
Digital Object Identifier (DOI) 10.1007/s00205-017-1119-y
Arch. Rational Mech. Anal. 225 (2017) 993–1023

Null Controllability and Finite Time
Stabilization for the Heat Equations with
Variable Coefficients in Space in One
Dimension via Backstepping Approach

Jean-Michel Coron and Hoai-Minh Nguyen

Communicated by A. Bressan

Abstract

Using the backstepping approach we recover the null controllability for the
heat equations with variable coefficients in space in one dimension and prove that
these equations can be stabilized in finite time by means of periodic time-varying
feedback laws. To this end, on the one hand, we provide a new proof of the well-
posedness and the “optimal” bound with respect to damping constants for the solu-
tions of the kernel equations; this allows one to deal with variable coefficients,
even with a weak regularity of these coefficients. On the other hand, we establish
the well-posedness and estimates for the heat equations with a nonlocal boundary
condition at one side.
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1. Introduction

The null controllability of heat equations has been extensively investigated
for several decades. This was pioneered in [13] by the moment method. Since
then, there have been a few other methods to prove the null controllability of heat
equations. One is based on the construction of the fundamental solution as proposed
by [19,25]. One is based on Carleman estimates, as initiated in [15,24]; see also
[12] and references therein for recent results. One, as proposed in [30], is via the
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transmutation method, which relates the null-controllability of the heat equation to
the exact controllability of the wave equation. Another, as proposed in [29], is via
the flatness approach; in this approach, x is considered as the time-variable, see
also [16].

In this paper, we present a new approach to obtain the null controllability for
the heat equations with Dirichlet boundary control. This new approach is based
on a backstepping design in which the kernel also depends on time. The back-
stepping method has been used as a standard tool to stabilize finite dimensional
control systems, see, e.g., [5,21]. This method was initiated in [6,27] to design
feedback laws stabilizing control systems modeled by partial differential equa-
tions. Later on, Krstic and his collaborators introduced a key modification of the
method: using a Volterra transform of the second kind, coming from the applica-
tion of the classical backstepping method applied to a spatial discretization of the
partial differential equation, they mapped the original equation into an asymptot-
ically stable one. In this context, the first continuous backstepping designs were
proposed for the heat equation in [26,33]. The applications to wave equations
appeared later in [20,32,35]. Since then, this has been applied to study the stabil-
ity of parabolic equations in [33,34], of hyperbolic systems in [9,10,17,18,22],
of nonlinear parabolic equations in [36], of Korteweg–de Vries equations in [4]
and of Kuramoto–Sivashinsky equations in [28]. A concise introduction to this
method applied to numerous partial differential equations can be found in [23]. In
this paper, we implement the backstepping idea to obtain the null-controllability
of 1-d heat equations. We also provide a new method to prove the existence of and
to establish the “optimal” bound for a solution to the kernel equation. Finally, we
show how this approach can be used to stabilize in finite time these equations by
means of time-varying feedback laws. To this end, we establish the well-posedness
and provide estimates for the heat equations with a nonlocal boundary condition at
one side.

Remark 1. For some equations, one needs to use a more general transformations
than the one given by the backstepping approach (i.e. a Volterra transform of the
second kind). See, in particular, [2] forwave equations, [3] for compensating the dis-
tributed effect of diffusion and counter-convection inMulti-Input andMulti-Output
LTI systems, [7] for KdV equations, [8] for Kuramoto–Sivashinsky equations. In
the last two papers, the existence of these more general transformations is shown
to be equivalent to the controllability (of the linearized control system).

We consider the control system

{
ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) in (τ1, τ2) × [0, 1],
u(t, 0) = 0, u(t, 1) = U (t) for t ∈ (τ1, τ2),

(1.1)

where, at t ∈ (τ1, τ2), the state is u(t, ·) ∈ L2(0, 1) and the control is U (t) ∈ R.
Throughout this paper, we assume that a ∈ H2(0, 1), c ∈ H1(0, 1), and

a(x) > 0 for every x ∈ [0, 1], (1.2)
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which implies the existence of � ≥ 1 such that 0 < 1/� ≤ a(x) ≤ � in [0, 1]
since a is continuous on [0, 1].

The first goal of this paper is to provide a new way (via backstepping design)
to obtain constructive controlsU which steer the control system (1.1) from a given
u0 ∈ L2(0, 1) to 0 during the interval of time [0, T ], with T > 0 given, i.e.,
u(t, ·) → 0 as t → T− where u is the solution of⎧⎪⎪⎨

⎪⎪⎩
ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) in (0, T ) × [0, 1],
u(t, 0) = 0, u(t, 1) = U (t) for t ∈ (0, T ),

u(t = 0, ·) = u0 for x ∈ [0, 1].
(1.3)

Let us denote by L2(0, 1)∗ the set of continuous linear maps from L2(0, 1) into R.
We have the following theorem:

Theorem 1. Let T > 0. There exists a piecewise constant functionalK : [0, T ) →
L2(0, 1)∗ such that, for every u0 ∈ L2(0, 1), if u ∈ C0

([0, T ); L2(0, 1)
)
is the

solution of (1.3) with U (t) defined by

U (t) := K(t)u(t, ·), (1.4)

then

u(t, ·) → 0 in L2(0, 1) as t → T−, (1.5)

U (t) → 0 as t → T−, (1.6)

where u is the solution of (1.3).

Remark 2. The well-posedness of (1.3) whereU (t) is given by (1.4) is established
under a more general assumption onK in Lemma 6 via the maximum principle and
the multiplier technique.

Remark 3. Theorem 1 is a consequence of Proposition 1 presented later. More
information on K can be derived from there.

Note that K must be time dependent. This is the difference between the feed-
back for the null-controllability in finite time and the feedback for the exponential
stability for the heat equation. In fact, assume that a = 1, c = 0, and K(t) is
independent of t . There exists θ ∈ L2(0, 1) such that

K(t)v =
∫ 1

0
θ(x)v(x) dx for v ∈ L2(0, 1), t ∈ (0, T ).

Set, for μ ∈ R,

uμ(t, x) = e−μ2t sin(μx).

Note that

lim
μ→+∞

∫ 1

0
θ(x) sin(μx) dx = 0.
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It follows that there exists μ ∈ R \ {0} such that

sinμ =
∫ 1

0
θ(x) sin(μx) dx .

One can easily check that uμ is a solution of the system⎧⎪⎨
⎪⎩
ut − uxx = 0 for (t, x) ∈ (0, T ) × (0, 1),

u(t, 0) = 0, u(t, 1) =
∫ 1

0
θ(x)u(t, x) dx for 0 < t < T .

(1.7)

Hence the null controllability is not achieved with the time invariant feedback K.
Let us briefly describe here the idea of the proof of Theorem 1. The operator

K(t) in Theorem 1 is of the form

K(t)v =
∫ 1

0
kn(1, y)v(y) dy for every v ∈ L2(0, 1), (1.8)

for tn ≤ t < tn+1 for some sequence (tn)n∈N → T− and for some sequence of
functions (called kernels) (kn)n∈N defined in D which is given by

D :=
{
(x, y) ∈ [0, 1]2; y ≤ x

}
.

The choice of (tn)n∈N and (kn)n∈N are derived from the backstepping approach as
follows. Let (tn)n∈N be a strictly increasing sequence of real numbers such that
t0 = 0 and tn → T as n → ∞. We construct the kernel kn (used for the interval of
time [tn, tn+1)) using backstepping design: define, for tn ≤ t < tn+1,

w(t, x) = u(t, x) −
∫ x

0
kn(x, y)u(t, y) dy, (1.9)

where kn is chosen such that, for tn ≤ t < tn+1 and for u solution of (1.1),

wt (t, x) − (a(x)wx (t, x))x + λnw(t, x) = 0 for x ∈ [0, 1], (1.10)

for some λn > 0, damping coefficients. By requiring that (1.10) holds for any u
satisfying (1.1) with (τ1, τ2) = (tn, tn+1), one obtains the following system for kn :⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2a(x)

d

dx
kn(x, x)+ax (x)kn(x, x)+[λn+c(x)] = 0 for x ∈ [0, 1],

kn(x, 0) = 0 for x ∈ [0, 1],(
a(x)kn,x (x, y)

)
x−(

a(y)kn,y(x, y)
)
y−[λn+c(y)]kn(x, y) = 0 in D.

(1.11)
Here and in what follows, we use the notation

d

dx
k(x, x) := kx (x, x) + ky(x, x),

where kx and ky denotes the partial derivative of k:D → R with respect to x and
y. In fact, we can verify that such a kn exists (Lemma 2) and that, indeed, (1.10)
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holds if u satisfies (1.1) with (τ1, τ2) = (tn, tn+1) and if w is defined by (1.9) with
kn satisfying (1.11) (see Lemma 3). The control U in (1.4) is chosen as usual by
requiring (1.8) in order to have

w(t, 1) = 0 for tn < t < tn+1. (1.12)

Let us point out that, from (1.1) and (1.9), we have

w(t, 0) = 0 for tn < t < tn+1. (1.13)

We derive from (1.10), (1.12) and (1.13) that

‖w(t, ·)‖L2 ≤ e−λn(t−tn)‖w(tn+, ·)‖L2 . (1.14)

From (1.14), we obtain the decay of w as t → T−. To compute u from w, one
searches the kernel ln such that

u(t, x) = w(t, x) +
∫ x

0
ln(x, y)w(t, y) dy. (1.15)

By requiring that, for tn ≤ t < tn+1,

ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) for x ∈ [0, 1], (1.16)

one gets⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2a(x)

d

dx
ln(x, x) + ax (x)ln(x, x) + λn + c(x) = 0 for x ∈ [0, 1],

ln(x, 0) = 0 for x ∈ [0, 1],(
a(x)ln,x (x, y)

)
x−(

a(y)ln,y(x, y)
)
y+[λn+c(x)]ln(x, y) = 0 in D.

(1.17)
In fact, we can prove that ln exists (Lemma 2) and that, if ln satisfies (1.17) and if
w is defined by (1.9) where kn satisfies (1.11), then (1.15) holds (Lemma 4). We
establish the following crucial estimates for kn and ln (Lemma 2):

‖kn‖H1(D) ≤ eCλ
1/2
n and ‖ln‖H1(D) ≤ Cλ2n, (1.18)

for some positive constant C which depends only on a and c; it does not depend
on n. Let us point out that related estimates already appear in [24, Proposition 1].
These related estimates are proved thanks to Carleman estimates. Our appoach is
completely different. From (1.14) and (1.18), we can derive that u(t, ·) → 0 in
L2(0, 1) and U (t) → 0 in R as t → T− by appropriate choices of (tn)n∈N and
of (λn)n∈N (see also [24, pp. 343–344]). More precisely, we prove the following
proposition:

Proposition 1. Let T > 0, (λn)n≥0 be an increasing sequence of positive numbers
converging to infinity, and let (tn)n≥0 be an increasing sequence which converges
to T with t0 = 0. Define, for tn ≤ t < tn+1,

U (t) :=
∫ 1

0
kn(1, y)u(t, y) dy, (1.19)
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where kn is given in (1.11). Set s0 := 0 and sn := ∑n−1
k=0 λk(tk+1 − tk) for n ≥ 1.

There exists a positive constant γ , depending only on a and c, such that if, for
large n,

(tn+1 − tn)λn ≥ γ
√

λn+1, (1.20)

then, for tn ≤ t ≤ tn+1,

‖u(t, ·)‖L2 ≤ Ce−sn−1/4+C(n−1)‖u0‖L2 , (1.21)

|U (t)| ≤ Ce−sn−1/4+C(n−1)+C
√

λn‖u0‖L2 , (1.22)

for some positive constant C independent of n and u0. In particular, if, in addition
we have that

lim
n→+∞

sn
n + √

λn+1
= +∞, (1.23)

then

lim
t→T−

‖u(t, ·)‖L2 = 0, (1.24)

lim
t→T−

U (t) = 0. (1.25)

There are sequences (tn)n∈N and (λn)n∈N which satisfy (1.20) and (1.23), for
example, the sequences such that tn = T − T/n2 and λn = n8 for large n. Hence,
Theorem 1 is a corollary of Proposition 1.

Remark 4. From the construction of kn , one can verify that

‖K(t)‖ ≤ C(τ ) for 0 ≤ t ≤ τ < T, and lim
t→T−

‖K(t)‖ = +∞.

It is interesting to know whether or not there exists a bounded feedback K in
L2(0, 1)∗ which yields the null-controllability at time T . Note that, in general, one
cannot assume too much on the regularity and the boundedness of K. To see this,
let us assume that a = 1, c = 0, and K ∈ L2

(
(0, T ); H2(0, 1) ∩ H1

0 (0, 1)
)
. For

t ∈ (0, T ), let v(t, ·) ∈ H1
0 (0, 1) be the unique solution of −vxx (t, x) = u(t, x)

for x ∈ (0, 1). One can check that, for x ∈ (0, 1),

v(t, x) = −
∫ x

0

∫ y

0
u(t, s) ds dy + x

∫ 1

0

∫ y

0
u(t, s) ds dy.

One can then derive that

vt (t, x) − vxx (t, x) = xu(t, 1).

Since −vxx (t, x) = u(t, x), it follows from integration by parts that

vt (t, x) − vxx (t, x) = −x
∫ 1

0
Kss(t, s)v(t, s) ds.

One now can apply [1, Theorem II.2] to conclude that if v(T, ·) = 0 (this holds if
u(T, ·) = 0) then v(0, ·) = 0; which in turn implies u(0, ·) = 0. Hence the null-
controllability is not achieved. More generally, it would be interesting to obtain
sharp conditions on K under which the backward uniqueness holds for (1.3) with
U defined in (1.4).
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In this paper, we therefore provide a new constructive control to reach the null
controllability for the heat equation with variable coefficients via backstepping
approach. Our idea is to use a sequence of kernels (kn)n∈N in an appropriate choice
of time interval [tn, tn+1) corresponding for a sequence of positive numbers (λn)n∈N
used for damping effect converging to infinity to stabilize the equations more and
more as t goes to T . To implement this idea, we need to prove the existence of kn and
ln , and establish estimates given in (1.18) (see Corollaries 1 and 2). Our analysis is
variational and different from the standard one and hence requires some new ideas.
First, to handle the existence of kn and ln in the variable coefficients case, we show,
in Lemma 1, a connection of (1.11) and (1.17) with the wave equation defined in
[0, 1]2. To this end, we establish a property of the finite speed of propagation type
(see (2.6) in Lemma 1). Known methods to prove the existence of kn and ln (in the
case a is constant) are based on special functions or by fixed point arguments (see,
in particular, [23, Chap. 4] and [11]). Second, the proof of (1.18) is only known
for constants a and c using the information of special functions (see, e.g., [23,
Chap. 4]). In the case that a is constant and c is not, it is known that the estimate
of kn in (1.18) holds provided that the exponent λ

1/2
n is replaced by λn (see, e.g.,

[23, Chap. 4]). Nevertheless, the exponent λn is not sufficient to get the decay
of un to 0 due to (1.14). Estimates in (1.18) are derived from (2.5) of Lemma 1.
Assertion (2.5) is established via an energy type estimate for the wave equation
which is somehow nonstandard in the sense that the energy not only contains the
gradient of the solutions but also the solutions, see (2.14); the standard energy
estimate only gives the exponent λn .

The second goal of this article is to show that the control system (1.1) can be
semi-globally stabilized in arbitrary time by means of time-varying feedback laws
(t, v) ∈ R× L2(0, 1) �→ F(t, v) ∈ R. We look for feedback laws F satisfying the
following three properties:

(P1) The feedback law F is T -periodic with respect to time:

F(t, v) = F(t + T, v) for every (t, v) ∈ R × L2(0, 1); (1.26)

(P2) There exists a strictly increasing sequence (tn)n∈N of real numbers such that

t0 = 0, (1.27)

lim
n→+∞ tn = T, (1.28)

F is of class C1 in [tn, tn+1) × L2(0, 1) for every n ∈ N; (1.29)

(P3) The map F vanishes on R × {0} and there exists a continuous function
M : [0, T ) → [0,+∞) such that

|F(t, v2) − F(t, v1)| ≤ M(t)‖v2 − v1‖L2

∀ (t, v1, v2) ∈ [0, T ) × L2(0, 1) × L2(0, 1). (1.30)

Before stating our second result, let us make some comments on the Cauchy
problem
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⎧⎪⎪⎨
⎪⎪⎩
ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) for (t, x) ∈ (s, τ ) × [0, 1],
u(t, 0) = 0, u(t, 1) = F (t, u(t, ·)) for t ∈ (s, τ ),

u(s, ·) = u0 for x ∈ [0, 1],
(1.31)

where−∞ < s < τ < +∞ and u0 ∈ L2(0, 1) are given.We use the following def-
inition: u : [s, τ )× (0, 1) → R is a solution of (1.31) if u is inC0

([s, τ ); L2(0, 1)
)

is such that, for every ξ ∈ C2([s, τ )×[0, 1])with compact support in [s, τ )×[0, 1]
and which vanishes on [s, τ ) × {0, 1}, one has

−
∫ 1

0
u0(x)ξ(s, x) dx −

∫ τ

s

∫ 1

0
u(t, x)ξt (t, x) dx, dt

+
∫ τ

s
a(1)F(t, u(t, ·))ξx (t, 1) dt

−
∫ τ

s

∫ 1

0
u(t, x) ((a(x)ξx (t, x))x + c(x)ξ(t, x)) dx = 0. (1.32)

Usingproperties (P1) and (P3), onegets the uniqueness of the solution to theCauchy
problem (1.31): two solutions u1 : [s, τ1)× (0, 1) → R and u2 : [s, τ2)× (0, 1) →
R to (1.31) are equal on [s,min{τ1, τ2}) × (0, L) (see the proof of Lemma 6). A
solution u1 : [s, τ1) × (0, 1) → R to the Cauchy problem (1.31) is said to be
maximal if there is no solution u2 : [s, τ2) × (0, 1) → R to the Cauchy problem
(1.31) with τ2 > τ1 and u1 = u2 on [s, τ1)× (0, 1). From now on, all the solutions
to the Cauchy problem (1.31) considered are maximal. As was just mentioned, this
solution is unique. We denote this solution by t ∈ [s, t(s, u0)) → �(t, s, u0). Let
us point out that, as proved in Lemma 6, Properties (P1), (P2) and (P3) imply that
t(s, u0) > s for every (s, u0) ∈ R × L2(0, 1).

Our second result states that the control system (1.1) can be semi-globally
stabilized in arbitrary time by means of time-varying feedback laws (t, v) ∈ R ×
L2(0, 1) �→ F(t, v) ∈ R satisfying Properties (P1), (P2) and (P3).

Theorem 2. Let T > 0 and 	 > 0. There exists a time-varying feedback law
(t, v) ∈ R × L2(0, 1) �→ F(t, v) ∈ R satisfying Properties (P1), (P2) and (P3)
such that

∃(C, T̄ ) ∈ (0,+∞) × (0, T ) such that |F(t, v)|
≤ C‖v‖1/2

L2 ∀ (t, v) ∈ [T̄ , T ) × L2(0, 1), (1.33)

t(s, u0) = +∞ for every (s, u0) ∈ R × L2(0, 1), (1.34)

�(t + 2T, t, u0) = 0 for every (t, u0) ∈ R × L2(0, 1) such that ‖u0‖L2 ≤ 	,

(1.35)

and such that the uniform stability condition{∀ ε > 0, ∃η > 0 such that, ∀ t ′ ∈ R, ∀ t ∈ [t ′,+∞), and ∀ u0 ∈ L2(0, 1),(‖u0‖L2 ≤ η
) ⇒ (‖�(t, t ′, u0)‖ ≤ ε

)
(1.36)

holds.
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The paper is organized as follows. In Sect. 2, we establish several lemmaswhich
are used in the proof of Proposition 1 and Theorem 2. In particular, we prove the
existence and uniqueness of kn and ln , together with estimates for these functions.
The proof of Proposition 1 is given in Sect. 3. (Let us recall that, as was observed
above, Proposition 1 impliesTheorem1.) In Sect. 4,we establish thewell-posedness
of (1.31) and various estimates for the flow �. Finally, in Sect. 5, we give the proof
of Theorem 2.

2. Preliminaries

In this section, we establish several lemmas used in the proof of Proposition 1
and Theorem 2. The first one is on the stability and a property of the wave equation,
which plays an important role in our analysis and is interesting in itself.

Lemma 1. Let λ ∈ R, f ∈ L2
(
(0, 1)2

)
, and let a1, a2, b1, b2 and c be bounded

measurable functions defined in [0, 1]2 such that a1 and a2 are Lipschitz and

1/� ≤ a1(x, y), a2(x, y) ≤ � and

|b(x, y)|, |c(x, y)| ≤ � for (x, y) ∈ [0, 1]2, (2.1)

for some � ≥ 1, where b = (b1, b2). There exists a unique solution

K ∈ L2
(
(0, 1); H1

0 (0, 1)
)

∩ H1
(
(0, 1)2

)
(2.2)

to the equation

(a1(x, y)Kx (x, y))x − (
a2(x, y)Ky(x, y)

)
y

+ b(x, y) · ∇K (x, y) − [λ + c(x, y)]K (x, y) = f (x, y) in [0, 1]2, (2.3)

such that

K (x, 0) = K (x, 1) = 0 for x ∈ [0, 1]
and K (0, y) = Kx (0, y) = 0 for y ∈ [0, 1]. (2.4)

Moreover,∫ 1

0
|∇K (x, y)|2 dy ≤ C max{eCsign(λ)

√|λ|, 1}
∫ 1

0

∫ 1

0
| f (x, y)|2 dy dx

for x ∈ [0, 1]. (2.5)

Assume in addition that a1(x, x) ≥ a2(x, x) for x ∈ [0, 1] and supp f ⊂ D. We
have

K (x, y) = 0 in [0, 1]2 \ D. (2.6)

Here C denotes a positive constant depending only on� and the Lipschitz constant
of (a1, a2).



1002 J.-M. Coron and H.-M. Nguyen

We consider (2.3) and (2.4) as a wave system in which x is seen as time variable
and y is seen as space variable and use the following definition for solutions: a
function K : (0, 1)2 → R is said to be a solution of (2.3) and (2.4) if (2.2) is
satisfied, (2.3) holds in the distributional sense, and

K (0, ·) = 0, (2.7)

Kx (0, ·) = 0. (2.8)

(Equality (2.7) is an equality in L2(0, 1), while (2.8) is an equality in H−1(0, 1):
note that, by (2.2) and (2.3), K ∈ H2

(
(0, 1); H−1(0, 1)

)
.)

Remark 5. The exponent
√

λ in (2.5) is optimal. This can be seen in the cases
a1 = a2 = 1, b = (0, 0) and c = 0 by using the spectral method to solve the wave
equation.

Proof. The existence and uniqueness of K are standard and left to the reader. We
next prove (2.5) and (2.6). We only give the proof in the case that a1, a2, b, c, and f
are smooth and satisfy suitable compatibility conditions (which are automatically
satisfied if the support of f is included in a compact subset of (0, 1] × [0, 1]). The
proof in the general case follows by a standard regularizing argument. In the case
considered, from the standard regularity theory of the wave equation, it follows that
K is smooth. We begin with the proof of (2.5). We only consider the case in which
λ > 0 and is large enough. The proof in the other case is similar and even simpler.
Multiplying the equation of K by Kx (x, y), integrating with respect to y from 0 to
1, and using an integration by parts, we have∫ 1

0

1

2

[
d

dx

(
a1(x, y)K

2
x (x, y)

)
+ a1,x (x, y)K

2
x (x, y) + d

dx

(
a2(x, y)K

2
y (x, y)

)
− a2,x (x, y)K

2
y (x, y) + 2b(x, y) · ∇K (x, y)Kx (x, y)

−[λ + c(x, y)] d

dx
K 2(x, y)

]
dy =

∫ 1

0
f (x, y)Kx (x, y) dy.

This implies

d

dx

∫ 1

0

[
a1(x, y)K

2
x (x, y) + a2(x, y)K

2
y (x, y) − λK 2(x, y)

]
dy

= 2
∫ 1

0
f (x, y)Kx (x, y) dy −

∫ 1

0

[
a1,x (x)K

2
x (x, y) − a2,x (x, y)K

2
y (x, y)

+ 2b(x, y) · ∇K (x, y)Kx (x, y) − 2c(x, y)Kx (x, y)K (x, y)] dy. (2.9)

Integrating (2.9) from 0 to x , using the ellipticity and the Lipschitz property of a1
and a2 and the boundedness of b and c, we obtain, for x ∈ [0, 1],∫ 1

0

[
K 2
x (x, y) + K 2

y (x, y)
]
dy ≤ C

∫ 1

0
λK 2(x, y) dy

+C
∫ x

0

∫ 1

0

[
K 2
x (s, y) + K 2

y (s, y)
]
dy ds + ‖ f ‖2L2(0,1)2 . (2.10)
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Set
K̂ (x, y) = K (λ−1/2x, y) for (x, y) ∈ [0, λ1/2] × [0, 1].

We derive from (2.10) that, for x ∈ [0, λ1/2],∫ 1

0

[
K̂ 2
x (x, y) + λ−1 K̂ 2

y (x, y)
]
dy ≤ C

∫ 1

0
K̂ 2(x, y) dy

+C
∫ x

0

∫ 1

0

[
K̂ 2
x (s, y) + λ−1 K̂ 2

y (s, y)
]
dy ds + ‖ f ‖2L2 . (2.11)

Define

V1(x) =
∫ 1

0

[
K̂ 2
x (x, y) + λ−1 K̂ 2

y (x, y)
]
dy and V2(x) =

∫ 1

0
K̂ 2(x, y) dy.

We have

V ′
2(x) = 2

∫ 1

0
K̂x (x, y)K̂ (x, y) dy ≤ 2V 1/2

1 (x)V 1/2
2 (x), (2.12)

and from (2.11) we obtain

V1(x) ≤ C

(
V2(x) +

∫ x

0
V1(s) ds + ‖ f ‖2L2

)
. (2.13)

A combination of (2.12) and (2.13) yields

V1(x) + V ′
2(x) ≤ C

(
V2(x) +

∫ x

0
V1(s) ds + ‖ f ‖2L2

)
. (2.14)

We derive from Gronwall’s inequality that∫ x

0
V1(s) ds + V2(x) ≤ C‖ f ‖2L2e

Cx ,

which implies ∫ 1

0

[
K̂ 2
x (x, y) + λ−1 K̂ 2

y (x, y)
]
dy ≤ C‖ f ‖2L2e

Cx .

Estimate (2.5) now follows by a change of variables and the definition of K̂ .
We next establish that K (x, y) = 0 in [0, 1]2 \ D. Define

E(x) = 1

2

∫ 1

x

(
a1(x, y)K

2
x (x, y) + a2(x, y)K

2
y (x, y)

)
dy.

We have

E ′(x) =
∫ 1

x

(
a1(x, y)Kxx (x, y)Kx (x, y) + 1

2
a1,x (x, y)K

2
x (x, y)

)
dy

+
∫ 1

x

(
a2(x, y)Ky(x, y)Kxy(x, y) + 1

2
a2,x (x, y)K

2
y (x, y)

)
dy

− 1

2

[
a1(x, x)K

2
x (x, x) + a2(x, x)K

2
y (x, x)

]
.
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An integration by parts yields

E ′(x) =
∫ 1

x

[
(a1(x, y)Kx (x, y))x − (

a2(x, y)Ky(x, y)
)
y

]
Kx (x, y) dy

+
∫ 1

x

(
−1

2
a1,x (x, y)K

2
x (x, y) + 1

2
a2,x (x, y)K

2
y (x, y)

)
dy

− 1

2

[
a1(x, x)K

2
x (x, x) + a2(x, x)K

2
y (x, x) + 2a2(x, x)Kx (x, x)Ky(x, x)

]
.

Since a1(x, x) ≥ a2(x, x), we derive that

E ′(x) ≤ C(λ)E(x).

Since E(0) = 0, it follows that E = 0. The proof is complete. ��
Remark 6. The Lipschitz assumption on a1 and a2 can be weakened, however the
uniqueness does not hold if one only assumes (2.1); see [31, Theorem 9].

Using Lemma 1, we can establish the following lemma:

Lemma 2. Let λ ∈ R, g ∈ H2(0, 1) with g(0) = 0 and c ∈ L2(D). There exists a
unique solution k ∈ H1(D) to the system⎧⎪⎪⎨
⎪⎪⎩
k(x, x) = g(x) for x ∈ [0, 1],
k(x, 0) = 0 for x ∈ [0, 1],
(a(x)kx (x, y))x − (

a(y)ky(x, y)
)
y − [λ + c(x, y)]k(x, y) = 0 in D.

(2.15)
Moreover, for every x ∈ [0, 1],∫ x

0
|∇k(x, y)|2 dy ≤ C max

{
eCsign(λ)

√|λ|, 1 + |λ|2
}

‖g‖2H2 , (2.16)

for some positive constant C independent of g, x ∈ [0, 1], and λ.

Proof. We first establish the uniqueness of k. Assume that g = 0. We prove that
k = 0.Note that (−1/

√
2, 1/

√
2) is a normal unit vector of	 := {(x, x); x ∈ (0, 1)}

and, for x ∈ [0, 1],(
a(x)kx (x, x),−a(x)ky(x, x)

) ·
(
−1/

√
2, 1/

√
2
)

= − 1√
2
a(x)

d

dx
k(x, x) = 0,

(2.17)
since g = 0. Extend k = 0 in [0, 1]2 \ D and still denote the extension by k. Then
k ∈ H1

(
(0, 1)2

)
and, by (2.17),

(a(x)kx (x, y))x − (
a(y)ky(x, y)

)
y − [λ + c(x, y)]k(x, y) = 0 in [0, 1]2.

It is clear that k(x, 0) = k(x, 1) = 0 for x ∈ [0, 1], and k(0, y) = kx (0, y) = 0 for
y ∈ [0, 1]. Hence k = 0 by Lemma 1; the proof of the uniqueness is complete. To
prove the existence of k, we proceed as follows: define

ϕ(x, y) = g(x)y/x in D
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and set k1 = k − ϕ in D. Then

⎧⎪⎪⎨
⎪⎪⎩
k1(x, x) = 0 for x ∈ [0, 1],
k1(x, 0) = 0 for x ∈ [0, 1],(
a(x)k1,x (x, y)

)
x − (

a(y)k1,y(x, y)
)
y− [λ+ c(x, y)]k1(x, y)= f1(x, y) in D,

(2.18)
where

f1(x, y) = − (a(x)ϕx (x, y))x + (
a(y)ϕy(x, y)

)
y + [λ + c(x, y)]ϕ(x, y) in D.

Since

ϕx (x, y) = [g′(x) − g(x)/x]y/x, ϕy(x, y) = g(x)/x, (2.19)

ϕxx (x, y) = −2[g′(x) − g(x)/x]y/x2 + g′′(x)y/x, ϕyy(x, y) = 0, (2.20)

and 0 ≤ y ≤ x ≤ 1 for (x, y) ∈ D, we have, in D,

| f1(x, y)| ≤ C
(|g′(x) − g(x)/x |/x + |g′′(x)| + |g(x)/x |

+ (|c(x, y)| + |λ|) |g(x)|) . (2.21)

We claim that ∫ 1

0

1

x
|g′(x) − g(x)/x |2 dx ≤ C‖g‖2H2 . (2.22)

Assuming the claim, we continue the proof. By (2.21) and (2.22), one has

‖ f1‖L2(D) ≤ C(1 + |λ|)‖g‖H2 .

By Lemma 1, there exists k2 the unique solution to the system(
a(x)k2,x (x, y)

)
x−

(
a(y)k2,y(x, y)

)
y−[λ+c(x, y)]k2(x, y) = f2(x, y) in [0, 1]2,

(2.23)
k2(x, 0) = k2(x, 1) = 0 for x ∈ [0, 1], and k2(0, y) = k2,x (0, y) = 0 for y =
[0, 1].Here f2 = 1D f1 where 1D denotes the characteristic function of D.Applying
Lemma 1, we also have

k2(x, y) = 0 in [0, 1]2 \ D.

Hence k1 can be chosen as the restriction of k2 in D and k = k1 +ϕ in D. Estimate
(2.16) follows immediately from the one of k2 obtained from Lemma 1 after using
(2.19).

It remains to prove (2.22). We have, since g(0) = 0, that

g′(x) − g(x)/x = g′(x) −
∫ 1

0
g′(t x) dt

=
∫ 1

0

∫ 1

0
x(1 − t)g′′ (t x + s(x − t x)) ds dt.
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It follows that∫ 1

0

1

x
|g′(x)−g(x)/x |2 dx ≤

∫ 1

0

∫ 1

0

∫ 1

0
x(1−t)2

∣∣g′′ (t x + s(x − t x))
∣∣2 ds dt dx .

(2.24)
By a change of variables y = t x + sx − st x and by using Fubini’s theorem, we
have ∫ 1

0

∫ 1

0

∫ 1

0
(1 − t)2

∣∣g′′ (t x + s(x − t x))
∣∣2 ds dt dx

≤
∫ 1

0

∫ 1

0

∫ 1

0

(1 − t)2

t + s − ts
|g′′(y)|2 dy ds dt. (2.25)

Since ∫ 1

0

∫ 1

0

(1 − t)2

t + s − ts
ds dt = −

∫ 1

0
(1 − t) ln t dt < +∞,

the claim (2.22) now follows from (2.24) and (2.25). ��
From Lemma 2, we get the following corollary, which gives the existence and

uniqueness of kn together with the first inequality of (1.18):

Corollary 1. Let λ0 > 0. For every λ ≥ λ0, there exists a unique solution k ∈
H1(D) of the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2a(x)

d

dx
k(x, x) + ax (x)k(x, x) + λ + c(x) = 0 for x ∈ [0, 1],

k(x, 0) = 0 for x ∈ [0, 1],
(a(x)kx (x, y))x − (

a(y)ky(x, y)
)
y − [λ + c(y)]k(x, y) = 0 in D.

(2.26)
Moreover,

‖k‖H1(D) ≤ eCλ1/2 , (2.27)

for some positive constant C independent of λ ∈ [λ0,+∞).

Proof. Since a ∈ H2(0, 1) and c ∈ H1(0, 1), there exists (a unique) g ∈ H2(0, 1)
such that

2a(x)g′(x) + ax (x)g(x) + λ + c(x) = 0 in [0, 1] and g(0) = 0;
moreover,

‖g‖H2 ≤ Cλ, (2.28)

for some positive constant C independent of λ. Then (2.26) is equivalent to⎧⎪⎪⎨
⎪⎪⎩
k(x, x) = g(x) for x ∈ [0, 1],
k(x, 0) = 0 for x ∈ [0, 1],
(a(x)kx (x, y))x − (

a(y)ky(x, y)
)
y − [λ + c(y)]k(x, y) = 0 in D.

The existence and uniqueness of k now follow from Lemma 2 and estimate (2.27)
is a consequence of (2.16) and (2.28). ��



Null Controllability and Finite Time Stabilization... 1007

Similar to Corollary 1, we obtain the following consequence of Lemma 2whose
proof is left to the reader:

Corollary 2. Let λ0 > 0. For every λ ≥ λ0, there exists a unique solution l ∈
H1(D) of the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2a(x)

d

dx
l(x, x) + ax (x)l(x, x) + λ + c(x) = 0 for x ∈ [0, 1],

l(x, 0) = 0 for x ∈ [0, 1],
(a(x)lx (x, y))x − (

a(y)ly(x, y)
)
y + [λ + c(x)]l(x, y) = 0 in D.

(2.29)
Moreover,

‖l‖H1(D) ≤ Cλ2, (2.30)

for some positive constant C independent of λ ∈ [λ0,+∞).

Corollary 2 gives the existence and uniqueness of ln together with the second
inequality of (1.18).

The third lemma, whose proof is quite standard, is on the link between (1.1)
and (1.10).

Lemma 3. Let λ > 0 and τ2 > τ1 ≥ 0. Assume that u ∈ L2
(
(τ1, τ2); H1(0, 1)

)
is

a solution to the system

ut (t, x) − (a(x)ux (t, x))x − c(x)u(t, x) = 0 in (τ1, τ2) × [0, 1], (2.31)

u(t, 0) = 0 for t ∈ (τ1, τ2). (2.32)

Define, for τ1 < t < τ2,

w(t, x) = u(t, x) −
∫ x

0
k(x, y)u(t, y) dy, (2.33)

where k ∈ H1(D) is the unique solution of the system (2.26). Then
w ∈ L2

(
(τ1, τ2); H1(0, 1)

)
and satisfies the equation

wt (t, x) − (a(x)wx (t, x))x + λw(t, x) = 0 in (τ1, τ2) × [0, 1]. (2.34)

Proof. We assume that a and c are smooth and establish (2.34); the general case
follows by a regularizing argument. The smoothness of a and c imply that k and u
and hence w are smooth in (τ1, τ2) × [0, 1]. We have, from (2.33),

wt (t, x) = ut (t, x) −
∫ x

0
k(x, y)ut (t, y) dy. (2.35)

Using the fact that ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) in (τ1, τ2)×[0, 1] and
integrating by parts, we derive from (2.35) that

wt (t, x) = ut (t, x) −
∫ x

0

[(
a(y)ky(x, y)

)
y + c(y)k(x, y)

]
u(t, y) dy

− k(x, y)a(y)uy(t, y)
∣∣∣x
0

+ a(y)ky(x, y)u(t, y)
∣∣∣x
0
.
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This implies, by (2.32), that

wt (t, x) = ut (t, x) −
∫ x

0

[(
a(y)ky(x, y)

)
y + c(y)k(x, y)

]
u(t, y) dy

− k(x, x)a(x)ux (t, x) + a(x)ky(x, x)u(t, x)

+ k(x, 0)a(0)ux (t, 0). (2.36)

From (2.33), we also have

(a(x)wx (t, x))x = (a(x)ux (t, x))x −
∫ x

0
(a(x)kx (x, y))x u(t, y) dy

− d

dx
(a(x)k(x, x)) u(t, x) − a(x)k(x, x)ux (t, x)

− a(x)kx (x, x)u(t, x). (2.37)

Using the fact that ut (t, x) − (a(x)ux (t, x))x − c(x)u(t, x) = 0 in (τ1, τ2) ×
[0, 1], we derive from (2.33), (2.36) and (2.37) that

wt (t, x) − (a(x)wx (t, x))x + λw(t, x)

=
[
2a(x)

d

dx
k(x, x)+ax (x)k(x, x)+λ + c(x)

]
u(t, x) + k(x, 0)a(0)ux (t, 0)

+
∫ x

0

[
(a(x)kx (x, y))x − (

a(y)ky(x, y)
)
y − [λ + c(y)]k(x, y)

]
u(t, y).

With the choice k in (2.26), we have

wt (t, x) − (a(x)wx (t, x))x + λw(t, x) = 0 in (τ1, τ2) × [0, 1].
The proof is complete. ��

The fourth lemma deals with the inverse transform of the map u �→ w, where
w is defined by (1.9).

Lemma 4. Let λ > 0, let k ∈ H1(D) be the unique solution of (2.26), and let
l ∈ H1(D) be the unique solution of (2.29). Let u ∈ L2(0, 1) and define

w(x) = u(x) −
∫ x

0
k(x, y)u(y) dy for x ∈ [0, 1].

