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@ The system and the controls. Meaning
@ The Stackelberg-Nash strategy
@ The main result. Idea of the proof
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Control issues

The meaning of control

CONTROL PROBLEMS

What is usual: act to get good (or the best) results for

L=

What is easier? Solving? Controlling?

Two classical approaches:

@ Optimal control
@ Controllability
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Background
Optimal control

OPTIMAL CONTROL

A general optimal control problem

Minimize J(v)
Subjectto v € Vag, ¥ € Vad, (v, y) satisfies
Ely)=F(v) + ... (S)

Main questions: 3, uniqueness/multiplicity, characterization, computation, ...

We could also consider similar bi-objective optimal control:

"Minimize" J;(v), J2(v)
Subjectto v € Vg, ...
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Background
Controllability

CONTROLLABILITY

A null controllability problem

Find (v,y)
Such that v € Vag, (v,y) satisfies (ES), y(T) =0

with y : [0, T] — H,
EW)=yvi+AYy)=F(v) + ... (ES)

Again many interesting questions: 3, uniqueness/multiplicity,
characterization, computation, . ..

A very rich subject for PDEs, see [Russell, J.-L. Lions, Coron, Zuazua, ...]
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Background
Both viewpoints
Question: How can we adopt both viewpoints together?

Example: Optimal-control / controllability problem

A simplified model for the autonomous car driving problem
The system:

x = f(x,u), x(0)=xo
Constraints:
dist. (x(t), Z(t)

)>e Vt
U€Uag (lu(t)] <C)

u determines direction and speed

Goals (prescribed xr and X):
@ x(T)=x7(or|x(T)—x7|<e...)
@ Minimize sup, |x(t) — X(t)|

[Sontag, Sussman-Tang, . ..]
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Optimal control + controllability

Automatic driving

Figure: The ICARE Project, INRIA, France. Autonomous car driving.
Malis-Morin-Rives-Samson, 2004

\ The car in the street \
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Optimal control + controllability

Automatic driving

Figure: Nissan ID. Autonomous car driving. 2015-2020

What is announced:

e Nissan ID 1.0 (2015), highways and traffic jams (no lane change)
¢ |D 2.0 (2018), overtaking and lane change

¢ |D 3.0 (2020), complete autonomous driving in town
http://reports.nissan—-global.com/EN/?p=17295
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Hierarchical control

The system and the controls. Meaning

Another way to connect optimal control and controllability:
HIERARCHICAL CONTROL (Stackelberg)

The main ideas in the context of Navier-Stokes:
Two controls - one leader, one follower

Vi+(y - V)y—Ay+Vp=flo+vi,, (x,1)eQx(0,T)
V.y=0, (x,t) € Qx (0,T)
y=0, (x,t) € 9Q2 x (0, T)
y(X,O):yO(X), x€Q

Different domains O, w

Two objectives:
@ Gety = yqin O4 x (0, T), with reasonable effort:

Minimize a// ly — yal? +u//
Ogx(0,T) wx(0,T)

An optimal control problem
@ Get y(T) = 0 - A null controllability problem
Before explaining what to do .. . let us complicate the situation!
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Hierarchical control

The system and the controls. Meaning

BEYOND: A MORE COMPLEX CONTROL PROBLEM, NAVIER-STOKES
(Stackelberg-Nash, Stackelberg-Pareto, .. .)

Three controls: one leader, two followers

Vi+(y - V)y—Ay+Vp=flo+vilo,+Vvolo,, (x,t)€Qx(0,T)
V-y=0, (x, ) eQx(0,T)
y=0, (x,1) € 99 x (0, T)
y(x,0) = y°(x), xXeQ

Different domains O, O;, (i =1,2)

Three objectives:
@ “Simultaneously”, y = yi.qin Oi g x (0, T), i = 1,2, reasonable effort:

Minimize a// ly — ¥idl? +u// i, i=1,2
O;.¢%(0,T) O;x(0,T)

Bi-objective optimal control - The task of the followers
In practice, an equilibrium (v4(f), va(f)) for each f?
@ Gety(T)=0
Null controllability - The task of the leader
Can we find f such that y(T) = 0?
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Hierarchical control

The system and the controls. Meaning

Vit (y - V)y—Ay+Vp=flo+vilo, +vele,, (x,1)€Qx(0,T)
V.y=0, (x,t) e Q2 x(0,7)
y=0, (x,t) € 9Q x (0, T)
y(X7O):y0(X)7 X €N

Many applications:

@ Heating: Controlling temperatures
Heat sources at different locations - Heat PDE (linear, semilinear, etc.)

