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Introduction
Linear difference equations

1 Stability analysis of the difference equation

Σstab : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0.

2 Relative controllability of the difference equation

Σcontr : x(t) =
N∑

j=1
Ajx(t − Λj) + Bu(t), t ≥ 0.

Λ1, . . . ,ΛN : (rationally independent) positive delays
(Λmin = minj Λj , Λmax = maxj Λj).
x(t) ∈ Cd , u(t) ∈ Cm.

Motivation:
Applications to some hyperbolic PDEs.
Generalization of previous results.
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Introduction
Motivation: hyperbolic PDEs

Hyperbolic PDEs → difference equations: [Cooke, Krumme, 1968],
[Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d’Andréa Novel,
2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...



∂tui (t, ξ) + ∂ξui (t, ξ) + αi (t, ξ)ui (t, ξ) = 0,
t ∈ R+, ξ ∈ [0,Λi ], i ∈ J1,NK,

ui (t, 0) =
N∑

j=1
mij(t)uj(t,Λj), t ∈ R+, i ∈ J1,NK.

Method of characteristics: for t ≥ Λmax,

ui (t, 0) =
N∑

j=1
mij(t)uj(t,Λj) =

N∑
j=1

mij(t)e−
r Λj
0 αj (t−s,Λj−s)dsuj(t − Λj , 0).

Set x(t) = (ui (t, 0))i∈J1,NK. Then x satisfies a difference equation.
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Introduction
Motivation: hyperbolic PDEs

Λ1

Λ2

Λ3

ΛN

Edges: E
Vertices: V

∂2ttui (t, ξ) = ∂2ξξui (t, ξ)
ui (t, q) = uj(t, q), ∀q ∈ V, ∀i , j ∈ Eq

+ conditions on vertices.
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Introduction
Motivation: hyperbolic PDEs

D’Alembert decomposition on travelling waves:

System of 2N transport equations.
Can be reduced to a system of difference equations.
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Introduction
Motivation: previous stability results
(cf. [Cruz, Hale, 1970], [Henry, 1974], [Michiels et al., 2009])

Σaut
stab : x(t) =

N∑
j=1

Ajx(t − Λj), t ≥ 0.

Stability for rationally independent Λ1, . . . ,ΛN characterized by
ρHS(A) = max

(θ1,...,θN )∈[0,2π]N
ρ
(∑N

j=1 Ajeiθj
)
.

Theorem (Hale, 1975; Silkowski, 1976)
The following are equivalent:

ρHS(A) < 1;
Σaut
stab is exponentially stable for some Λ ∈ (0,+∞)N with

rationally independent components;
Σaut
stab is exponentially stable for every Λ ∈ (0,+∞)N .
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Introduction
Motivation: previous controllability results

Σcontr : x(t) =
N∑

j=1
Ajx(t − Λj) + Bu(t), t ≥ 0.

Stabilization by linear feedbacks u(t) =
∑N

j=1 Kjx(t − Λj):
[Hale, Verduyn Lunel, 2002 and 2003].

Spectral and approximate controllability in
Lp([−Λmax, 0],Cd ): [Salamon, 1984].
Relative controllability in time T > 0: for any initial condition
x0 : [−Λmax, 0]→ Cd and final target state x1 ∈ Cd , find
u : [0,T ]→ Cm such that the solution x with initial condition
x0 and control u satisfies x(T ) = x1.
Case of two integer delays: [Diblík, Khusainov, Růžičková,
2008], [Pospíšil, Diblík, Fečkan, 2015].
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Stability analysis and applications
Stability analysis

Σstab : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0.

Xδp = Lp([−Λmax, 0],Cd ), p ∈ [1,+∞].
Exponential stability of Σstab uniformly with respect to a given
set A of functions A : R→Md (C)N .

In this talk, to simplify, A = L∞(R,B) for some bounded
B ⊂Md (C)N (more general A: see [Chitour, M., Sigalotti,
2015]).
RI: set of all Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N with rationally
independent components.
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Stability analysis and applications
Stability analysis

Let µ(B) = lim sup
|n|1→+∞

n∈NN

sup
Br∈B

for r∈Ln(Λ)

∣∣∣∣∑v∈Vn

∏|n|1
k=1 B

Λv1+...+Λvk−1
vk

∣∣∣∣ 1
Λ·n

,

where Ln(Λ) = {Λ · k | k ∈ NN , Λ · k < Λ · n} and Vn is the set of
all permutations of (1, . . . , 1︸ ︷︷ ︸

n1 times

, 2, . . . , 2︸ ︷︷ ︸
n2 times

, . . . ,N, . . . ,N︸ ︷︷ ︸
nN times

).

