Controllability and stability of difference equations and applications

Guilherme Mazanti

Nonlinear Partial Differential Equations and Applications A conference in the honor of Jean-Michel Coron for his 60th birthday Paris – June 20th, 2016

CMAP, École Polytechnique Team GECO, Inria Saclay France

Outline

- Introduction
 - Linear difference equations
 - Motivation: hyperbolic PDEs
 - Motivation: previous results
- Stability analysis and applications
 - Stability analysis
 - Technique of the proof
 - Applications
- Relative controllability
 - Definition
 - Explicit formula
 - Relative controllability criterion

Introduction Linear difference equations

Stability analysis of the difference equation

$$\Sigma_{\mathsf{stab}}: \quad x(t) = \sum_{j=1}^{N} A_j(t) x(t - \Lambda_j), \quad t \geq 0.$$

Relative controllability of the difference equation

$$\Sigma_{\mathsf{contr}}: \quad x(t) = \sum_{j=1}^N A_j x(t - \Lambda_j) + Bu(t), \quad t \geq 0.$$

Linear difference equations

Stability analysis of the difference equation

$$\Sigma_{\mathsf{stab}}: \quad x(t) = \sum_{j=1}^{N} A_j(t) x(t-\Lambda_j), \quad t \geq 0.$$

Relative controllability of the difference equation

$$\Sigma_{\text{contr}}: \quad x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j) + Bu(t), \quad t \geq 0.$$

- $\Lambda_1, \ldots, \Lambda_N$: (rationally independent) positive delays $(\Lambda_{\min} = \min_j \Lambda_j, \Lambda_{\max} = \max_j \Lambda_j)$.
- $x(t) \in \mathbb{C}^d$, $u(t) \in \mathbb{C}^m$.

Linear difference equations

Stability analysis of the difference equation

$$\Sigma_{\mathsf{stab}}: \quad x(t) = \sum_{j=1}^{N} A_j(t) x(t - \Lambda_j), \quad t \geq 0.$$

Relative controllability of the difference equation

$$\Sigma_{\text{contr}}: \quad x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j) + Bu(t), \quad t \geq 0.$$

- $\Lambda_1, \ldots, \Lambda_N$: (rationally independent) positive delays $(\Lambda_{\min} = \min_j \Lambda_j, \Lambda_{\max} = \max_j \Lambda_j)$.
- $x(t) \in \mathbb{C}^d$, $u(t) \in \mathbb{C}^m$.

Motivation:

- Applications to some hyperbolic PDEs.
- Generalization of previous results.

Hyperbolic PDEs \rightarrow difference equations: [Cooke, Krumme, 1968], [Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel, 2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...

Hyperbolic PDEs \rightarrow difference equations: [Cooke, Krumme, 1968], [Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel, 2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...

$$\begin{cases} \partial_t u_i(t,\xi) + \partial_\xi u_i(t,\xi) + \alpha_i(t,\xi)u_i(t,\xi) = 0, \\ t \in \mathbb{R}_+, \ \xi \in [0,\Lambda_i], \ i \in \llbracket 1,N \rrbracket, \\ u_i(t,0) = \sum_{j=1}^N m_{ij}(t)u_j(t,\Lambda_j), \quad t \in \mathbb{R}_+, \ i \in \llbracket 1,N \rrbracket. \end{cases}$$

Hyperbolic PDEs → difference equations: [Cooke, Krumme, 1968], [Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel, 2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...

$$\begin{cases} \partial_t u_i(t,\xi) + \partial_\xi u_i(t,\xi) + \alpha_i(t,\xi) u_i(t,\xi) = 0, \\ t \in \mathbb{R}_+, \ \xi \in [0,\Lambda_i], \ i \in \llbracket 1,N \rrbracket, \\ u_i(t,0) = \sum_{j=1}^N m_{ij}(t) u_j(t,\Lambda_j), \quad t \in \mathbb{R}_+, \ i \in \llbracket 1,N \rrbracket. \end{cases} \\ \text{Method of characteristics: for } t \geq \Lambda_{\max}, \\ u_i(t,0) = \sum_{j=1}^N m_{ij}(t) u_j(t,\Lambda_j) = \sum_{j=1}^N m_{ij}(t) e^{-\int_0^{\Lambda_j} \alpha_j(t-s,\Lambda_j-s)ds} u_j(t-\Lambda_j,0). \\ \text{Set } x(t) = (u_i(t,0))_{i \in \llbracket 1,N \rrbracket}. \text{ Then } x \text{ satisfies a difference equation.} \end{cases}$$

$$u_{i}(t,0) = \sum_{j=1}^{N} m_{ij}(t)u_{j}(t,\Lambda_{j}) = \sum_{j=1}^{N} m_{ij}(t)e^{-\int_{0}^{\Lambda_{j}} \alpha_{j}(t-s,\Lambda_{j}-s)ds}u_{j}(t-\Lambda_{j},0).$$

Motivation: hyperbolic PDEs

Motivation: hyperbolic PDEs

Edges: \mathcal{E} Vertices: \mathcal{V}

$$\partial_{tt}^{2} u_{i}(t,\xi) = \partial_{\xi\xi}^{2} u_{i}(t,\xi)$$

$$u_{i}(t,q) = u_{j}(t,q), \quad \forall q \in \mathcal{V}, \ \forall i,j \in \mathcal{E}_{q}$$

+ conditions on vertices.

Motivation: hyperbolic PDEs

D'Alembert decomposition on travelling waves:

D'Alembert decomposition on travelling waves:

System of 2N transport equations. Can be reduced to a system of difference equations.

Motivation: previous stability results (cf. [Cruz, Hale, 1970], [Henry, 1974], [Michiels et al., 2009])

$$\Sigma_{ extstyle ext{stab}}^{ ext{aut}}: \quad x(t) = \sum_{j=1}^N A_j x(t-\Lambda_j), \quad t \geq 0.$$

Stability for rationally independent $\Lambda_1, \dots, \Lambda_N$ characterized by

$$\rho_{\mathsf{HS}}(A) = \max_{(\theta_1, \dots, \theta_N) \in [0, 2\pi]^N} \rho\left(\sum_{j=1}^N A_j e^{i\theta_j}\right).$$

Motivation: previous stability results (cf. [Cruz, Hale, 1970], [Henry, 1974], [Michiels et al., 2009])

$$\Sigma_{\mathsf{stab}}^{\mathsf{aut}}: \quad x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j), \quad t \geq 0.$$

Stability for rationally independent $\Lambda_1, \ldots, \Lambda_N$ characterized by $\rho_{\mathsf{HS}}(A) = \max_{(\theta_1, \ldots, \theta_N) \in [0, 2\pi]^N} \rho\left(\sum_{j=1}^N A_j e^{i\theta_j}\right)$.

Theorem (Hale, 1975; Silkowski, 1976)

The following are equivalent:

- $\rho_{\mathsf{HS}}(A) < 1$;
- $\Sigma_{\text{stab}}^{\text{aut}}$ is exponentially stable for some $\Lambda \in (0, +\infty)^N$ with rationally independent components;
- $\Sigma_{\text{stab}}^{\text{aut}}$ is exponentially stable for every $\Lambda \in (0, +\infty)^N$.

Motivation: previous controllability results

$$\Sigma_{\mathsf{contr}}: \quad x(t) = \sum_{j=1}^N A_j x(t-\Lambda_j) + Bu(t), \quad t \geq 0.$$

• Stabilization by linear feedbacks $u(t) = \sum_{j=1}^{N} K_j x(t - \Lambda_j)$: [Hale, Verduyn Lunel, 2002 and 2003].

Motivation: previous controllability results

$$\Sigma_{\text{contr}}: \quad x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j) + Bu(t), \quad t \geq 0.$$

- Stabilization by linear feedbacks $u(t) = \sum_{j=1}^{N} K_j x(t \Lambda_j)$: [Hale, Verduyn Lunel, 2002 and 2003].
- Spectral and approximate controllability in $L^p([-\Lambda_{\max}, 0], \mathbb{C}^d)$: [Salamon, 1984].

Motivation: previous controllability results

$$\Sigma_{\text{contr}}: \quad x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j) + Bu(t), \quad t \geq 0.$$

- Stabilization by linear feedbacks $u(t) = \sum_{i=1}^{N} K_i x(t \Lambda_i)$: [Hale, Verduyn Lunel, 2002 and 2003].
- Spectral and approximate controllability in $L^p([-\Lambda_{\max}, 0], \mathbb{C}^d)$: [Salamon, 1984].
- Relative controllability in time T > 0: for any initial condition $x_0: [-\Lambda_{\max}, 0] \to \mathbb{C}^d$ and final target state $x_1 \in \mathbb{C}^d$, find $u:[0,T]\to\mathbb{C}^m$ such that the solution x with initial condition x_0 and control u satisfies $x(T) = x_1$.

Motivation: previous controllability results

$$\Sigma_{\text{contr}}: \quad x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j) + Bu(t), \quad t \geq 0.$$

- Stabilization by linear feedbacks $u(t) = \sum_{j=1}^{N} K_j x(t \Lambda_j)$: [Hale, Verduyn Lunel, 2002 and 2003].
- Spectral and approximate controllability in $L^p([-\Lambda_{\max}, 0], \mathbb{C}^d)$: [Salamon, 1984].
- Relative controllability in time T>0: for any initial condition $x_0: [-\Lambda_{\max}, 0] \to \mathbb{C}^d$ and final target state $x_1 \in \mathbb{C}^d$, find $u: [0, T] \to \mathbb{C}^m$ such that the solution x with initial condition x_0 and control u satisfies $x(T) = x_1$. Case of two *integer* delays: [Diblík, Khusainov, Růžičková, 2008], [Pospíšil, Diblík, Fečkan, 2015].

$$\Sigma_{\mathsf{stab}}: \quad x(t) = \sum_{j=1}^N A_j(t) x(t-\Lambda_j), \quad t \geq 0.$$

- $X_p^{\delta} = L^p([-\Lambda_{\mathsf{max}}, 0], \mathbb{C}^d), \ p \in [1, +\infty].$
- Exponential stability of Σ_{stab} uniformly with respect to a given set \mathcal{A} of functions $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$.

Stability analysis and applications Stability analysis

$$\Sigma_{\mathsf{stab}}: \quad x(t) = \sum_{j=1}^{N} A_j(t) x(t - \Lambda_j), \quad t \geq 0.$$

- $X_p^{\delta} = L^p([-\Lambda_{\mathsf{max}}, 0], \mathbb{C}^d), \ p \in [1, +\infty].$
- Exponential stability of Σ_{stab} uniformly with respect to a given set \mathcal{A} of functions $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$.
- In this talk, to simplify, $\mathcal{A} = L^{\infty}(\mathbb{R}, \mathfrak{B})$ for some bounded $\mathfrak{B} \subset \mathcal{M}_d(\mathbb{C})^N$ (more general \mathcal{A} : see [Chitour, M., Sigalotti, 2015]).
- RI: set of all $\Lambda = (\Lambda_1, \dots, \Lambda_N) \in (0, +\infty)^N$ with rationally independent components.

Stability analysis and applications Stability analysis

Let
$$\mu(\mathfrak{B}) = \limsup_{\substack{|\mathbf{n}|_1 \to +\infty \\ \mathbf{n} \in \mathbb{N}^N}} \sup_{\substack{B^r \in \mathfrak{B} \\ \text{for } r \in \mathcal{L}_\mathbf{n}(\Lambda)}} \left| \sum_{v \in V_\mathbf{n}} \prod_{k=1}^{|\mathbf{n}|_1} B_{v_k}^{\Lambda_{v_1} + \ldots + \Lambda_{v_{k-1}}} \right|^{\frac{1}{\Lambda \cdot \mathbf{n}}},$$
 where $\mathcal{L}_\mathbf{n}(\Lambda) = \{\Lambda \cdot \mathbf{k} \mid \mathbf{k} \in \mathbb{N}^N, \ \Lambda \cdot \mathbf{k} < \Lambda \cdot \mathbf{n}\} \text{ and } V_\mathbf{n} \text{ is the set of all permutations of } \underbrace{(1, \ldots, 1, 2, \ldots, 2, \ldots, N, \ldots, N)}_{n_1 \text{ times}}.$

Let
$$\mu(\mathfrak{B}) = \limsup_{\substack{|\mathbf{n}|_1 \to +\infty \\ \mathbf{n} \in \mathbb{N}^N}} \sup_{\substack{B' \in \mathfrak{B} \\ \text{for } r \in \mathcal{L}_{\mathbf{n}}(\Lambda)}} \left| \sum_{v \in V_{\mathbf{n}}} \prod_{k=1}^{|\mathbf{n}|_1} B_{v_k}^{\Lambda_{v_1} + \ldots + \Lambda_{v_{k-1}}} \right|^{\frac{1}{\Lambda \cdot \mathbf{n}}},$$
 where $\mathcal{L}_{\mathbf{n}}(\Lambda) = \{\Lambda \cdot \mathbf{k} \mid \mathbf{k} \in \mathbb{N}^N, \ \Lambda \cdot \mathbf{k} < \Lambda \cdot \mathbf{n}\} \text{ and } V_{\mathbf{n}} \text{ is the set of all permutations of } \underbrace{(1, \ldots, 1, 2, \ldots, 2, \ldots, N, \ldots, N)}_{n_1 \text{ times}}.$

Theorem (Chitour, M., Sigalotti)

The following statements are equivalent:

- $\mu(\mathfrak{B}) < 1$;
- Σ_{stab} is uniformly exponentially stable in X_p^δ for some $p \in [1, +\infty]$ and $\Lambda \in \mathsf{RI}$;
- Σ_{stab} is uniformly exponentially stable in X_p^{δ} for every $p \in [1, +\infty]$ and $\Lambda \in (0, +\infty)^N$.

Stability analysis and applications Stability analysis

Let
$$\mu(\mathfrak{B}) = \limsup_{\substack{|\mathbf{n}|_1 \to +\infty \\ \mathbf{n} \in \mathbb{N}^N}} \sup_{\substack{B' \in \mathfrak{B} \\ \text{for } r \in \mathcal{L}_{\mathbf{n}}(\Lambda)}} \left| \sum_{v \in V_{\mathbf{n}}} \prod_{k=1}^{|\mathbf{n}|_1} B_{v_k}^{\Lambda_{v_1} + \ldots + \Lambda_{v_{k-1}}} \right|^{\frac{1}{\Lambda \cdot \mathbf{n}}},$$
 where $\mathcal{L}_{\mathbf{n}}(\Lambda) = \{\Lambda \cdot \mathbf{k} \mid \mathbf{k} \in \mathbb{N}^N, \ \Lambda \cdot \mathbf{k} < \Lambda \cdot \mathbf{n}\} \text{ and } V_{\mathbf{n}} \text{ is the set of all permutations of } \underbrace{(1, \ldots, 1, 2, \ldots, 2, \ldots, N, \ldots, N)}_{n_1 \text{ times}}.$

Theorem (Chitour, M., Sigalotti)

The following statements are equivalent:

- $\mu(\mathfrak{B}) < 1$;
- Σ_{stab} is uniformly exponentially stable in X_p^{δ} for some $p \in [1, +\infty]$ and $\Lambda \in \mathbb{R}$;
- Σ_{stab} is uniformly exponentially stable in X_p^{δ} for every $p \in [1, +\infty]$ and $\Lambda \in (0, +\infty)^N$.

Stability analysis and applications Technique of the proof

To simplify, consider
$$\sum_{\text{stab}}^{\text{aut}} : x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j)$$
.

Stability analysis and applications Technique of the proof

To simplify, consider $\Sigma_{\mathrm{stab}}^{\mathrm{aut}}$: $x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j)$.

Lemma (Explicit solution)

Let
$$x_0: [-\Lambda_{\mathsf{max}}, 0) \to \mathbb{C}^d$$
. The solution $x: [-\Lambda_{\mathsf{max}}, +\infty) \to \mathbb{C}^d$ of $\Sigma^{\mathsf{aut}}_{\mathsf{stab}}$ is, for $t \geq 0$,

$$x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \le t + \Lambda_{\max}}} \sum_{\substack{j \in [1, N] \\ \Lambda \cdot \mathbf{n} - \Lambda_j \le t}} \Xi_{\mathbf{n} - e_j} A_j x_0 (t - \Lambda \cdot \mathbf{n}),$$

where the matrices $\Xi_{\mathbf{n}}$ are defined recursively for $\mathbf{n} \in \mathbb{N}^N$ by

$$\Xi_{\mathbf{n}} = \sum_{\substack{k=1\\n_k > 1}}^{N} A_k \Xi_{\mathbf{n} - e_k}, \qquad \Xi_0 = \operatorname{Id}_d.$$

Stability analysis and applications Technique of the proof

To simplify, consider $\Sigma_{\mathrm{stab}}^{\mathrm{aut}}$: $x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j)$.

Lemma (Explicit solution)

Let $x_0: [-\Lambda_{\mathsf{max}}, 0) \to \mathbb{C}^d$. The solution $x: [-\Lambda_{\mathsf{max}}, +\infty) \to \mathbb{C}^d$ of $\Sigma^{\mathsf{aut}}_{\mathsf{stab}}$ is, for t > 0,

$$x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \le t + \Lambda_{\max}}} \sum_{\substack{j \in [1, N] \\ \Lambda \cdot \mathbf{n} - \Lambda_j \le t}} \Xi_{\mathbf{n} - \mathbf{e}_j} A_j x_0 (t - \Lambda \cdot \mathbf{n}),$$

where the matrices $\Xi_{\mathbf{n}}$ are defined recursively for $\mathbf{n} \in \mathbb{N}^N$ by

$$\Xi_{\mathbf{n}} = \sum_{\substack{k=1\\n_k > 1}}^{N} A_k \Xi_{\mathbf{n} - \mathbf{e}_k}, \qquad \Xi_0 = \operatorname{Id}_d.$$

- Can be easily adapted to time-dependent matrices.
- Exponential stability can be analyzed through Ξ.
- Rational independence: all $\Lambda \cdot \mathbf{n}$ are different.

Using the previous transformations of hyperbolic PDEs into difference equations: under arbitrary switching, exponential stability for some $\Lambda \in RI$ and $p \in [1, +\infty] \iff$ exponential stability for all $\Lambda \in (0, +\infty)^N$ and $p \in [1, +\infty]$.

Using the previous transformations of hyperbolic PDEs into difference equations: under arbitrary switching, exponential stability for some $\Lambda \in RI$ and $p \in [1, +\infty] \iff$ exponential stability for all $\Lambda \in (0, +\infty)^N$ and $p \in [1, +\infty]$.

Example: wave propagation on networks.

Using the previous transformations of hyperbolic PDEs into difference equations: under arbitrary switching, exponential stability for some $\Lambda \in RI$ and $p \in [1, +\infty] \iff$ exponential stability for all $\Lambda \in (0, +\infty)^N$ and $p \in [1, +\infty]$.

Example: wave propagation on networks.

Edges: \mathcal{E} Vertices: \mathcal{V}

Using the previous transformations of hyperbolic PDEs into difference equations: under arbitrary switching, exponential stability for some $\Lambda \in RI$ and $p \in [1, +\infty] \iff$ exponential stability for all $\Lambda \in (0, +\infty)^N$ and $p \in [1, +\infty]$.

Example: wave propagation on networks.

Edges: \mathcal{E} Vertices: \mathcal{V}

Interior vertices: $\mathcal{V}_{\mathsf{int}}$

$$\partial_{tt}^{2} u_{i}(t,\xi) = \partial_{\xi\xi}^{2} u_{i}(t,\xi),
 u_{i}(t,q) = u_{j}(t,q),
 \forall q \in \mathcal{V}, \forall i, j \in \mathcal{E}_{q},$$

$$\sum_{i\in\mathcal{E}_n}\partial_n u_i(t,q)=0,$$

$$\forall q \in \mathcal{V}_{\mathsf{int}}$$
,

Using the previous transformations of hyperbolic PDEs into difference equations: under arbitrary switching, exponential stability for some $\Lambda \in RI$ and $p \in [1, +\infty] \iff$ exponential stability for all $\Lambda \in (0, +\infty)^N$ and $p \in [1, +\infty]$.

Example: wave propagation on networks.

Edges: \mathcal{E} Vertices: \mathcal{V}

Interior vertices: \mathcal{V}_{int} Damped vertices: \mathcal{V}_{d}

$$\begin{aligned}
\partial_{tt}^{2} u_{i}(t,\xi) &= \partial_{\xi\xi}^{2} u_{i}(t,\xi), \\
u_{i}(t,q) &= u_{j}(t,q), \\
\forall q \in \mathcal{V}, \ \forall i,j \in \mathcal{E}_{a},
\end{aligned}$$

$$\begin{split} \sum_{i \in \mathcal{E}_q} \partial_n u_i(t, q) &= 0, & \forall q \in \mathcal{V}_{\text{int}}, \\ \partial_t u_i(t, q) &= -\eta_q(t) \partial_n u_i(t, q), & \forall q \in \mathcal{V}_{\text{d}}, \end{split}$$

Using the previous transformations of hyperbolic PDEs into difference equations: under arbitrary switching, exponential stability for some $\Lambda \in RI$ and $p \in [1, +\infty] \iff$ exponential stability for all $\Lambda \in (0, +\infty)^N$ and $p \in [1, +\infty]$.

Example: wave propagation on networks.

Edges: \mathcal{E} Vertices: \mathcal{V} $\mathcal{V} = \mathcal{V}_{int} \cup \mathcal{V}_{d} \cup \mathcal{V}_{u}$ Interior vertices: \mathcal{V}_{int} Damped vertices: \mathcal{V}_{d} Undamped vertices: \mathcal{V}_{u}

$$\begin{aligned} \partial_{tt}^{2} u_{i}(t,\xi) &= \partial_{\xi\xi}^{2} u_{i}(t,\xi), \\ u_{i}(t,q) &= u_{j}(t,q), \\ \forall q \in \mathcal{V}, \ \forall i,j \in \mathcal{E}_{q}, \end{aligned}$$

$$\begin{array}{l} \sum_{i \in \mathcal{E}_q} \partial_n u_i(t,q) = 0, & \forall q \in \mathcal{V}_{int}, \\ \partial_t u_i(t,q) = -\eta_q(t) \partial_n u_i(t,q), & \forall q \in \mathcal{V}_d, \\ u_i(t,q) = 0, & \forall q \in \mathcal{V}_u. \end{array}$$

We assume $(\eta_q)_{q\in\mathcal{V}_d}\in L^\infty(\mathbb{R},\mathfrak{D})$ for some bounded $\mathfrak{D}\subset\mathbb{R}_+^{\mathcal{V}_d}$.

$\mathsf{Theorem}$

The previous system is uniformly exponentially stable in $W_0^{1,p} \times L^p$ for some p if and only if the network is a tree, \mathcal{V}_u contains only one point, and $\overline{\mathfrak{D}} \subset (0,+\infty)^d$.

We assume $(\eta_q)_{q \in \mathcal{V}_d} \in L^{\infty}(\mathbb{R}, \mathfrak{D})$ for some bounded $\mathfrak{D} \subset \mathbb{R}^{\mathcal{V}_d}_+$.

Theorem

The previous system is uniformly exponentially stable in $W_0^{1,p} \times L^p$ for some p if and only if the network is a tree, \mathcal{V}_u contains only one point, and $\overline{\mathfrak{D}} \subset (0,+\infty)^d$.

: classical methods based on an energy estimate and an observability inequality (see, e.g., [Dáger, Zuazua, 2006]).

- \Longrightarrow : (only for the case $\Lambda \in RI$)
 - Exponential stability for $\Lambda \in \mathsf{RI} \iff$ exponential stability for every L.

 \Longrightarrow : (only for the case $\Lambda \in RI$)

- Exponential stability for $\Lambda \in RI \iff$ exponential stability for every L.
- Take L = (1, 1, ..., 1).

- \Longrightarrow : (only for the case $\Lambda \in RI$)
 - Exponential stability for $\Lambda \in RI \iff$ exponential stability for every L.
 - Take L = (1, 1, ..., 1).
 - If the graph is not a tree, or if \mathcal{V}_{μ} contains two or more points, or if \mathfrak{D} has a point with one coordinate zero:

Two vertices in \mathcal{V}_{μ} .

- \Longrightarrow : (only for the case $\Lambda \in RI$)
 - Exponential stability for $\Lambda \in \mathsf{RI} \iff$ exponential stability for every L.
 - Take L = (1, 1, ..., 1).
 - If the graph is not a tree, or if \mathcal{V}_u contains two or more points, or if $\overline{\mathfrak{D}}$ has a point with one coordinate zero:

Two vertices in $\frac{V_u}{(j_1, j_2, \dots, j_n)}$: path

\Longrightarrow : (only for the case $\Lambda \in RI$)

- Exponential stability for $\Lambda \in RI \iff$ exponential stability for every L.
- Take L = (1, 1, ..., 1).
- If the graph is not a tree, or if \mathcal{V}_u contains two or more points, or if $\overline{\mathfrak{D}}$ has a point with one coordinate zero:

Two vertices in $\mathcal{V}_{\mathbf{u}}$. (j_1, j_2, \dots, j_n) : path $u_{j_i}(t, x) = \pm \sin(2\pi t)\sin(2\pi x)$: periodic solution

\Longrightarrow : (only for the case $\Lambda \in RI$)

- Exponential stability for $\Lambda \in \mathsf{RI} \iff$ exponential stability for every L.
- Take L = (1, 1, ..., 1).
- If the graph is not a tree, or if \mathcal{V}_u contains two or more points, or if $\overline{\mathfrak{D}}$ has a point with one coordinate zero:

Two vertices in $\mathcal{V}_{\mathbf{u}}$. (j_1, j_2, \ldots, j_n) : path $u_{j_i}(t, x) = \pm \sin(2\pi t)\sin(2\pi x)$: periodic solution Not exponentially stable for L, then not exponentially stable for Λ either.

Relative controllability Definition

$$\Sigma_{\mathsf{contr}}: \quad \mathsf{x}(t) = \sum_{j=1}^N A_j \mathsf{x}(t - \Lambda_j) + \mathsf{B}\mathsf{u}(t), \quad t \geq 0.$$

For every initial condition $x_0: [-\Lambda_{\max}, 0) \to \mathbb{C}^d$ and control $u: [0, T] \to \mathbb{C}^m$, Σ_{contr} admits a unique solution $x: [-\Lambda_{\max}, T] \to \mathbb{C}^d$ (no regularity assumptions!).

Relative controllability Definition

$$\Sigma_{\mathrm{contr}}: \quad x(t) = \sum_{j=1}^{N} A_j x(t-\Lambda_j) + Bu(t), \quad t \geq 0.$$

For every initial condition $x_0: [-\Lambda_{\max}, 0) \to \mathbb{C}^d$ and control $u: [0, T] \to \mathbb{C}^m$, Σ_{contr} admits a unique solution $x: [-\Lambda_{\max}, T] \to \mathbb{C}^d$ (no regularity assumptions!).

Definition

We say that Σ_{contr} is relatively controllable in time T>0 if, for every $x_0: [-\Lambda_{\max}, 0) \to \mathbb{C}^d$ and $x_1 \in \mathbb{C}^d$, there exists $u: [0, T] \to \mathbb{C}^m$ such that the unique solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x(T) = x_1$.

Relative controllability Explicit formula

Similarly to the stability analysis, we use an explicit formula for the solutions in order to characterize relative controllability.

Relative controllability Explicit formula

Similarly to the stability analysis, we use an explicit formula for the solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let $u:[0,T] \to \mathbb{C}^m$. The solution $x:[-\Lambda_{\max},T] \to \mathbb{C}^d$ of Σ_{contr} with zero initial condition and control u is, for $t \in [0,T]$, $x(t) = \sum_{n} Bu(t - \Lambda \cdot \mathbf{n})$.

$$x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ \Lambda \cdot \mathbf{n} \le t}} \Xi_{\mathbf{n}} Bu(t - \Lambda \cdot \mathbf{n}),$$

where the matrices Ξ_n are defined as before.

Similarly to the stability analysis, we use an explicit formula for the solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let $u:[0,T] \to \mathbb{C}^m$. The solution $x:[-\Lambda_{\max},T] \to \mathbb{C}^d$ of Σ_{contr} with zero initial condition and control u is, for $t \in [0,T]$, $x(t) = \sum_{\mathbf{n} \in \mathbb{N}^N} \Xi_{\mathbf{n}} Bu(t-\Lambda \cdot \mathbf{n}),$

where the matrices Ξ_n are defined as before.

- By linearity, solution with initial condition x_0 and control u is the sum of this formula with the previous one.
- Rational independence: all $\Lambda \cdot \mathbf{n}$ are different.

Relative controllability Relative controllability criterion

Theorem (M.)

The following statements are equivalent:

- Σ_{contr} is relatively controllable in time T;
- Span $\{\Xi_{\mathbf{n}} B w \mid \mathbf{n} \in \mathbb{N}^N, \ \Lambda \cdot \mathbf{n} \leq T, \ w \in \mathbb{C}^m\} = \mathbb{C}^d;$

Theorem (M.)

The following statements are equivalent:

- Σ_{contr} is relatively controllable in time T;
- Span $\{\Xi_{\mathbf{n}}Bw\mid \mathbf{n}\in\mathbb{N}^N,\ \Lambda\cdot\mathbf{n}\leq T,\ w\in\mathbb{C}^m\}=\mathbb{C}^d;$
- $\exists \varepsilon_0 > 0$ such that, for every $\varepsilon \in (0, \varepsilon_0)$, $x_0 : [-\Lambda_{\max}, 0) \to \mathbb{C}^d$, and $x_1 : [0, \varepsilon] \to \mathbb{C}^d$, there exists $u : [0, T + \varepsilon] \to \mathbb{C}^m$ such that the solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x(T + \cdot)|_{[0,\varepsilon]} = x_1$;

Theorem (M.)

The following statements are equivalent:

- Σ_{contr} is relatively controllable in time T;
- Span $\{\Xi_{\mathbf{n}} B w \mid \mathbf{n} \in \mathbb{N}^N, \ \Lambda \cdot \mathbf{n} \leq T, \ w \in \mathbb{C}^m\} = \mathbb{C}^d;$
- $\exists \varepsilon_0 > 0$ such that, for every $\varepsilon \in (0, \varepsilon_0)$, $x_0 : [-\Lambda_{\max}, 0) \to \mathbb{C}^d$, and $x_1 : [0, \varepsilon] \to \mathbb{C}^d$, there exists $u : [0, T + \varepsilon] \to \mathbb{C}^m$ such that the solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x(T + \cdot)|_{[0,\varepsilon]} = x_1$;
- $\exists \varepsilon_0 > 0$ such that, for every $p \in [1, +\infty]$, $\varepsilon \in (0, \varepsilon_0)$, $x_0 \in L^p((-\Lambda_{\max}, 0), \mathbb{C}^d)$, and $x_1 \in L^p((0, \varepsilon), \mathbb{C}^d)$, there exists $u \in L^p((0, T + \varepsilon), \mathbb{C}^m)$ such that the solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x \in L^p((-\Lambda_{\max}, T + \varepsilon), \mathbb{C}^d)$ and $x(T + \cdot)|_{[0, \varepsilon]} = x_1$.

Relative controllability Relative controllability criterion

• Can also be generalized to other spaces (e.g., \mathbb{C}^k).

• Can also be generalized to other spaces (e.g., \mathbb{C}^k).

- Can also be generalized to other spaces (e.g., Cⁿ).
- Generalizes Kalman criterion: for x(t) = Ax(t-1) + Bu(t), one has

Span
$$\left\{ \Xi_{\mathbf{n}} B w \mid \mathbf{n} \in \mathbb{N}^{N}, \ \Lambda \cdot \mathbf{n} \leq T, \ w \in \mathbb{C}^{m} \right\}$$

= Ran $\left(B \quad AB \quad A^{2}B \quad \cdots \quad A^{\lfloor T \rfloor}B \right)$.

Theorem (M.)

• If Σ_{contr} is relatively controllable in some time T>0, then it is also relatively controllable in time $T=(d-1)\Lambda_{max}$.

- Can also be generalized to other spaces (e.g., \mathbb{C}^k).
- Generalizes Kalman criterion: for x(t) = Ax(t-1) + Bu(t), one has

$$\operatorname{Span}\left\{\Xi_{\mathbf{n}}Bw\mid\mathbf{n}\in\mathbb{N}^{N},\ \Lambda\cdot\mathbf{n}\leq T,\ w\in\mathbb{C}^{m}\right\}$$

$$=\operatorname{Ran}\left(B\quad AB\quad A^{2}B\quad\cdots\quad A^{\lfloor T\rfloor}B\right).$$

Theorem (M.)

- If Σ_{contr} is relatively controllable in some time T>0, then it is also relatively controllable in time $T=(d-1)\Lambda_{max}$.
- \bullet Σ_{contr} is relatively controllable in some time T>0 if and only if

$$\mathsf{Span}\left\{ \Xi_{\mathbf{n}} Be_j \mid \mathbf{n} \in \mathbb{N}^N, \ \left| \mathbf{n}
ight|_1 \leq d-1, \ j \in \llbracket 1, m
rbracket
ight\} = \mathbb{C}^d.$$

Relative controllability Relative controllability criterion

- The previous results can be modified to treat also the rationally dependent case.
- Ongoing work: use the explicit formula to study exact and approximate controllability in L^2 .
- Future work: applications to PDEs.

- The previous results can be modified to treat also the rationally dependent case.
- Ongoing work: use the explicit formula to study exact and approximate controllability in L^2 .
- Future work: applications to PDEs.

References:

- Y. Chitour, G. Mazanti, and M. Sigalotti. Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. *Netw. Heterog. Media*, to appear.
- Q G. Mazanti. Relative controllability of linear difference equations. Preprint arXiv: 1604.08663, 2016.