An adaptive finite element method for boundary value problems in automotive applications

K. Kraft1 S. Larsson1 M. Lidberg2

1Department of Mathematical Sciences
Chalmers University of Technology and Göteborg University

2Department of Applied Mechanics
Chalmers University of Technology

5th European Finite Element Fair
Ceci n’est pas un Renault
Aims

- Optimize control systems in cars.
- In particular, electronic stability control (ESC).
Find states $y(t) \in \mathbb{R}^{d_1}$ and controls $u(t) \in \mathbb{R}^{d_2}$ which fulfill

$$
\min_{} J(y, u) = \int_0^T L(t, y(t), u(t)) \, dt
$$

s.t.
$$
\dot{y}(t) = f(t, y(t), u(t)), \quad I_0 y(0) = y_0, \quad I_T y(T) = y_T.
$$

I_0, I_T are diagonal matrices with zeroes or ones on the diagonals, $\text{rank}(I_0) + \text{rank}(I_T) = d_1$.

Hamiltonian:

$$
H = L(t, y, u) + \lambda^T f(t, y, u)
$$
The optimal y and u fulfill

$$
\dot{y} = \frac{\partial H}{\partial \lambda} = f(y),
$$

$$
\dot{\lambda} = \frac{\partial H}{\partial y} = -\left(\frac{\partial f}{\partial y}\right)^T \lambda,
$$

$$
\frac{\partial H}{\partial u} = 0,
$$

$$
l_0 y(0) = y_0, \quad l_T y(T) = y_T,
$$

$$
(l - l_0) \lambda(0) = \lambda_0, \quad (l - l_T) \lambda(T) = \lambda_T.
$$
Numerical Methods

- Collocation
- Multiple Shooting
- Use Adaptive Finite Element Methods to solve the stiff problems arising from vehicle modelling.

D. Estep et al., *The solution of a launch vehicle trajectory problem by an adaptive finite-element method*, 2001
The algebraic equation can be solved explicitly.

Join states, y, and costates, λ, into one new variable $\mathbf{x} \in \mathbb{R}^d$.

We get a boundary value problem for ODE

$$\dot{\mathbf{x}} = f(\mathbf{x}),$$
$$l_0 \mathbf{x}(0) = x_0, \quad l_T \mathbf{x}(T) = x_T,$$
The algebraic equation can be solved explicitly.
Join states, y, and costates, λ, into one new variable $x \in \mathbb{R}^d$.
We get a boundary value problem for ODE

$$\dot{x} = f(x),$$
$$l_0 x(0) = x_0, \quad l_T x(T) = x_T,$$
The algebraic equation can be solved explicitly.

Join states, \(y \), and costates, \(\lambda \), into one new variable \(x \in \mathbb{R}^d \).

We get a boundary value problem for ODE

\[
\dot{x} = f(x),
\]

\[
l_0 x(0) = x_0, \quad l_T x(T) = x_T,
\]
Weak Formulation

\[V = \{ v \in C^1([0, T]) \} \]

Seek \(x \in V \) such that

\[I_0 x(0) = x_0, \quad I_T x(T) = x_T, \]

\[F(x, v) = \sum_{n=1}^{N} \int_{I_n} (\dot{x} - f(x), v) \, dt = 0, \quad \forall v \in V. \]
FEM problem

Mesh: $0 = t_0 < t_1 < t_2 < \ldots < t_N = T$, $k_n = t_n - t_{n-1}$ and $I_n = (t_{n-1}, t_n)$.

Trial space: $W_k = \{ w|_{I_n} : w \in P^0(I_n) \} \times \mathbb{R}^d \times \mathbb{R}^d$, discontinuous piecewise constant functions.

Test space: $V_k = \{ v|_{I_n} : v \in P^1(I_n), v \in C^0([0, T]) \}$, continuous piecewise linear functions.

Find a function $X \in W_k$ which fulfills

$$I_0 X_0^- = x_0, \quad I_T X_N^+ = x_T,$$

$$F(X, v) = \sum_{n=1}^{N} \int_{I_n} (\dot{X} - f(X), v) \, dt + \sum_{n=0}^{N} ([X]_n, v_n) = 0, \quad \forall v \in V_k.$$
Mesh: $0 = t_0 < t_1 < t_2 < \ldots < t_N = T$, $k_n = t_n - t_{n-1}$ and $l_n = (t_{n-1}, t_n)$.

Trial space: $W_k = \{ w|_{l_n} : w \in P^0(l_n) \} \times \mathbb{R}^d \times \mathbb{R}^d$, discontinuous piecewise constant functions.