@ Tumor growth: Controlling tumor cell densities
Radiotherapy strategies - Reaction-diffusion PDEs
bilinear control

@ Fluid mechanics: Controlling fluid velocity fields
Several mechanical actions - Stokes, Navier-Stokes or similar

@ Finances: Controlling the price of an option
Agents at different stock prices, etc. - Backwards in time heat-like PDE
Degenerate coefficients

Contributions: Lions, Diaz-Lions, Glowinski-Periaux-Ramos, Guillén, ...
Optimal control + AC
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Hierarchical control

The system and the controls. Meaning

TOO DIFFICULT - A SIMPLIFIED PROBLEM

Again three controls: one leader, two followers

y(0,t)=y(1,t)=0, te(0,T)
y(X,O) :yO(X)? X € (071)

Different intervals O, O;

yt_yxx:f1O+V11(91+V21(927 (X,t)€(0,1)><(077-)
(H)

Again three objectives:

@ Simultaneously, y =~ y; 4 in O;q x (0, T), i = 1,2, reasonable effort:

Minimize a,// ly — y,d| +p// |v,, i=1,2
0;.4x(0,T) 0;x

Bi-objective optimal control - Followers’ task
@ Gety(T)=0
Null controllability - Leader’s task

What can we do?
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Hierarchical control
The Stackelberg-Nash strategy

THE STACKELBERG-NASH STRATEGY
Step 1: f is fixed

(i, va) = a// |y—y,-,d|2+u// VP, i=1,2
0;.4x(0,T) 0;x(0,T)

Find a Nash equilibrium (v (), vo(f)) with vi(f) € L3(O; x (0, T)):

H(vi(F), va(£)) < i (vi, va(F)) Vi € L2(O1 x (0, T))

J2(V1(f), 2(f)) S J2(V1( )., V2) VVg € L2(02 X (0, T))
Equivalent to:

1 1
Yi—Yo=Mo— =110, — —¢210,
1 I

(HN) —oit — dixx = oi(y — Yig)lo;, i=1,2
#i(0,t) = ¢i(1,8) =0, y(0,t) =y(1,1) =0, te(0,T)
y(x,0) =y°(x), ¢i(x,T) =0, xe€(0,1)
Then: vi(f) = —¢ilo;x(0,7) (Pontryagin)
I(vi(f), v: ( )? Uniqueness?
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Hierarchical control
The Stackelberg-Nash strategy

THE STACKELBERG-NASH STRATEGY
Step 2: Find f such that
1 1
Yt — VYxx = flo — *¢1101 - *¢2102
% 1%

(HSN); —dit — Pisx = @iy — Yid)loy, =12
¢I(Oat):¢’l(17t):05 y(07t):.y(17t):07 tG(O,T)
y(X70):y0(X)7 ¢i(X7 T):07 X€(0,1)

(HSN)2 y(x,T)=0, x€(0,1)
with [|7] 20 x 0,7y < ClIY° |2

For instance, for y; 4 = 0, equivalent to:

R(L) = R(M), with Ly® :=y(-,T), Mf:=y(-,T)...