Theorem (Chitour, M., Sigalotti)
The following statements are equivalent:

µ(B) < 1;
Σstab is uniformly exponentially stable in Xδp for some
p ∈ [1,+∞] and Λ ∈ RI;
Σstab is uniformly exponentially stable in Xδp for every
p ∈ [1,+∞] and Λ ∈ (0,+∞)N .

Controllability and stability of difference equations and applications Guilherme Mazanti



Introduction Stability analysis and applications Relative controllability

Stability analysis and applications
Stability analysis

Let µ(B) = lim sup
|n|1→+∞

n∈NN

sup
Br∈B

for r∈Ln(Λ)

∣∣∣∣∑v∈Vn

∏|n|1
k=1 B

Λv1+...+Λvk−1
vk

∣∣∣∣ 1
Λ·n

,

where Ln(Λ) = {Λ · k | k ∈ NN , Λ · k < Λ · n} and Vn is the set of
all permutations of (1, . . . , 1︸ ︷︷ ︸

n1 times

, 2, . . . , 2︸ ︷︷ ︸
n2 times

, . . . ,N, . . . ,N︸ ︷︷ ︸
nN times

).

Theorem (Chitour, M., Sigalotti)
The following statements are equivalent:

µ(B) < 1;
Σstab is uniformly exponentially stable in Xδp for some
p ∈ [1,+∞] and Λ ∈ RI;
Σstab is uniformly exponentially stable in Xδp for every
p ∈ [1,+∞] and Λ ∈ (0,+∞)N .

Controllability and stability of difference equations and applications Guilherme Mazanti



Introduction Stability analysis and applications Relative controllability

Stability analysis and applications
Stability analysis

Let µ(B) = lim sup
|n|1→+∞

n∈NN

sup
Br∈B

for r∈Ln(Λ)

∣∣∣∣∑v∈Vn

∏|n|1
k=1 B

Λv1+...+Λvk−1
vk

∣∣∣∣ 1
Λ·n

,

where Ln(Λ) = {Λ · k | k ∈ NN , Λ · k < Λ · n} and Vn is the set of
all permutations of (1, . . . , 1︸ ︷︷ ︸

n1 times

, 2, . . . , 2︸ ︷︷ ︸
n2 times

, . . . ,N, . . . ,N︸ ︷︷ ︸
nN times

).

Theorem (Chitour, M., Sigalotti)
The following statements are equivalent:

µ(B) < 1;
Σstab is uniformly exponentially stable in Xδp for some
p ∈ [1,+∞] and Λ ∈ RI;
Σstab is uniformly exponentially stable in Xδp for every
p ∈ [1,+∞] and Λ ∈ (0,+∞)N .

Controllability and stability of difference equations and applications Guilherme Mazanti



Introduction Stability analysis and applications Relative controllability

Stability analysis and applications
Technique of the proof

To simplify, consider Σaut
stab : x(t) =

∑N
j=1 Ajx(t − Λj).

Lemma (Explicit solution)
Let x0 : [−Λmax, 0)→ Cd . The solution x : [−Λmax,+∞)→ Cd of Σaut

stab
is, for t ≥ 0,

x(t) =
∑

n∈NN

t<Λ·n≤t+Λmax

∑
j∈J1,NK

Λ·n−Λj≤t

Ξn−ejAjx0(t − Λ · n),

where the matrices Ξn are defined recursively for n ∈ NN by

Ξn =
N∑

k=1
nk≥1

AkΞn−ek , Ξ0 = Idd .

Can be easily adapted to time-dependent matrices.
Exponential stability can be analyzed through Ξ.
Rational independence: all Λ · n are different.
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Stability analysis and applications
Applications

Using the previous transformations of hyperbolic PDEs into
difference equations: under arbitrary switching, exponential
stability for some Λ ∈ RI and p ∈ [1,+∞] ⇐⇒ exponential
stability for all Λ ∈ (0,+∞)N and p ∈ [1,+∞].

Example: wave propagation on networks.

Λ1

Λ2

Λ3

ΛN

Edges: E
Vertices: V
V = Vint ∪ Vd ∪ Vu
Interior vertices: Vint
Damped vertices: Vd
Undamped vertices: Vu

∂2ttui (t, ξ) = ∂2ξξui (t, ξ),
ui (t, q) = uj(t, q),

∀q ∈ V, ∀i , j ∈ Eq,

∑
i∈Eq

∂nui (t, q) = 0, ∀q ∈ Vint,
∂tui (t, q) = −ηq(t)∂nui (t, q), ∀q ∈ Vd,
ui (t, q) = 0, ∀q ∈ Vu.
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Applications

Using the previous transformations of hyperbolic PDEs into
difference equations: under arbitrary switching, exponential
stability for some Λ ∈ RI and p ∈ [1,+∞] ⇐⇒ exponential
stability for all Λ ∈ (0,+∞)N and p ∈ [1,+∞].