We have

u(x) = w(x) +
∫ x

0
l(x, y)w(y) dy in [0, 1]. (2.38)

Proof. Inwhat follows, we assume that a and c are smooth, the general case follows
by a regularizing argument. Since a and c are smooth, it follows that k and l are
smooth. We claim that

l(x, y) = k(x, y) +
∫ x

y
l(x, ξ)k(ξ, y) dξ.1 (2.39)

1 This identity is different from [23, (4.35) on page 38] and is new for us.
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Admitting this claim, we prove (2.38). We have, by Fubini’s theorem, that

w(x) +
∫ x

0
l(x, y)w(y) dy

= u(x) −
∫ x

0
k(x, y)u(y) +

∫ x

0
l(x, y)

[
u(y) −

∫ y

0
k(y, ξ)u(ξ) dξ

]
dy

= u(x) +
∫ x

0

[
l(x, y) − k(x, y) −

∫ x

y
l(x, ξ)k(ξ, y) dξ

]
u(y) dy = u(x)

(2.38) is proved.
It remains to establish (2.39). Define

l̂(x, y) = k(x, y) +
∫ x

y
l(x, ξ)k(ξ, y) dξ. (2.40)

We will prove that l̂ = l. It is clear that

l̂(x, x) = k(x, x) = l(x, x) and l̂(x, 0) = k(x, 0) = l(x, 0) = 0 for x ∈ [0, 1].
(2.41)

We have, from (2.40),

l̂x (x, y) = kx (x, y) +
∫ x

y
lx (x, ξ)k(ξ, y) dξ + l(x, x)k(x, y).

It follows that(
a(x)l̂x (x, y)

)
x

= (a(x)kx (x, y))x +
∫ x

y
(a(x)lx (x, ξ))x k(ξ, y) dξ

+ a(x)lx (x, x)k(x, y) + d

dx
[a(x)l(x, x)] k(x, y)

+ a(x)l(x, x)kx (x, y).

Using the fact that
(
a(x)lx (x, y)

)
x = (

a(y)ly(x, y)
)
y −[λ+ c(x)]l(x, y) in D, we

have(
a(x)l̂x (x, y)

)
x

= (a(x)kx (x, y))x +
∫ x

y

[(
a(ξ)lξ (x, ξ)

)
ξ
k(ξ, y)

−[λ + c(x)]l(x, ξ)k(ξ, y)] dξ + a(x)lx (x, x)k(x, y)

+ d

dx
[a(x)l(x, x)] k(x, y) + a(x)l(x, x)kx (x, y)

= (a(x)kx (x, y))x +
∫ x

y

[
l(x, ξ)

(
a(ξ)kξ (ξ, y)

)
ξ

−[λ + c(x)]l(x, ξ)k(ξ, y)] dξ + a(ξ)lξ (x, ξ)k(ξ, y)
∣∣ξ=x
ξ=y

− l(x, ξ)a(ξ)kξ (ξ, y)
∣∣ξ=x
ξ=y + a(x)lx (x, x)k(x, y)

+ d

dx
[a(x)l(x, x)] k(x, y) + a(x)l(x, x)kx (x, y).



1010 J.-M. Coron and H.-M. Nguyen

This implies

(
a(x)l̂x (x, y)

)
x

= (a(x)kx (x, y))x +
∫ x

y

[ (
a(ξ)kξ (ξ, y)

)
ξ

− [λ + c(x)]k(ξ, y)
]
l(x, ξ) dξ + a(x)ly(x, x)k(x, y)

− a(y)ly(x, y)k(y, y) + l(x, y)a(y)kx (y, y)

+ a(x)lx (x, x)k(x, y) + d

dx
[a(x)l(x, x)] k(x, y).

Then, using the first equality of (2.29), it follows that

(
a(x)l̂x (x, y)

)
x

= (a(x)kx (x, y))x +
∫ x

y

[ (
a(ξ)kξ (ξ, y)

)
ξ

− [λ + c(x)]k(ξ, y)
]
l(x, ξ) dξ − [λ + c(x)]k(x, y)

− a(y)ly(x, y)k(y, y) + l(x, y)a(y)kx (y, y). (2.42)

Similarly, from (2.40), we obtain

l̂y(x, y) = ky(x, y) +
∫ x

y
l(x, ξ)ky(ξ, y) dξ − l(x, y)k(y, y).

It follows that(
a(y)l̂y(x, y)

)
y

= (
a(y)ky(x, y)

)
y +

∫ x

y
l(x, ξ)

(
a(y)ky(ξ, y)

)
y dξ

− a(y)l(x, y)ky(y, y) − l(x, y) (a(y)k(y, y))y

− ly(x, y)a(y)k(y, y). (2.43)

Using the first and the last equation of (2.26), we derive from (2.42) and (2.43) that

(
a(x)l̂x (x, y)

)
x

−
(
a(y)l̂y(x, y)

)
y
+ [c(x) − c(y)]

(
k(x, y)

+
∫ x

y
l(x, ξ)k(ξ, y) dξ

)
= −[λ + c(y)]l(x, y),

which yields, by the definition of l̂,(
a(x)l̂x (x, y)

)
x
−

(
a(y)l̂y(x, y)

)
y
+ [c(x) − c(y)]l̂(x, y) = −[λ + c(y)]l(x, y).

(2.44)
On the other hand, from the last equation of (2.29), we have

(a(x)lx (x, y))x − (
a(y)ly(x, y)

)
y + [c(x) − c(y)]l(x, y) = −[λ + c(y)]l(x, y).

(2.45)
Combing (2.41), (2.44) and (2.45), and using Lemma 2, yields that l̂ = l. The proof
is complete. ��
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3. Proof of Proposition 1

This section is devoted to the proof of Proposition 1. We implement the ideas
presented in the introduction. For tn ≤ t < tn+1, Define w by (1.9) where kn is
given in (1.11). Applying Corollary 1, we have

‖w(t, ·)‖2L2 ≤ CeC
√

λn‖u(t, ·)‖2L2 for tn < t < tn+1. (3.1)

By Lemma 4, (1.15) holds where ln is given by (1.17). We have, by applying
Corollary 2,

‖u(t, ·)‖2L2 ≤ Cλ4n‖w(t, ·)‖2L2 for tn ≤ t < tn+1, (3.2)

and, by using Lemma 3,

wt (t, x) − (a(x)wx (t, x))x + λnw(t, x) = 0 for x ∈ [0, 1].
From the choice of the control (1.19), we obtain

w(t, 0) = w(t, 1) = 0 for tn < t < tn+1.