In turn, equivalent to: ||L*7 || < [[M*yT|| V¢! e L2(0,1)
(classical, functional analysis; [Russell, 1973])
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Hierarchical control
The result. Idea of the proof

Assume: O1,g = Oz,4, Oig N O # 0, large p
3p such that, if ﬂodx(o n P21Yid|? dx dt < 400, i =1,2, then:

vy® € L2(Q) Inull controls f € L2(O x (0, T)) & Nash pairs (vi(f), va(f))

Idea of the proof:

1-Large p = Vfe L2(O x (0, T)) 3! Nash equilibrium (v4(f), va(f))
Yi— Yoo =Fo — i¢11o1 — i¢>2102
—¢it — i = iy — Yig)lo, =12
¢/(O,t):¢i(1,t):0, y(o7t):y(17t):07 tE(O,T)
y(X7O):y0(X)a (]3,'(X, T):O7 X€(0a1)

1
vi(f) = _;Qbi‘O;X(O,T)
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Hierarchical control
The result. Idea of the proof
2- LT < M7 VT e L3(0,1) means observability:
2
Wl + > [[ 52 Paxat<c [ jufaxet
- JJa 0x(0,T)

forall 4", with

—ht = = Y an'To,, Y = —5¥10,
w‘t:T = wT(X)’ ’Y'|t:0 = 07 etc.

First remark: ||o|—¢ ||> < Cl[¢b|s—p||? for t' < t”

Explanation: energy estimates, large p

2 t// .
le=el? < € (Iblemer 12 + 24 fi 17/ le-sl? 05)
2 t//
< C (Iblemer P+ 324 % Jy Ile=sll? ds)

7

Jo Ili=sll? ds < Cllple= |12
Consequence: [[¢]i—oll? + 32, [[o 5 21Y P dx dt < C [[,p 2 |y|? dx dt
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Hierarchical control
The result. Idea of the proof
Second remark: [ p~?[¢? dx dt < C [fi, 0.1y P 2I%[F dx at

Explanation: Carleman estimates for ¢» and h:= 32, a;y'

Yt = 97(x), 7l =0, efe.
Non-empty w C O N Oy

{ —¢t 1/)xx — ZI 1 a’fy 1Od7 ’7; - ’Y)I'(X = _%¢1@,

19) + b(h) < C (foo.o(t6) + hooas () + [ p521AI + [ p5 210
< C (hooas () + looua (h) + [ 25216
loo.u (1) + £1()
+eho(h) +<l(¥))

S C (Iloc,w (1/’

)+
S C (/loc,w ('l/J)
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Hierarchical control
Extensions

EXTENSIONS
@ Theorem holds also for different O; 4 if 01,6 N O # O g N O
—r— Y = Loy ar' o, W — Y= —1¥10,
Y=t =" (X), 7']i=0 =0, etc.

Choose different (well chosen) weights - Introduce:

e O'ccOandw; CC O;¢gN O, with wy # wp
e Carleman weights for wy and w» that coincide outside O’

Then: )
Carleman estimates for ¢, v' =

(") + b(?) + [ p72¥? < Cloc,0()
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Hierarchical control
Extensions

EXTENSIONS (Cont.)
@ Boundary followers, distributed leader:
{ _yt_yxx:f1o, (X7t)e(071)><(077—)

y(07 t) = V1(t)7 y(1vt) = Vz(t)v te (Oa T)
y(x,0) =y°(x), x€(0,1)

Costs: O"‘ffoi’dx(o,'r) ly — yial® + /LfoT lvi2dt, i=1,2
Optimality system and adjoint:

Yi—ywu="flo *_wt *_1/)xx = Z,-z:1 CYI’YI‘IO,-‘L,
—Pit — Pixx = ai(y - yi,d)10i,d 'Y; - 'Y)’(x =0

¥(0,8) = = 6x(0, 1) 70, 1) = —14x(0, 1),
y(17t): %¢§(1,t) 72(17t): iwx(17t)

The observability estimate:

[$le=oll® + X2 [fo 82N P < Cloc,0()
OK under conditions above; for instance, 01,4 = 02,4, Oj g N O # 0,
large u, ‘ﬂOdX(O,T) Alyial?dxdt < 400, i=1,2
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Hierarchical control
Extensions
EXTENSIONS (Cont.)

