu \text{curl}_t \mathbf{a} + n^2 \mathbf{w} \cdot \nu \mathbf{a} \, d\Omega_t = \int \mathbf{w} \cdot \mathbf{j} \, d\Omega_t \quad (\rightarrow \text{edge elements})
\]
Comparison symmetric – oscillatory

- Symmetric part 2D transversal equation ("Poisson")
 \[\text{curl}_t \nu \text{curl}_t a = j \]
 - Still singular (ungauged), can add \(\text{grad}_t \chi \) to \(a \)
 - Only describes \(B_z \) component, need also other equation
- Oscillatory part 2D transversal equation ("Helmholtz")
 \[\text{curl}_t \nu \text{curl}_t a + n^2 \nu a = j \]
 - Uniquely solvable
 - Describes full \(B \) solution using \(\text{div} B = \text{div}_t b + inB_z = 0 \)
Some basics about curvilinear coordinates

- Coordinates x^k parametrize space: $r(x^1, x^2, x^3) \rightarrow$ inverse $x^k(r)$
- (Non-orthonormal) covariant and its dual (contravariant) basis
 \[e_k = \partial_k r \quad e^k = \nabla x^k \]
- Representation of vectors in contra- and covariant components
 \[A = \sum_k A^k e_k = \sum_k A_k e^k, \quad A^k = A \cdot e^k, \quad A_k = A \cdot e_k \]
- Jacobian is the square-root of determinant of metric tensor
 \[J = \sqrt{g}, \quad g_{ij} = \partial_i r \cdot \partial_j r, \quad A_k = \sum_i g_{ik} A^k \]
- Differential operators ($\varepsilon_{ijk}^{} = 1: ijk=123,231,312 / -1: 321,213,132$)
 \[\text{div}A = \frac{1}{\sqrt{g}} \sum_k \partial_k \sqrt{g} A^k \quad \text{curl}A = e_i \sum_{j,k} \frac{\varepsilon_{ijk}^{} \sqrt{g}}{g} \partial_j A_k \]
Oscillatory part in 2D coordinate space

- Careful with Fourier in curved coordinates! Assumptions:
 - Orthogonal system (g_{ij} has only diagonal elements)
 - g_{ij} depends only on x^1 and x^2, not on x^3
- Expand covariant A and contravariant J components

\[
A_k(x^1, x^2, x^3) = \sum_{n=-\infty}^{\infty} A_{k,n}(x^1, x^2) e^{inx^3}, \quad (19)
\]
\[
J^k(x^1, x^2, x^3) = \sum_{n=-\infty}^{\infty} J^k_n(x^1, x^2) e^{inx^3}, \quad (20)
\]

- 2D curl in coordinate space

\[
\text{curl}_2 \mathbf{a} := \frac{\partial a_2}{\partial x^1} - \frac{\partial a_1}{\partial x^2} = \sqrt{g} \text{curl}_t \mathbf{a}
\]
Weak form in 2D coordinate space

- Coordinate space volume element: \(d\Omega_2 := dx^1 dx^2 \)
- Coordinate space line element: \(d\Gamma_2 = \sqrt{(dx^1)^2 + (dx^2)^2} \)
- Weak form of Eq. (17) homogenous Neumann problem

\[
\int_{\Omega} \frac{g_{33}}{\sqrt{g}} \nabla \times w \cdot \nabla \times a + \nu \left(\frac{g_{22}}{\sqrt{g}} w_1 a_1 + \frac{g_{11}}{\sqrt{g}} w_2 a_2 \right) d\Omega_2 = \int_{\Omega} w \cdot j \sqrt{g} d\Omega_2
\]
Dimensionality reduction for periodic magnetostatic fields

Example: Cylindrical coordinates
Dimensionality reduction for periodic magnetostatic fields

Example: Cylindrical coordinates

- Coordinates \((R, \varphi, Z)\) symmetry coordinate: angle \(\varphi\) (ordering!)