Example: wave propagation on networks.
Λ1

Λ2

Λ3

ΛN

Edges: E
Vertices: V
V = Vint ∪ Vd ∪ Vu
Interior vertices: Vint
Damped vertices: Vd
Undamped vertices: Vu
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Stability analysis and applications
Applications

We assume (ηq)q∈Vd ∈ L∞(R,D) for some bounded D ⊂ RVd
+ .

Theorem
The previous system is uniformly exponentially stable in W 1,p

0 × Lp

for some p if and only if the network is a tree, Vu contains only
one point, and D ⊂ (0,+∞)d .

⇐=: classical methods based on an energy estimate and an
observability inequality (see, e.g., [Dáger, Zuazua, 2006]).
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Stability analysis and applications
Applications

=⇒: (only for the case Λ ∈ RI)

Exponential stability for Λ ∈ RI ⇐⇒ exponential stability for
every L.

Take L = (1, 1, . . . , 1).
If the graph is not a tree, or if Vu contains two or more
points, or if D has a point with one coordinate zero:

j1j2

jn

Two vertices in Vu.

(j1, j2, . . . , jn): path
uji (t, x) = ± sin(2πt) sin(2πx):
periodic solution
Not exponentially stable for L,
then not exponentially stable for
Λ either.
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Relative controllability
Definition

Σcontr : x(t) =
N∑

j=1
Ajx(t − Λj) + Bu(t), t ≥ 0.

For every initial condition x0 : [−Λmax, 0)→ Cd and control
u : [0,T ]→ Cm, Σcontr admits a unique solution
x : [−Λmax,T ]→ Cd (no regularity assumptions!).

Definition
We say that Σcontr is relatively controllable in time T > 0 if, for
every x0 : [−Λmax, 0)→ Cd and x1 ∈ Cd , there exists
u : [0,T ]→ Cm such that the unique solution x of Σcontr with
initial condition x0 and control u satisfies x(T ) = x1.
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Relative controllability
Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)
Let u : [0,T ]→ Cm. The solution x : [−Λmax,T ]→ Cd of Σcontr
with zero initial condition and control u is, for t ∈ [0,T ],

x(t) =
∑

n∈NN
Λ·n≤t

ΞnBu(t − Λ · n),

where the matrices Ξn are defined as before.

By linearity, solution with initial condition x0 and control u is
the sum of this formula with the previous one.
Rational independence: all Λ · n are different.
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Relative controllability
Relative controllability criterion

Theorem (M.)
The following statements are equivalent:

Σcontr is relatively controllable in time T ;

Span
{

ΞnBw | n ∈ NN , Λ · n ≤ T , w ∈ Cm} = Cd ;

∃ε0 > 0 such that, for every ε ∈ (0, ε0), x0 : [−Λmax, 0)→ Cd , and
x1 : [0, ε]→ Cd , there exists u : [0,T + ε]→ Cm such that the
solution x of Σcontr with initial condition x0 and control u satisfies
x(T + ·)|[0,ε] = x1;

∃ε0 > 0 such that, for every p ∈ [1,+∞], ε ∈ (0, ε0),
x0 ∈ Lp((−Λmax, 0),Cd ), and x1 ∈ Lp((0, ε),Cd ), there exists
u ∈ Lp((0,T + ε),Cm) such that the solution x of Σcontr with initial
condition x0 and control u satisfies x ∈ Lp((−Λmax,T + ε),Cd ) and
x(T + ·)|[0,ε] = x1.
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Relative controllability
Relative controllability criterion

Can also be generalized to other spaces (e.g., Ck).

Generalizes Kalman criterion: for x(t) = Ax(t − 1) + Bu(t),
one has

Span
{

ΞnBw | n ∈ NN , Λ · n ≤ T , w ∈ Cm
}

= Ran
(
B AB A2B · · · AbTcB

)
.

Theorem (M.)
If Σcontr is relatively controllable in some time T > 0, then it
is also relatively controllable in time T = (d − 1)Λmax.

Σcontr is relatively controllable in some time T > 0 if and only
if

Span
{

ΞnBej | n ∈ NN , |n|1 ≤ d − 1, j ∈ J1,mK
}

= Cd .
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Relative controllability
Relative controllability criterion

The previous results can be modified to treat also the
rationally dependent case.
Ongoing work: use the explicit formula to study exact and
approximate controllability in L2.
Future work: applications to PDEs.
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