On the Stackelberg strategies in control theory

Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla

several joint works with
F.D. ARARUNA
Dpto. Matemática - UFPB - Brazil
S. GUERRERO
Lab. J.-L. Lions - UPMC - France
M.C. SANTOS
Dpto. Matemática - UFPE - Brazil

Dedicated to Jean-Michel Coron in his 60th birthday

Outline

- Background
- 2 Hierarchical control
 - The system and the controls. Meaning
 - The Stackelberg-Nash strategy
 - The main result. Idea of the proof
- 3 Additional results and comments

CONTROL PROBLEMS

What is usual: act to get good (or the best) results for

$$\left\{
\begin{array}{l}
E(U) = F \\
+ \dots
\end{array}
\right.$$

What is easier? Solving? Controlling?

Two classical approaches:

- Optimal control
- Controllability

OPTIMAL CONTROL

A general optimal control problem

Minimize
$$J(v)$$

Subject to $v \in \mathcal{V}_{ad}, \ y \in \mathcal{Y}_{ad}, \ (v,y)$ satisfies
$$E(y) = F(v) + \dots \tag{S}$$

Main questions: ∃, uniqueness/multiplicity, characterization, computation, . . .

We could also consider similar bi-objective optimal control:

"Minimize"
$$J_1(v), J_2(v)$$

Subject to $v \in \mathcal{V}_{ad}, \dots$

CONTROLLABILITY

A null controllability problem

Find
$$(v, y)$$

Such that $v \in \mathcal{V}_{ad}$, (v, y) satisfies (ES) , $y(T) = 0$

with $y:[0,T]\mapsto H$,

$$E(y) \equiv y_t + A(y) = F(v) + \dots$$
 (ES)

Again many interesting questions: ∃, uniqueness/multiplicity, characterization, computation, . . .

A very rich subject for PDEs, see [Russell, J.-L. Lions, Coron, Zuazua, ...]

Question: How can we adopt both viewpoints together?

Example: Optimal-control / controllability problem A simplified model for the autonomous car driving problem

The system:

$$\dot{x} = f(x, \mathbf{u}), \quad x(0) = x_0$$

Constraints:

dist.
$$(x(t), Z(t)) \ge \varepsilon \quad \forall t$$

 $u \in \mathcal{U}_{ad} \quad (|u(t)| \le C)$

u determines direction and speed

Goals (prescribed x_T and \hat{x}):

- $x(T) = x_T \text{ (or } |x(T) x_T| \le \varepsilon \dots)$
- Minimize $\sup_t |x(t) \hat{x}(t)|$

[Sontag, Sussman-Tang, ...]

Figure: The ICARE Project, INRIA, France. Autonomous car driving. Malis-Morin-Rives-Samson, 2004

The car in the street

Figure: Nissan ID. Autonomous car driving. 2015–2020

What is announced:

- Nissan ID 1.0 (2015), highways and traffic jams (no lane change)
- ID 2.0 (2018), overtaking and lane change
- ID 3.0 (2020), complete autonomous driving in town

http://reports.nissan-global.com/EN/?p=17295

Another way to connect optimal control and controllability: HIERARCHICAL CONTROL (Stackelberg)

The main ideas in the context of Navier-Stokes:

Two controls - one leader, one follower

$$\begin{cases} y_t + (y \cdot \nabla)y - \Delta y + \nabla p = \mathbf{f} \mathbf{1}_{\mathcal{O}} + \mathbf{v} \mathbf{1}_{\omega}, & (x, t) \in \Omega \times (0, T) \\ \nabla \cdot y = 0, & (x, t) \in \Omega \times (0, T) \\ y = 0, & (x, t) \in \partial \Omega \times (0, T) \\ y(x, 0) = y^0(x), & x \in \Omega \end{cases}$$

Different domains \mathcal{O} , ω

Two objectives:

• Get $y \approx y_d$ in $\mathcal{O}_d \times (0, T)$, with reasonable effort:

Minimize
$$\alpha \iint_{\mathcal{O}_d \times (0,T)} |y-y_d|^2 + \mu \iint_{\omega \times (0,T)} |v|^2$$

An optimal control problem

• Get y(T) = 0 - A null controllability problem

Before explaining what to do ...let us complicate the situation!

BEYOND: A MORE COMPLEX CONTROL PROBLEM, NAVIER-STOKES (Stackelberg-Nash, Stackelberg-Pareto, . . .)

Three controls: one leader, two followers

$$\begin{cases} y_t + (y \cdot \nabla)y - \Delta y + \nabla p = f \mathbf{1}_{\mathcal{O}} + \mathbf{v_1} \mathbf{1}_{\mathcal{O}_1} + \mathbf{v_2} \mathbf{1}_{\mathcal{O}_2}, & (x, t) \in \Omega \times (0, T) \\ \nabla \cdot y = 0, & (x, t) \in \Omega \times (0, T) \\ y = 0, & (x, t) \in \partial \Omega \times (0, T) \\ y(x, 0) = y^0(x), & x \in \Omega \end{cases}$$

Different domains O, O_i , (i = 1, 2)

Three objectives:

• "Simultaneously", $y \approx y_{i,d}$ in $\mathcal{O}_{i,d} \times (0,T)$, i=1,2, reasonable effort:

$$\text{Minimize } \alpha_{i} \! \iint_{\mathcal{O}_{i,d} \times (0,T)} \left| y - y_{i,d} \right|^{2} + \mu \! \iint_{\mathcal{O}_{i} \times (0,T)} \left| \frac{\mathbf{v}_{i}}{\mathbf{v}_{i}} \right|^{2}, \quad i = 1,2$$

Bi-objective optimal control - The task of the followers In practice, an equilibrium $(v_1(f), v_2(f))$ for each f?

Get y(T) = 0
 Null controllability - The task of the leader
 Can we find f such that y(T) = 0?

$$\begin{cases} y_t + (y \cdot \nabla)y - \Delta y + \nabla p = f \mathbf{1}_{\mathcal{O}} + \mathbf{v_1} \mathbf{1}_{\mathcal{O}_1} + \mathbf{v_2} \mathbf{1}_{\mathcal{O}_2}, & (x, t) \in \Omega \times (0, T) \\ \nabla \cdot y = 0, & (x, t) \in \Omega \times (0, T) \\ y = 0, & (x, t) \in \partial \Omega \times (0, T) \\ y(x, 0) = y^0(x), & x \in \Omega \end{cases}$$

Many applications:

- Heating: Controlling temperatures
 Heat sources at different locations Heat PDE (linear, semilinear, etc.)
- Tumor growth: Controlling tumor cell densities Radiotherapy strategies - Reaction-diffusion PDEs bilinear control
- Fluid mechanics: Controlling fluid velocity fields
 Several mechanical actions Stokes, Navier-Stokes or similar
- Finances: Controlling the price of an option
 Agents at different stock prices, etc. Backwards in time heat-like PDE
 Degenerate coefficients

Contributions: Lions, Díaz-Lions, Glowinski-Periaux-Ramos, Guillén, ... Optimal control + AC

TOO DIFFICULT - A SIMPLIFIED PROBLEM

Again three controls: one leader, two followers

(H)
$$\begin{cases} y_t - y_{xx} = f 1_{\mathcal{O}} + v_1 1_{\mathcal{O}_1} + v_2 1_{\mathcal{O}_2}, & (x, t) \in (0, 1) \times (0, T) \\ y(0, t) = y(1, t) = 0, & t \in (0, T) \\ y(x, 0) = y^0(x), & x \in (0, 1) \end{cases}$$

Different intervals \mathcal{O} , \mathcal{O}_i

Again three objectives:

• Simultaneously, $y \approx y_{i,d}$ in $\mathcal{O}_{i,d} \times (0,T)$, i = 1,2, reasonable effort:

$$\text{Minimize } \alpha_{i} \!\! \int\!\!\! \int_{\mathcal{O}_{i,d} \times (0,T)} \left| y - y_{i,d} \right|^{2} + \mu \!\! \int\!\!\! \int_{\mathcal{O}_{i} \times (0,T)} \left| \frac{\mathbf{v}_{i}}{\mathbf{v}_{i}} \right|^{2}, \quad i = 1,2$$

Bi-objective optimal control - Followers' task

Get y(T) = 0
 Null controllability - Leader's task

What can we do?