- Weak form of Eq. (17) homogenous Neumann problem

\[
\int_{\Omega_2} R \nu \text{\text{curl}}_2 a \text{\text{curl}}_2 w + \frac{n^2}{R} \nu (w_R a_R + w_Z a_Z) \, dRdZ = \int_{\Omega_2} R w \cdot j \, dRdZ
\]

- Weighting factor follows automatically from Jacobian \(\sqrt{g}\)

- Magnetic field

\[
B^R = \frac{in}{R} a_R, \quad B^Z = -\frac{in}{R} a_Z, \quad B^\varphi = -\frac{\text{div} b}{in},
\]
Dimensionality reduction for periodic magnetostatic fields

Example: Shielding by cylinder shell with $\mu > 1$
Dimensionality reduction for periodic magnetostatic fields

FreeFEM++ implementation

```c
load "Element_Mixte"; // for 1st order edge elements
real n = 1.0; // mode number

mesh Th = square(50,50,[x+1e-31,y]); // cylinder cross-section

fespace Hrot(Th,RT1Ortho); fespace Hdiv(Th,RT1); // 1st order

Hrot [ax,ay], [wx,wy]; Hdiv [jr,jz];

func real nu(real rp, real zp) { // nu = 1/mu
  if((rp>0.4)&&(rp<0.5)&&(zp>0.2&&(zp<0.8))) return 1.0/50.0;
  return 1.0;
}

solve CurlCurl([ax,ay],[wx,wy],solver=UMFPACK) =
  int2d(Th)(nu(x,y)*(x*(dx(wy)-dy(wx))*(dx(ay)-dy(ax))
    + n^2*1.0/x*(wx*ax+wy*ay)))
  + on(1,ax=0.0,ay=0.0)
  + on(2,3,4,ax=0.0,ay=1.0*x);

plot([ax,ay],wait=true,value=true,ps="a_mu.eps");
```

C.G. Albert, O. Biro, M.F. Heyn, W. Kernbichler, S.V. Kasilov, P. Lainer,
8th FreeFEM++ workshop, Dec 8th 2016
Dimensionality reduction for periodic magnetostatic fields

A field: homogenous mag. field, $\mu = 1$ everywhere
Dimensionality reduction for periodic magnetostatic fields

\(\mathbf{b} \) field: homogenous field, \(\mu = 1 \) everywhere

C.G. Albert, O. Biro, M.F. Heyn, W. Kernbichler, S.V. Kasilov, P. Lainer, 8th FreeFEM++ workshop, Dec 8th 2016
Dimensionality reduction for periodic magnetostatic fields

a field: shielding by cylinder shell with $\mu > 1$
Dimensionality reduction for periodic magnetostatic fields

b field: shielding by cylinder shell with $\mu > 1$
A few technical issues

- Careful with $\frac{1}{R}$ terms near axis (1st order works "well enough")
 - 0th order causes troubles
- Complex numbers "emulated" now
- Find best interface FreeFEM++ ↔ Fortran
Iterations for kinetic plasma equilibria

- Formally, \(\text{curl curl} \) solver yields \(B = \hat{M}J \) with solution operator \(\hat{M} \)
- Monte Carlo kinetic code yields \(J = \hat{K}(B_0 + B) \) (noisy)
- Equilibrium field: fixed point \(B = \hat{M}\hat{K}(B_0 + B) \) or
 \[
 (\hat{M}\hat{K} - \hat{I})B = -\hat{M}\hat{K}B_0
 \]
- Eigenvalues of \(\hat{M}\hat{K} > 1 \): relaxed iterations do not help
- Trick: Arnoldi method, solve unstable part separately
- Challenge: random noise from Monte Carlo method
Dimensionality reduction for periodic magnetostatic fields

ITER-like tokamak (B_r, vacuum) [4]
Dimensionality reduction for periodic magnetostatic fields

ITER-like tokamak (B_r, kinetic equilibrium) [4]
Dimensionality reduction for periodic magnetostatic fields

Conclusion

Take-home messages:

- Magnetostatics written as singular \textbf{curl curl} equation for A
 - 2D eqs. \textit{ungauged} for symmetric, \textit{gauged} for oscillatory

- \textbf{Co-/contravariant} notation useful for easy \textit{generalisation}

- \textbf{FreeFEM++ very} useful for fast and easy \textit{solution}

- \textbf{Outlook}: Apply to eddy currents, fluid dynamics (Stokes), etc.

References: