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Introduction

Linear difference equations

@ Stability analysis of the difference equation
N
2 ctab X(t) = ZAj(t)X(t - /\j)a t > 0.
j=1
@ Relative controllability of the difference equation

N
2 contr X(t) = ZAJ‘X(t — /\J') + Bu(t)7 t > 0.
=1
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Linear difference equations

@ Stability analysis of the difference equation
N
2 ctab X(t) = ZAj(t)X(t - /\j)a t > 0.
j=1
@ Relative controllability of the difference equation

N
2 contr X(t) = ZAJ‘X(t — /\J') + Bu(t)7 t > 0.
=1

o Aq,...,An: (rationally independent) positive delays
(Amin = min; /\j. NAmax = max; /\j)-
o x(t) € CY, u(t) e C™.
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Introduction

Linear difference equations

@ Stability analysis of the difference equation
N
Y ctab - X(t) = ZAj(t)X(t - /\j)a t > 0.
j=1
@ Relative controllability of the difference equation

N
2 contr X(t) = ZAJ‘X(t — /\J') + Bu(t)7 t > 0.
=1

@ A1,...,An: (rationally independent) positive delays
(Amin = minj /\J', /\max = max; /\j).
o x(t) € CY, u(t) e C™.
Motivation:
@ Applications to some hyperbolic PDEs.
@ Generalization of previous results.
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Introduction
Motivation: hyperbolic PDEs

Hyperbolic PDEs — difference equations: [Cooke, Krumme, 1968],
[Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel,
2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...
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Motivation: hyperbolic PDEs

Hyperbolic PDEs — difference equations: [Cooke, Krumme, 1968],
[Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel,
2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...

8tui(t7‘£) + 8§ui(t7€) + a;(t,f)u;(t,{) = 07
te R-H ‘g € [07/\1']7 S [[17 N]]?

Zmu Jui(t,Aj), teR, ie[1,N].
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Motivation: hyperbolic PDEs

Hyperbolic PDEs — difference equations: [Cooke, Krumme, 1968],
[Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel,
2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...

8tui(t7‘£) + 8§ui(t7€) + a;(t,f)u;(t,{) = 07
te R-‘r’ ‘g € [07/\1']7 S [[]-7 N]]?

Zmu Jui(t,Aj), teR, ie[1,N].
Method of characterlstlcs for t > Nmax»
ui(t,0) Zm,,(t ui(t /\)_Zm,, e o7 ailt=sA=s)ds (1 A ().
j=1 j=1

Set x(t) = (uj(t,0));cqu,np- Then x satisfies a difference equation.
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Motivation: hyperbolic PDEs

A
Edges: €
Vertices: 'V
A3
A2 An

8§tui(t7 5) = 8§2§ui(t7 5)
ui(t, q) = uj(t, q), VqeV, Vi,je&,
+ conditions on vertices.
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Motivation: hyperbolic PDEs

D’'Alembert decomposition on travelling waves:
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Introduction
Motivation: hyperbolic PDEs

D’'Alembert decomposition on travelling waves:

System of 2/ transport equations.
Can be reduced to a system of difference equations.
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Motivation: previous stability results
(cf. [Cruz, Hale, 1970], [Henry, 1974], [Michiels et al., 2009])

N
yar o o x(t) = Zij(t - Aj), t>0.
j=1

Stability for rationally indepenc]ent A1, ..., Ay characterized by

A) = ma N A,
prs(4) (91,...,9N)exlo,2rr1Np<EJ‘1 ! )
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Introduction

Motivation: previous stability results
(cf. [Cruz, Hale, 1970], [Henry, 1974], [Michiels et al., 2009])

N
yar o o x(t) = Zij(t - Aj), t>0.
j=1
Stability for rationally independent Ay, ..., Ay characterized by

A) = ma N A,
prs(4) (91,...,9N)exlo,2rr1Np<EJ‘1 ! )

Theorem (Hale, 1975; Silkowski, 1976)

The following are equivalent:

o pHs(A) <1,
o YUt js exponentially stable for some A € (0, +o0)V with
rationally independent components;

o Y2t js exponentially stable for every A\ € (0, +oo)N.
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Motivation: previous controllability results

> contr ! X(t) = AjX(t — /\J) + Bu(t), t>0.

M=

Jj=1

e Stabilization by linear feedbacks u(t) = Zszl Kix(t — N\;j):
[Hale, Verduyn Lunel, 2002 and 2003].
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Motivation: previous controllability results

N
Yeontr i x(t) = Zij(t —NAj)+ Bu(t), t>0.
j=1
e Stabilization by linear feedbacks u(t) = Zszl Kix(t — N\;j):
[Hale, Verduyn Lunel, 2002 and 2003].

@ Spectral and approximate controllability in
LP([~Amax, 0], C9): [Salamon, 1984].
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Motivation: previous controllability results

N
Yeontr i x(t) = Zij(t —NAj)+ Bu(t), t>0.
j=1
e Stabilization by linear feedbacks u(t) = Zszl Kix(t — N\;j):
[Hale, Verduyn Lunel, 2002 and 2003].

@ Spectral and approximate controllability in
LP([~Amax, 0], C9): [Salamon, 1984].

@ Relative controllability in time T > 0: for any initial condition
X0 1 [~Amax, 0] = C9 and final target state x; € CY, find
u: [0, T] — C™ such that the solution x with initial condition
xo and control u satisfies x(T) = x3.
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Motivation: previous controllability results

N
Yeontr i x(t) = Zij(t —NAj)+ Bu(t), t>0.
j=1
e Stabilization by linear feedbacks u(t) = Zszl Kix(t — N\;j):
[Hale, Verduyn Lunel, 2002 and 2003].

@ Spectral and approximate controllability in
LP([~Amax, 0], C9): [Salamon, 1984].

@ Relative controllability in time T > 0: for any initial condition
X0 1 [~Amax, 0] = C9 and final target state x; € CY, find
u: [0, T] — C™ such that the solution x with initial condition
xo and control u satisfies x(T) = x3.

Case of two integer delays: [Diblik, Khusainov, Razi¢kova,
2008], [Pospisil, Diblik, Fe¢kan, 2015].
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Stability analysis and applications

Stability analysis

N
Yaab: x(t) = ZAj(t)x(t —Aj), t>0.
j=1

® X9 = LP([~Amax; 0],CY), p € [1, +00].
@ Exponential stability of L¢ap uniformly with respect to a given
set A of functions A: R — My(C)V.
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Stability analysis and applications

Stability analysis

N
Yaab: x(t) = ZAj(t)x(t —Aj), t>0.
=1

® X9 = LP([~Amax; 0],CY), p € [1, +00].
@ Exponential stability of L¢ap uniformly with respect to a given
set A of functions A: R — My(C)V.

e In this talk, to simplify, A = L>°(IR,B) for some bounded
B C My(C)V (more general A: see [Chitour, M., Sigalotti,
2015)).

o RI: set of all A = (Aq,...,Ay) € (0,+00)"N with rationally
independent components.
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Stability analysis

1
. In| AV1+'”+A"k—1 An
Let u(B) = limsup  sup |3 cv. [Ty By ,
[n|; =400 BEDB
nenn  for reLn(N)

where Lo(A) = {A-k |k e NV, A-k < A-n} and V, is the set of
all permutations of (1,...,1,2,...,2,...,N,... N).
—_——— —— —_———

ni times  np times ny times
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Stability analysis

1
A-n

— Inl; vt tAy
Let u(*B) = limsup  sup ‘ZVGV,. [T By,

[n|; =400 BEDB
nenn  for reLn(N)

where Lo(A) = {A-k |k e NV, A-k < A-n} and V, is the set of

all permutations of (1,...,1,2,...,2,...,N,... N).
—— —— ——
ni times  np times ny times

Theorem (Chitour, M., Sigalotti)
The following statements are equivalent:
°o u(B) <1,

@ X .ap is uniformly exponentially stable in Xf, for some
p € [1,4+00] and A\ € RI;

@ 2 .o IS uniformly exponentially stable in Xg for every
p € [1,+o0] and A € (0, 4o00)N.
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Stability analysis

1
A-n

— Inl; vt tAy
Let u(*B) = limsup  sup ‘ZVGV,. [T By,

[n|; =400 BEDB
nenn  for reLn(N)

where Lo(A) = {A-k |k e NV, A-k < A-n} and V, is the set of

all permutations of (1,...,1,2,...,2,...,N,... N).
—— —— ——
ni times  np times ny times

Theorem (Chitour, M., Sigalotti)
The following statements are equivalent:
°o u(B) <1,

@ X .ap is uniformly exponentially stable in Xf, for some
p € [1,+00] and A € RI;

@ 2 .o IS uniformly exponentially stable in Xg for every
p € [1,+o0] and A € (0, 4o00)N.
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Stability analysis and applications

Technique of the proof

To simplify, consider X315 : x(t) = Zszl Aix(t —A;j).

Controllability and stability of difference equations and applications Guilherme Mazanti



Stability analysis and applications

Stability analysis and applications
Technique of the proof

To simplify, consider X315 : x(t) = Zszl Aix(t —A;j).

Lemma (Explicit solution)

Let xo : [~Amax,0) — C9. The solution x : [—Amax, +00) — C¢ of Taut,
is, for t > 0,

x(t)= > > Za_gAxo(t—A-n),

nenNV J€[1,N]
t<AN<t+Amax A-n—A; <t

where the matrices =,, are defined recursively for n € NV by

N
== AZn_e,  Zo=ldg.
k=1

n;fZl
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Stability analysis and applications
Technique of the proof

To simplify, consider X315 : x(t) = Zj’vzl Aix(t —A;j).

Lemma (Explicit solution)

Let xo : [~Amax,0) — C9. The solution x : [—Amax, +00) — C¢ of Taut,
is, for t > 0,

x(t) = Z Z Zn_gAixo(t — A -n),

nenNV J€[1,N]
t<AN<t+Amax A-n—A; <t

where the matrices =,, are defined recursively for n € NV by

N
== AZn_e,  Zo=ldg.
k=1

n;fZl

@ Can be easily adapted to time-dependent matrices.
@ Exponential stability can be analyzed through =.
@ Rational independence: all A - n are different.
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Applications

Using the previous transformations of hyperbolic PDEs into

difference equations: under arbitrary switching, exponential

stability for some A € Rl and p € [1,4+00] <= exponential
stability for all A € (0, +00)V and p € [1, +o0].

Guilherme Mazanti
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Stability analysis and applications

Applications

Using the previous transformations of hyperbolic PDEs into
difference equations: under arbitrary switching, exponential
stability for some A € Rl and p € [1,4+00] <= exponential
stability for all A € (0, +00)V and p € [1, +o0].

Example: wave propagation on networks.

Guilherme Mazanti
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Applications

Using the previous transformations of hyperbolic PDEs into

difference equations: under arbitrary switching, exponential

stability for some A € Rl and p € [1,4+00] <= exponential
stability for all A € (0, +00)V and p € [1, +o0].

Example: wave propagation on networks.

A Edges: &
1 Vertices: V
A3
/\2 AN

astui(tvf) = aggui(tag)'
ui(t, q) = u;(t, q),
YqeV, Vi,je &,
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Stability analysis and applications

Applications

Using the previous transformations of hyperbolic PDEs into

difference equations: under arbitrary switching, exponential

stability for some A € Rl and p € [1,4+00] <= exponential
stability for all A € (0, +00)V and p € [1, +o0].

Example: wave propagation on networks.

A Edges: &
1 Vertices: V
Interior vertices: Vit
A3
/\2 AN
2 2
attui(tvf) :a&;—“ui(tag)v Ziegq anu,-(t’ q) =0, quvint,

ui(t, q) = u;(t, q),
YqeV, Vi,je &,
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Applications

Using the previous transformations of hyperbolic PDEs into

difference equations: under arbitrary switching, exponential

stability for some A € Rl and p € [1,4+00] <= exponential
stability for all A € (0, +00)V and p € [1, +o0].

Example: wave propagation on networks.

A Edges: &
1 Vertices: V
A Interior vertices: Vit
3 Damped vertices: Vq4
s An
2 2
O2ui(t,€) = OZcui(t, €), e, Onii(t,q) =0, Vg € Vine,
ui(t,9) = u(t, q), Drui(t, q) = —ng(D)9uui(t.q), Vq € Va,

YqeV, Vi,je &,
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Applications

Using the previous transformations of hyperbolic PDEs into

difference equations: under arbitrary switching, exponential

stability for some A € Rl and p € [1,4+00] <= exponential
stability for all A € (0, +00)V and p € [1, +o0].

Example: wave propagation on networks.

Edges: &
M Vertices: V
V=V UVg UV,
A Interior vertices: Vit
3 Damped vertices: Vq4
s An Undamped vertices: V,
3@“:‘(1‘75) :5§5Ui(t,f)v Ziegq Onui(t,q) =0, Vg € Vint,
ui(t, q) = u;(t, q), Oeui(t, q) = —ng(t)0nui(t, q), Vg € Vyq,

VaeV, Vijea (g =0, ¥q € V.
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Applications

We assume (1g)qev, € L(R,D) for some bounded ® C de.

The previous system is uniformly exponentially stable in WO1 P LP
for some p if and only if the network is a tree, V,, contains only
one point, and ® C (0, +o0)?.
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Applications

We assume (1g)qev, € L(R,D) for some bounded ® C Rﬁd.

The previous system is uniformly exponentially stable in WO1 P LP
for some p if and only if the network is a tree, V,, contains only

one point, and ® C (0, +o0)?.

<=: classical methods based on an energy estimate and an
observability inequality (see, e.g., [Dager, Zuazua, 2006]).

Guilherme Mazanti
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Applications

== (only for the case A € RI)

@ Exponential stability for A € Rl <= exponential stability for
every L.
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Stability analysis and applications

Applications

== (only for the case A € RI)

@ Exponential stability for A € Rl <= exponential stability for
every L.

e Take L=(1,1,...,1).
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Applications

== (only for the case A € RI)

@ Exponential stability for A € Rl <= exponential stability for
every L.

e Take L=(1,1,...,1).

o If the graph is not a tree, or if V,, contains two or more
points, or if © has a point with one coordinate zero:

Two vertices in V,,.
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Applications

== (only for the case A € RI)
@ Exponential stability for A € Rl <= exponential stability for
every L.
e Take L=(1,1,...,1).
o If the graph is not a tree, or if V,, contains two or more
points, or if © has a point with one coordinate zero:

Two vertices in V,,.

j (1,42 - - - Jn): path
n
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Stability analysis and applications

Applications

== (only for the case A € RI)
@ Exponential stability for A € Rl <= exponential stability for
every L.
e Take L=(1,1,...,1).
o If the graph is not a tree, or if V,, contains two or more
points, or if © has a point with one coordinate zero:
Two vertices in V,,.

(1, J25 - --+Jn): path
uj(t,x) = £sin(2rt) sin(2mwx):
periodic solution

Jn
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Stability analysis and applications

Applications

== (only for the case A € RI)

@ Exponential stability for A € Rl <= exponential stability for
every L.

e Take L=(1,1,...,1).
o If the graph is not a tree, or if V,, contains two or more
points, or if © has a point with one coordinate zero:

Two vertices in V,,.
(j17.j21 s 7.jn): path
uj(t,x) = £sin(2rt) sin(2mwx):
periodic solution
Not exponentially stable for L,

j; then not exponentially stable for
A either.

Jn
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Relative controllability

Definition

N
2 contr X(t) = ZAjX(t — /\J) + Bu(t), t>0.
=1

For every initial condition xg : [~Amax,0) — C¢ and control
u: [0, T] = C™, Lcontr admits a unique solution
X : [=Amax, T] = C¢ (no regularity assumptions!).
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Relative controllability

Definition

N
2 contr X(t) = ZAjX(t — /\J) + Bu(t), t>0.
j=1

For every initial condition xg : [~Amax,0) — C¢ and control
u: [0, T] = C™, Lcontr admits a unique solution
X : [=Amax, T] = C¢ (no regularity assumptions!).

Definition

We say that X contr is relatively controllable in time T > 0 if, for
every Xo : [~Amax,0) — C9 and x; € C9, there exists

u: [0, T] — C™ such that the unique solution x of X ontr with
initial condition xp and control u satisfies x(T) = x;.
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.

Relative controllability

Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.
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Relative controllability
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Relative controllability

Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let u: [0, T] = C™. The solution x : [~Amax, T] = C% of T contr
with zero initial condition and control u is, for t € [0, T],
x(t) = > ZaBu(t—A-n),

neNV
A-n<t

where the matrices =, are defined as before.
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Relative controllability
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Relative controllability

Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let u: [0, T] = C™. The solution x : [~Amax, T] = C% of T contr
with zero initial condition and control u is, for t € [0, T],
x(t) = > ZaBu(t—A-n),

neNV
A-n<t

where the matrices =, are defined as before.

@ By linearity, solution with initial condition xg and control u is
the sum of this formula with the previous one.

@ Rational independence: all A - n are different.
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Relative controllability criterion

Theorem (M.)

The following statements are equivalent:

@ X ontr is relatively controllable in time T;

° Span{Ean|nENN,/\-n§T,WE(C'"}:(Cd;
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Relative controllability

Relative controllability criterion

Theorem (M.)

The following statements are equivalent:

@ X ontr is relatively controllable in time T;
° Span{Ean|nENN,/\-n§T,WE(C'"}:(Cd;

@ Jeg > 0 such that, for every ¢ € (0,£0), X0 : [~Amax,0) — C?, and
x; ¢ [0,e] — €9, there exists u : [0, T +¢] — C™ such that the
solution x of X ontr With initial condition xo and control u satisfies
x(T + ')‘[0,5] =x1;
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Relative controllability

Relative controllability criterion

Theorem (M.)

The following statements are equivalent:

@ X ontr is relatively controllable in time T;
° Span{Ean|nENN,/\-n§T,WE(C'"}:(Cd;

@ Jeg > 0 such that, for every ¢ € (0,£0), X0 : [~Amax,0) — C?, and
x; ¢ [0,e] — €9, there exists u : [0, T +¢] — C™ such that the
solution x of X ontr With initial condition xo and control u satisfies
x(T + ')‘[0,5] =x1;

@ Jdeg > 0 such that, for every p € [1,+o0], € € (0,&0),
x0 € LP((—Amax,0),C?), and x; € LP((0,¢),C?), there exists
u € LP((0, T +¢€),C™) such that the solution x of ¥contr with initial
condition xo and control u satisfies x € LP((—Amax, T +¢),C?) and
x(T + -)|[07€] = x1.
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Relative controllability

Relative controllability criterion

o Can also be generalized to other spaces (e.g., €¥).
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Relative controllability

Relative controllability criterion

o Can also be generalized to other spaces (e.g., €¥).

e Generalizes Kalman criterion: for x(t) = Ax(t — 1) 4+ Bu(t),
one has

Span{EanlneNN,/\'ng T,WEC’”}
:Ran(B AB A’B .. ALTJB).

Theorem (M.)

o If Lcontr is relatively controllable in some time T > 0, then it
is also relatively controllable in time T = (d — 1)Amax.
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Relative controllability

Relative controllability criterion

o Can also be generalized to other spaces (e.g., €¥).

e Generalizes Kalman criterion: for x(t) = Ax(t — 1) 4+ Bu(t),
one has

Span{EanlneNN,/\'ng T,WEC’”}
:Ran(B AB A’B .. ALTJB).

Theorem (M.)

o If Lcontr is relatively controllable in some time T > 0, then it
is also relatively controllable in time T = (d — 1)Amax.

o X contr Is relatively controllable in some time T > 0 if and only
if

Span {Z.Bej [n€ NV, |n; <d -1, j€ [1,m]} =C.
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Relative controllability

Relative controllability criterion

@ The previous results can be modified to treat also the
rationally dependent case.

@ Ongoing work: use the explicit formula to study exact and
approximate controllability in L.

@ Future work: applications to PDEs.
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Relative controllability
ooe

Relative controllability

Relative controllability criterion

@ The previous results can be modified to treat also the
rationally dependent case.

@ Ongoing work: use the explicit formula to study exact and
approximate controllability in L2.

@ Future work: applications to PDEs.
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