THE STACKELBERG-NASH STRATEGY

Step 1: f is fixed

$$J_{i}(v_{1}, v_{2}) := \alpha_{i} \iint_{\mathcal{O}_{i,d} \times (0,T)} |y - y_{i,d}|^{2} + \mu \iint_{\mathcal{O}_{i} \times (0,T)} |v_{i}|^{2}, \quad i = 1, 2$$

Find a Nash equilibrium $(v_1(f), v_2(f))$ with $v_i(f) \in L^2(\mathcal{O}_i \times (0, T))$:

$$\begin{split} J_1(v_1(f), v_2(f)) &\leq J_1(v_1, v_2(f)) & \forall v_1 \in L^2(\mathcal{O}_1 \times (0, T)) \\ J_2(v_1(f), v_2(f)) &\leq J_2(v_1(f), v_2) & \forall v_2 \in L^2(\mathcal{O}_2 \times (0, T)) \end{split}$$

Equivalent to:

$$\begin{cases} y_t - y_{xx} = {}^{\mathbf{f}} 1_{\mathcal{O}} - \frac{1}{\mu} \phi_1 1_{\mathcal{O}_1} - \frac{1}{\mu} \phi_2 1_{\mathcal{O}_2} \\ -\phi_{i,t} - \phi_{i,xx} = \alpha_i (y - y_{i,d}) 1_{\mathcal{O}_i}, \quad i = 1, 2 \\ \phi_i(0,t) = \phi_i(1,t) = 0, \quad y(0,t) = y(1,t) = 0, \quad t \in (0,T) \\ y(x,0) = y^0(x), \ \phi_i(x,T) = 0, \quad x \in (0,1) \end{cases}$$

Then: $v_i(f) = -\frac{1}{\mu}\phi_i|_{\mathcal{O}_i \times (0,T)}$ (Pontryagin) $\exists (v_1(f), v_2(f))$? Uniqueness?

THE STACKELBERG-NASH STRATEGY

Step 2: Find f such that

$$(HSN)_{1} \begin{cases} y_{t} - y_{xx} = f1_{\mathcal{O}} - \frac{1}{\mu}\phi_{1}1_{\mathcal{O}_{1}} - \frac{1}{\mu}\phi_{2}1_{\mathcal{O}_{2}} \\ -\phi_{i,t} - \phi_{i,xx} = \alpha_{i}(y - y_{i,d})1_{\mathcal{O}_{i}}, & i = 1, 2 \\ \phi_{i}(0, t) = \phi_{i}(1, t) = 0, \ y(0, t) = y(1, t) = 0, \quad t \in (0, T) \\ y(x, 0) = y^{0}(x), \ \phi_{i}(x, T) = 0, \quad x \in (0, 1) \end{cases}$$

$$(HSN)_2$$
 $y(x,T) = 0, x \in (0,1)$

with
$$\|f\|_{L^2(\mathcal{O}\times(0,T))} \le C\|y^0\|_{L^2}$$

For instance, for $y_{i,d} \equiv 0$, equivalent to:

 $R(L) \hookrightarrow R(M)$, with $L\mathbf{y}^0 := \mathbf{y}(\cdot, T)$, $M\mathbf{f} := \mathbf{y}(\cdot, T) \dots$ In turn, equivalent to: $\|L^*\psi^T\| \le \|M^*\psi^T\| \quad \forall \psi^T \in L^2(0, 1)$ (classical, functional analysis: [Russell, 1973])

E. Fernández-Cara

Theorem

```
Assume: \mathcal{O}_{1,d} = \mathcal{O}_{2,d}, \, \mathcal{O}_{i,d} \cap \mathcal{O} \neq \emptyset, large \mu \exists \hat{\rho} such that, if \iint_{\mathcal{O}_d \times (0,T)} \hat{\rho}^2 |y_{i,d}|^2 \, dx \, dt < +\infty, \, i = 1,2, then: \forall y^0 \in L^2(\Omega) \; \exists \; \text{null controls} \; f \in L^2(\mathcal{O} \times (0,T)) \; \& \; \text{Nash pairs} \; (v_1(f),v_2(f))
```

Idea of the proof:

1 - Large
$$\mu \Rightarrow \forall f \in L^2(\mathcal{O} \times (0, T)) \exists !$$
 Nash equilibrium $(v_1(f), v_2(f))$

$$\begin{cases} y_t - y_{xx} = f 1_{\mathcal{O}} - \frac{1}{\mu} \phi_1 1_{\mathcal{O}_1} - \frac{1}{\mu} \phi_2 1_{\mathcal{O}_2} \\ -\phi_{i,t} - \phi_{i,xx} = \alpha_i (y - y_{i,d}) 1_{\mathcal{O}_i}, & i = 1, 2 \\ \phi_i(0,t) = \phi_i(1,t) = 0, \ y(0,t) = y(1,t) = 0, \quad t \in (0,T) \\ y(x,0) = y^0(x), \ \phi_i(x,T) = 0, \quad x \in (0,1) \end{cases}$$

$$\mathbf{v}_i(f) = -\frac{1}{\mu}\phi_i|_{\mathcal{O}_i \times (0,T)}$$

2 - $||L^*\psi^T|| \le ||M^*\psi^T|| \quad \forall \psi^T \in L^2(0,1)$ means observability:

$$\|\psi|_{t=0}\|^2 + \sum_{i=1}^2 \iint_Q \hat{
ho}^{-2} |\gamma^i|^2 dx dt \le C \iint_{\mathcal{O} imes (0,T)} |\psi|^2 dx dt$$

for all ψ^T , with

$$\begin{cases} -\psi_t - \psi_{\text{xx}} = \sum_{i=1}^2 \alpha_i \gamma^i \mathbf{1}_{\mathcal{O}_d}, & \gamma_t^i - \gamma_{\text{xx}}^i = -\frac{1}{\mu} \psi \mathbf{1}_{\mathcal{O}_i} \\ \psi|_{t=T} = \psi^T(\mathbf{x}), & \gamma^i|_{t=0} = 0, \text{ etc.} \end{cases}$$

First remark: $\|\psi|_{t=t'}\|^2 \le C\|\psi|_{t=t''}\|^2$ for t' < t''

Explanation: energy estimates, large μ

$$\begin{split} \|\psi|_{t=t'}\|^2 &\leq C \left(\|\psi|_{t=t''}\|^2 + \sum_{i=1}^2 \int_{t'}^{t''} \|\gamma^i|_{t=s}\|^2 \, ds \right) \\ &\leq C \left(\|\psi|_{t=t''}\|^2 + \sum_{i=1}^2 \frac{1}{\mu^2} \int_0^{t''} \|\psi|_{t=s}\|^2 \, ds \right) \end{split}$$

$$\int_0^{t''} \|\psi|_{t=s}\|^2 ds \le C \|\psi|_{t=t''}\|^2$$

Consequence: $\|\psi\|_{t=0}^2 + \sum_{i=1}^2 \iint_{\Omega} \hat{\rho}^{-2} |\gamma^i|^2 dx dt \le C \iint_{\Omega} \rho^{-2} |\psi|^2 dx dt$

Second remark: $\iint_{\mathcal{Q}} \rho^{-2} |\psi|^2 dx dt \le C \iint_{\mathcal{O} \times (0,T)} \rho^{-2} |\psi|^2 dx dt$

Explanation: Carleman estimates for ψ and $h := \sum_{i=1}^{2} \alpha_i \gamma^i$

$$\left\{ \begin{array}{ll} -\psi_t - \psi_{xx} = \sum_{i=1}^2 \alpha_i \gamma^i \mathbf{1}_{\mathcal{O}_d}, & \gamma_t^i - \gamma_{xx}^i = -\frac{1}{\mu} \psi \mathbf{1}_{\mathcal{O}_i} \\ \psi|_{t=\tau} = \psi^T(x), & \gamma^i|_{t=0} = 0, & \text{etc.} \end{array} \right.$$

Non-empty $\omega \subset \mathcal{O} \cap \mathcal{O}_d$

$$\begin{split} I(\psi) + I_0(h) &\leq C \left(I_{loc,\omega}(\psi) + I_{loc,\omega}(h) + \iint_Q \rho_s^{-2} |h|^2 + \iint_Q \rho_{0,s}^{-2} |\psi|^2 \right) \\ &\leq C \left(I_{loc,\omega}(\psi) + I_{loc,\omega}(h) + \iint_Q \rho_{0,s}^{-2} |\psi|^2 \right) \\ &\leq C \left(I_{loc,\omega}(\psi) + I_{loc,\omega}(h) + \varepsilon I(\psi) \right) \\ &\leq C \left(I_{loc,\omega}(\psi) + \varepsilon I_0(h) + \varepsilon I(\psi) \right) \end{split}$$