— —.@/fxx = 2?21 aiy'1 Oi,d
7; - ’Y)l(x =0
’71 (0, t) = _%"/}X(Ov t)7 72(170 = %’Lﬁx(‘ht)

For the proof: Carleman estimates + nonzero Dirichlet conditions
[Imanuvilov-Puel-Yamamoto] - For instance

1(7') < C (22197 2200, )1 g 1y + loco(7"))
andsoon...
@ Distributed followers, boundary leader:
Vi — Y = Vilo, + Volo,, (x,1) € (0,1) x (0, T)
y(,t)=f, y(1,t)=0, te(0,T)
y(x,0) = y°(x), x€(0,1)
A similar result holds

@ However: boundary followers + boundary leader is uTnknown!
We would need |[¢]i—ol|® + 327, [fo 2 2IW'12 < C [y pi?[1x(0, t)|? at for
(¢,~',+?) as above ...
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Hierarchical control
Extensions

EXTENSIONS (Cont.)

@ More followers, coefficients, non-scalar parabolic systems, other
functionals, boundary controls, higher dimensions, etc.

@ Semilinear systems:

Vi— Yo =F(x, ty)+ o+ >0, vilo,
y(0,t)=y(1,£)=0, tec(0,T), etc.

Nash quasi-equilibria

1 1
Yi—yu=F(x, tty)+flo — ;¢11o1 = ;@102

—oit — dipx = F' (X, t;y)¢i + ai(y — Yio)lo, 1=1,2
¢i(07t):¢i(17t):o7 y(ovt):y(1vt):0a t€(077—)
y(X,O):yO(X), ¢/(X7 T):07 XG(O,1)

1
vi(f) = _;¢i|0,><(0,T)

NC: OK for Lipschitz-continuous F
Also: an equivalence result!
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Hierarchical control
Extensions

EXTENSIONS (Cont.)
@ ECT: OK
@ Constraints, for instance:

Vi— Yo =flo+ X0, vilo,
y(0,t)=y(1,t)=0, te(0,T), etc.

Find a constrained Nash equilibrium (v (f), va(f)) with
Vi(f) € Ujaa C L2(O; x (0, T)):

J1(V1(f), Vz(f)) < J1(V1, Vg(f)) Yvy € L{md
‘./2(V1(f)7 Vz(f)) < Jg(V1(f), V2) Yvo € L{2,ad

Then, find f such that y|;—.r =0
OK for local constraints, i.e. Ui ag = { vi € L2(O; x (0, T)) : vi(x, 1) € L }
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Hierarchical control
The result. Idea of the proof

AN INTERESTING QUESTION:

All this holds for large 1. - What about small ?

Recall: Ji(vi, v2) := aif [o, o,1) 1Y = Yiel® + Wl ooy Vi 7= 1,2

e—ti)i,t — Pixx = (Y — Yia)lo; Vi e 120 x (0, )

Ve — Yo = flo — L(d110, + ¢210,) 1 1.2 1,2
Id. — =A , =
{ ; o { B0 0= (4.0)
for some compact, positive, self-adjoint A
Fredholm’s alternative + Hilbert-Schmidt
= 31 > p2 > ... (independent of f), with xu, — 0 such that
3 Nash equilibrium for all i # u, for all n

Do we have NC for these 1.?

E. Fernandez-Cara Controllability of PDEs



Additional results and comments
Other questions

FINAL COMMENTS:
@ The previous proof — a method to compute f and (v4(f), va(f))
Numerics?
@ Other strategies? Stackelberg-Pareto controllability?
B (V' V) + (1= B)(V', V) =0, Be(0,1)
For each f, we get a family of equilibria (vj(f), v5(f)), with 8 € (0,1)
Y= Yx = flo — %(%Qﬂ(ﬁ + #dﬂoz)
=t — dxx = 1By — Y1,d)10, 4 + @2(1 = B)(Y — Y2,0)10, 4

—Yt — Y = 1 Bylo; 4 + a2(1 = B)V10o,,
N =1 = —5(F¥1o, + 5910,)

3 “common” null controls, i.e. f such that y(T) = 0 for several 8?
3 average null controls, i.e. f such that (fo1 ydp)(T)=07?

@ Navier-Stokes? OPEN Locally (for small y5)? ALSO OPEN
[Guerrero, Carrefio, Gueye, . ..]

In progress . ..

E. Fernandez-Cara Controllability of PDEs



Additional results and comments
Final comments
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THANK YOU VERY MUCH ...

AND CONGRATULATIONS, JEAN-MICHEL ...
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