Test space: $V_k = \{ v|_{l_n} : v \in P^1(l_n), v \in C^0([0, T]) \}$, continuous piecewise linear functions.

Find a function $X \in W_k$ which fulfills

$$
I_0 X_0^- = x_0, \quad I_T X_N^+ = x_T,
$$

$$
F(X, v) = \sum_{n=1}^{N} \int_{l_n} (\dot{X} - f(X), v) \, dt + \sum_{n=0}^{N} ([X]_n, v_n) = 0, \quad \forall v \in V_k.
$$
FEM problem

- Mesh: $0 = t_0 < t_1 < t_2 < \ldots < t_N = T$, $k_n = t_n - t_{n-1}$ and $l_n = (t_{n-1}, t_n)$.

- Trial space: $W_k = \{ w|_{l_n} : w \in P^0(l_n) \} \times \mathbb{R}^d \times \mathbb{R}^d$, discontinuous piecewise constant functions.

- Test space: $V_k = \{ v|_{l_n} : v \in P^1(l_n), v \in C^0([0, T]) \}$, continuous piecewise linear functions.

Find a function $X \in W_k$ which fulfills

\begin{align*}
 l_0 X_0^- &= x_0, & l_T X_T^+ &= x_T, \\
 F(X, v) &= \sum_{n=1}^{N} \int_{l_n} (\dot{X} - f(X), v) \, dt + \sum_{n=0}^{N} ([X]_n, v_n) = 0, & \forall v \in V_k.
\end{align*}
FEM problem

- Mesh: $0 = t_0 < t_1 < t_2 < \ldots < t_N = T$, $k_n = t_n - t_{n-1}$ and $I_n = (t_{n-1}, t_n)$.
- Trial space: $W_k = \{ w|_{I_n} : w \in P^0(I_n) \} \times \mathbb{R}^d \times \mathbb{R}^d$, discontinuous piecewise constant functions.
- Test space: $V_k = \{ v|_{I_n} : v \in P^1(I_n), v \in C^0([0, T]) \}$, continuous piecewise linear functions.

Find a function $X \in W_k$ which fulfills

$$I_0 X_0^- = x_0, \quad I_T X_N^+ = x_T,$$

$$F(X, v) = \sum_{n=1}^{N} \int_{I_n} (\dot{X} - f(X), v) \, dt + \sum_{n=0}^{N} ([X]_n, v_n) = 0, \quad \forall v \in V_k.$$
Let \(\phi \) be the solution to the dual problem with functional \(G(e) \) as data.

Standard calculations give us

\[
G(e) \leq \sum_{n=1}^{N} R_n S_n,
\]

with

\[
R_n = k_n \begin{cases}
 \| [X_0] \| + \frac{k_1}{k_1+k_2} \| [X_1] \| + k_1 \| f(X_1^-) \|_1, \\
 \frac{k_n}{k_n+k_{n+1}} \| [X_n] \| + \frac{k_n}{k_n+k_{n-1}} \| [X_{n-1}] \| + k_n \| f(X_{n}^-) \|_n, \\
 \frac{k_N}{k_{N-1}+k_N} \| [X_{N-1}] \| + \| [X_N] \| + k_N \| f(X_N^-) \|_N,
\end{cases}
\]

and

\[
S_n = C \int_{l_n} \| \ddot{\phi} \| \, dt.
\]
\[\dot{v}_y(t) = a_{11} v_y(t) + a_{12} r(t) + b_{f1} \delta_f(t) + b_{r1} \delta_r(t), \]
\[\dot{r}(t) = a_{21} v_y(t) + a_{22} r(t) + b_{f2} \delta_f(t) + b_{r2} \delta_r(t), \]
\[\dot{\psi}(t) = r(t), \]
\[\dot{X}(t) = v_x \cos(\psi(t)) - v_y(t) \sin(\psi(t)), \]
\[\dot{Y}(t) = v_x \sin(\psi(t)) + v_y(t) \cos(\psi(t)). \]
A Lane Change Manoeuvre
Energy Optimal

\[v_y(0) = 0, \quad v_y(T) = 0, \]
\[r(0) = 0, \quad r(T) = 0, \]
\[\psi(0) = 0, \quad \psi(T) = 0, \]
\[X(0) = 0, \]
\[Y(0) = 0, \quad Y(T) = 10. \]

\[J(\delta_f, \delta_r) = \int_0^T \frac{1}{2} a \delta_f^2 + \frac{1}{2} b \delta_r^2 \, dt \]
Results
Future Work

- DAE
- Constraints on controls
- Parameter identification from real data