EXTENSIONS

• Theorem holds also for different $\mathcal{O}_{i,d}$ if $\mathcal{O}_{1,d} \cap \mathcal{O} \neq \mathcal{O}_{i,d} \cap \mathcal{O}$

$$\left\{ \begin{array}{l} -\psi_t - \psi_{xx} = \sum_{i=1}^2 \alpha_i \gamma^i \mathbf{1}_{\mathcal{O}_{i,d}}, \quad \gamma_t^i - \gamma_{xx}^i = -\frac{1}{\mu} \psi \mathbf{1}_{\mathcal{O}_i} \\ \psi|_{t=T} = \psi^T(x), \quad \gamma^i|_{t=0} = 0, \quad \text{etc.} \end{array} \right.$$

Choose different (well chosen) weights - Introduce:

- $\mathcal{O}' \subset\subset \mathcal{O}$ and $\omega_i \subset\subset \mathcal{O}_{i,d} \cap \mathcal{O}'$, with $\omega_1 \neq \omega_2$
- Carleman weights for ω_1 and ω_2 that coincide outside \mathcal{O}'

Then:

Carleman estimates for
$$\psi$$
, $\gamma^i \Rightarrow I_0(\gamma^1) + I_0(\gamma^2) + \iint \rho^{-2} |\psi|^2 \le C I_{loc,\mathcal{O}}(\psi)$

Boundary followers, distributed leader:

$$\begin{cases} y_t - y_{xx} = \mathbf{f}_{1\mathcal{O}}, & (x,t) \in (0,1) \times (0,T) \\ y(0,t) = v^1(t), & y(1,t) = v^2(t), & t \in (0,T) \\ y(x,0) = y^0(x), & x \in (0,1) \end{cases}$$

Costs: $\alpha_i \iint_{\mathcal{O}_{i,d} \times (0,T)} |y - y_{i,d}|^2 + \mu \int_0^T |v_i|^2 dt$, i = 1, 2 Optimality system and adjoint:

$$\begin{cases} y_{t} - y_{xx} = f1_{\mathcal{O}} \\ -\phi_{i,t} - \phi_{i,xx} = \alpha_{i}(y - y_{i,d})1_{\mathcal{O}_{i,d}} \\ y(0,t) = -\frac{1}{\mu}\phi_{x}^{1}(0,t) \\ y(1,t) = \frac{1}{\mu}\phi_{x}^{2}(1,t) \\ \dots \end{cases} \begin{cases} -\psi_{t} - \psi_{xx} = \sum_{i=1}^{2} \alpha_{i}\gamma^{i}1_{\mathcal{O}_{i,d}} \\ \gamma_{t}^{i} - \gamma_{xx}^{i} = 0 \\ \gamma^{1}(0,t) = -\frac{1}{\mu}\psi_{x}(0,t), \\ \gamma^{2}(1,t) = \frac{1}{\mu}\psi_{x}(1,t) \\ \dots \end{cases}$$

The observability estimate:

$$\|\psi|_{t=0}\|^2 + \sum_{i=1}^2 \iint_Q \hat{\rho}^{-2} |\gamma^i|^2 \leq C I_{loc,\mathcal{O}}(\psi)$$
 OK under conditions above; for instance, $\mathcal{O}_{1,d} = \mathcal{O}_{2,d}$, $\mathcal{O}_{i,d} \cap \mathcal{O} \neq \emptyset$, large μ , $\iint_{\mathcal{O}_d \times \{0,T\}} \hat{\rho}^2 |y_{i,d}|^2 dx dt < +\infty$, $i=1,2$

$$\begin{cases} -\psi_t - \psi_{xx} = \sum_{i=1}^2 \alpha_i \gamma^i 1_{\mathcal{O}_{i,d}} \\ \gamma_t^i - \gamma_{xx}^i = 0 \\ \gamma^1(0,t) = -\frac{1}{\mu} \psi_x(0,t), \quad \gamma^2(1,t) = \frac{1}{\mu} \psi_x(1,t) \\ \dots \end{cases}$$

For the proof: Carleman estimates + nonzero Dirichlet conditions [Imanuvilov-Puel-Yamamoto] - For instance

$$I(\gamma^1) \leq C\left(\frac{1}{\mu^2}\|\rho_*^{-1}\frac{\partial \psi}{\partial n}(0,\cdot)\|_{H^{1/4}(0,T)}^2 + I_{loc,\omega}(\gamma^1)\right)$$

and so on ...

Distributed followers, boundary leader:

$$\begin{cases} y_t - y_{xx} = \frac{v_1 \mathbf{1}_{\mathcal{O}_1} + v_2 \mathbf{1}_{\mathcal{O}_2}, & (x, t) \in (0, 1) \times (0, T) \\ y(0, t) = \frac{f}{t}, & y(1, t) = 0, & t \in (0, T) \\ y(x, 0) = y^0(x), & x \in (0, 1) \end{cases}$$

A similar result holds

• However: boundary followers + boundary leader is unknown! We would need $\|\psi|_{t=0}\|^2 + \sum_{i=1}^2 \iint_Q \hat{\rho}^{-2} |\gamma^i|^2 \le C \int_0^T \rho_*^{-2} |\psi_x(0,t)|^2 dt$ for $(\psi, \gamma^1, \gamma^2)$ as above . . .

- More followers, coefficients, non-scalar parabolic systems, other functionals, boundary controls, higher dimensions, etc.
- Semilinear systems:

$$\begin{cases} y_t - y_{xx} = F(x, t; y) + {}^{f}1_{\mathcal{O}} + \sum_{i=1}^{m} {}^{v_i}1_{\mathcal{O}_i} \\ y(0, t) = y(1, t) = 0, & t \in (0, T), \text{ etc.} \end{cases}$$

Nash quasi-equilibria

$$\begin{cases} y_t - y_{xx} = F(x, t; y) + {}^{f}1_{\mathcal{O}} - \frac{1}{\mu} \phi_1 1_{\mathcal{O}_1} - \frac{1}{\mu} \phi_2 1_{\mathcal{O}_2} \\ -\phi_{i,t} - \phi_{i,xx} = F'(x, t; y)\phi_i + \alpha_i (y - y_{i,d}) 1_{\mathcal{O}_i}, & i = 1, 2 \\ \phi_i(0, t) = \phi_i(1, t) = 0, & y(0, t) = y(1, t) = 0, & t \in (0, T) \\ y(x, 0) = y^0(x), & \phi_i(x, T) = 0, & x \in (0, 1) \end{cases}$$

$$\mathbf{v}_i(\mathbf{f}) = -\frac{1}{\mu} \phi_i |_{\mathcal{O}_i \times (0,T)}$$

NC: OK for Lipschitz-continuous F

Also: an equivalence result!

- ECT: OK
- Constraints, for instance:

$$\begin{cases} y_t - y_{xx} = \mathbf{f} \mathbf{1}_{\mathcal{O}} + \sum_{i=1}^m \mathbf{v}_i \mathbf{1}_{\mathcal{O}_i} \\ y(0,t) = y(1,t) = 0, \quad t \in (0,T), \text{ etc.} \end{cases}$$

Find a constrained Nash equilibrium $(v_1(f), v_2(f))$ with $v_i(f) \in \mathcal{U}_{i,ad} \subset L^2(\mathcal{O}_i \times (0, T))$:

$$J_1(v_1(f), v_2(f)) \le J_1(v_1, v_2(f)) \quad \forall v_1 \in \mathcal{U}_{1,ad}$$

$$J_2(v_1(f), v_2(f)) \le J_2(v_1(f), v_2) \quad \forall v_2 \in \mathcal{U}_{2,ad}$$

Then, find f such that $y|_{t=T} = 0$ OK for local constraints, i.e. $\mathcal{U}_{i,ad} = \{ v_i \in L^2(\mathcal{O}_i \times (0,T)) : v_i(x,t) \in L_i \}$

AN INTERESTING QUESTION:

All this holds for large μ - What about small μ ?

Recall:
$$J_i(v_1, v_2) := \alpha_i \iint_{\mathcal{O}_{i,d} \times (0,T)} |y - y_{i,d}|^2 + \mu \iint_{\mathcal{O}_i \times (0,T)} |\frac{v_i}{v_i}|^2, \quad i = 1, 2$$

$$\begin{cases} y_t - y_{xx} = f \mathbf{1}_{\mathcal{O}} - \frac{1}{\mu} (\phi_1 \mathbf{1}_{\mathcal{O}_1} + \phi_2 \mathbf{1}_{\mathcal{O}_2}) \\ -\phi_{i,t} - \phi_{i,xx} = \alpha_i (y - y_{i,d}) \mathbf{1}_{\mathcal{O}_i} \end{cases} \Leftrightarrow \begin{cases} (\mathrm{Id.} - \frac{1}{\mu} \Lambda) (\mathbf{v}^1, \mathbf{v}^2) = (\mathbf{v}_0^1, \mathbf{v}_0^2) \\ \mathbf{v}^i \in L^2(\mathcal{O}_i \times (0, T)) \end{cases}$$

for some compact, positive, self-adjoint Λ

Fredholm's alternative + Hilbert-Schmidt

$$\Rightarrow \exists \mu_1 > \mu_2 > \dots$$
 (independent of f), with $\mu_n \to 0^+$ such that \exists Nash equilibrium for all $\mu \neq \mu_n$ for all n

Do we have NC for these μ ?

FINAL COMMENTS:

- The previous proof → a method to compute f and (v₁(f), v₂(f)) Numerics?
- Other strategies? Stackelberg-Pareto controllability?

$$\beta J_1'(v^1, v^2) + (1 - \beta)J_2'(v^1, v^2) = 0, \quad \beta \in (0, 1)$$

For each f, we get a family of equilibria $(v_{\beta}^{1}(f), v_{\beta}^{2}(f))$, with $\beta \in (0, 1)$

$$\begin{cases} y_{t} - y_{xx} = \int 1_{\mathcal{O}} - \frac{1}{\mu} \left(\frac{1}{\beta} \phi 1_{\mathcal{O}_{1}} + \frac{1}{1-\beta} \phi 1_{\mathcal{O}_{2}} \right) \\ -\phi_{t} - \phi_{xx} = \alpha_{1} \beta (y - y_{1,d}) 1_{\mathcal{O}_{1,d}} + \alpha_{2} (1 - \beta) (y - y_{2,d}) 1_{\mathcal{O}_{2,d}} \\ \dots \\ \begin{cases} -\psi_{t} - \psi_{xx} = \alpha_{1} \beta \gamma 1_{\mathcal{O}_{1,d}} + \alpha_{2} (1 - \beta) \gamma 1_{\mathcal{O}_{2,d}} \\ \gamma_{t}^{i} - \gamma_{xx}^{i} = -\frac{1}{\mu} \left(\frac{1}{\beta} \psi 1_{\mathcal{O}_{1}} + \frac{1}{1-\beta} \psi 1_{\mathcal{O}_{2}} \right) \end{cases}$$

- \exists "common" null controls, i.e. f such that y(T) = 0 for several β ?
- \exists average null controls, i.e. f such that $(\int_0^1 y \, d\beta)(T) = 0$?
- Navier-Stokes? OPEN Locally (for small y₀)? ALSO OPEN [Guerrero, Carreño, Gueye, ...]

In progress ...

Additional results and comments

Final comments

REFERENCES:

ARARUNA, F., FERNÁNDEZ-CARA, E., SANTOS, M.

Stackelberg-Nash exact controllability for linear and semilinear parabolic equations.

ESAIM: COCV. 2014.

ARARUNA, F., FERNÁNDEZ-CARA, E., GUERRERO, S., SANTOS, M. New results on the Stackelberg Nash exact controllability for parabolic equations,

in preparation.

ARARUNA, F., FERNÁNDEZ-CARA, E., SILVA, L.

Hierarchic control for exact controllability of parabolic equations with distributed and boundary controls.

in preparation.

GUILLÉN, F., MARQUES-LOPES, F., ROJAS-MEDAR, M.-A.

On the approximate controllability of Stackelberg-Nash strategies for Stokes equations,

Proc. AMS, 141, no. 5, 2013, pp. 759-773.

THANK YOU VERY MUCH ...

AND CONGRATULATIONS, JEAN-MICHEL ...