It follows that

‖w(ξ2, ·)‖2L2 ≤ ‖w(ξ1, ·)‖2L2e
−2λn(ξ2−ξ1) for tn ≤ ξ1 < ξ2 < tn+1. (3.3)

A combination of (3.1), (3.2), and (3.3) yields

‖u(tn+1, ·)‖2L2 ≤ Cλ4ne
−2λn(tn+1−tn)+C

√
λn‖u(tn, ·)‖2L2 . (3.4)

We derive from (1.20) and (3.4) that, if γ is large enough, which will be always
assumed,

‖u(tn+1, ·)‖2L2 ≤ Ce−λn(tn+1−tn)‖u(tn, ·)‖2L2 . (3.5)

This, together with the definition of sn , implies

‖u(tn+1, ·)‖2L2 ≤ e−sn+1+Cn‖u(0, ·)‖2L2 . (3.6)

We have, for tn ≤ t < tn+1,

‖u(t, ·)‖2L2 ≤Cλ4n‖w(t, ·)‖2L2 ≤ Cλ4ne
−2λn(t−tn)‖w(tn+, ·)‖2L2

≤Cλ4ne
−2λn(t−tn)+C

√
λn‖u(tn, ·)‖2L2

≤Ce−λn−1(tn−tn−1)/2‖u(tn−1, ·)‖2L2

≤e−sn−1/2+C(n−2)‖u(0, ·)‖2L2 , (3.7)

which gives (1.21). Here we use (3.2) in the first inequality of (3.7), (3.3) in the sec-
ond inequality, (3.1) in the third inequality, (1.20) and (3.5) in the fourth inequality,
and (3.6) (for tn−1 instead of tn+1) in the last inequality. Finally (1.22) follows from
(1.18), (1.19) and (1.21).
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4. Some Properties of the Flow �

In this section, we are interested in the flow � introduced in the Introduction
(Sect. 1). We start by mentioning a maximum principle for the Cauchy problem⎧⎪⎪⎨

⎪⎪⎩
ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) + f (t, x) in (τ1, τ2) × (0, 1),

u(t, 0) = α(t), u(t, 1) = β(t) for t ∈ (τ1, τ2),

u(0, x) = u0(x), for x ∈ (0, 1),
(4.1)

which we will use many times in this section. Let τ1 and τ2 be two real numbers
such that τ1 < τ2, let α, β ∈ L2(τ1, τ2), let f ∈ L2

(
(τ1, τ2) × (0, 1)

)
, and

let u0 ∈ H−1(0, 1). Let us recall that, with this regularity on α, β and f , the
Cauchy problem (4.1) is well-posed in C0

([τ1, τ2]; H−1(0, 1)
)
: it has one and

only one solution in this set and there exists a constant C > 0 independent of
α, β ∈ L2(τ1, τ2), f ∈ L2

(
(τ1, τ2) × (0, 1)

)
, and u0 ∈ H−1(0, 1) such that

‖u‖C0([τ1,τ2],H−1(0,1)) ≤ C
(‖α‖L2(τ1,τ2)

+ ‖β‖L2(τ1,τ2)
+ ‖ f ‖L2((τ1,τ2)×(0,1))

+‖u0‖H−1(0,1)
)
. (4.2)

If u0 ∈ L2(0, 1), then the solution is also in C0
([τ1, τ2]; L2(0, 1)

)
and the variant

of (4.2) with H−1(0, 1) replaced by L2(0, 1) holds. The notion of a solution to the
Cauchy problem (4.1) has to be understood in the transposition sense (comparewith
(1.32)): a solution u of (4.1) is a function u inC0

([τ1, τ2]; H−1(0, 1)
)
such that, for

every s ∈ [τ1, τ2] and for every ξ ∈ L2
(
(τ1, s); H2(0, 1)

)∩ H1
(
(τ1, s); H1

0 (0, 1)
)

such that

−ξt = (a(x)ξx )x + c(x)ξ in L2 ((τ1, s) × (0, 1)) , (4.3)

one has

−〈u0, ξ(τ1, ·)〉H−1,H1
0

+ 〈u(s, ·), ξ(s, ·)〉H−1,H1
0

+
∫ s

τ1

a(1)β(t)ξx (t, 1) dt

−
∫ τ

s
a(0)α(t)ξx (t, 0) dt −

∫ s

τ1

∫ 1

0
f (t, x)ξ(t, x) dxdt = 0. (4.4)

See, e.g., [5, Definition 2.36 and Sect. 2.7.1] for this notion of solution, the well-
posedness and (4.2). Then using a standard smoothing procedure and the classical
maximum principle (see, e.g. [14, Chap. 2]) one gets the following proposition:

Proposition 2. (Maximum principle) Let α, β ∈ L2(τ1, τ2), let f ∈ L2((τ1, τ2)×
(0, 1)), and let u0 ∈ L2(0, 1) be such that

α ≥ 0, β ≥ 0, f ≥ 0, u0 ≥ 0. (4.5)

Then, for every t ∈ [τ1, τ2],
u(t, ·) ≥ 0. (4.6)
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In the next lemma, we derive from this maximum principle an a priori estimate
on the solutions of (1.31).

Let us denote by S(t) : L2(0, 1) → L2(0, 1), t ≥ 0, the semigroup gener-
ated by the operator v �→ (

a(x)vx
)
x + c(x)v(t, x) with zero Dirichlet bound-

ary condition: for t ≥ 0 and u0 ∈ L2(0, 1), (S(t)u0)(x) = v(t, x) where
v ∈ C0

([0,+∞); L2(0, 1)
)
is the unique solution of

⎧⎪⎪⎨
⎪⎪⎩

vt (t, x) = (a(x)vx (t, x))x + c(x)v(t, x) in (0,+∞) × (0, 1),

v(t, 0) = v(t, 1) = 0 for t ∈ (0,+∞),

v(0, ·) = u0.

(4.7)

Lemma 5. Assume that F satisfies Properties (P1), (P2) and (P3) and that
|F(t, v)| ≤ C‖v‖1/2

L2 for (t, v) ∈ [T1, T ) × L2(0, 1) for some C > 0 and for

some 0 < T1 < T . Then, there exists C1 > 0 such that, for every u0 ∈ L2(0, 1),
for every T1 ≤ s < s′ < T and for every solution u ∈ C0

([s, s′]; L2(0, 1)
)
of

⎧⎪⎪⎨
⎪⎪⎩
ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) for (t, x) ∈ (s, s′) × [0, 1],
u(t, 0) = 0, u(t, 1) = F (t, u(t, ·)) for t ∈ (s, s′),

u(s, ·) = u0 for x ∈ [0, 1],
(4.8)

one has

‖u(t, ·) − S(t − s)u0‖L2 ≤ C1(t − s)1/4(1 + ‖u0‖L2)1/2 ∀ T1 ≤ s ≤ t ≤ s′.
(4.9)

Proof. Let v(t, x) be the unique solution of the system

⎧⎪⎪⎨
⎪⎪⎩

vt (t, x) = (a(x)vx (t, x))x + c(x)v(t, x) in (s, s′) × (0, 1),

v(t, 0) = v(t, 1) = 0 for t ∈ (s, s′),

v(s, ·) = u0.

Set w(t, x) = u(t, x) − v(t, x). Then

⎧⎪⎪⎨
⎪⎪⎩

wt (t, x) = (a(x)wx (t, x))x + c(x)w(t, x) in (s, s′) × (0, 1),

w(t, 0) = 0, |w(t, 1)| ≤ C
(
‖w(t, ·)‖1/2

L2 + ‖v(t, ·)‖1/2
L2

)
for t ∈ (s, s′),

w(τ, ·) = 0.
(4.10)

Let t ∈ (s, s′] be such that t − s ≤ 1. Set τ0 = t − s and define

W (τ, x) = e
− (1−x+τ

1/2
0 )2

λ(τ−s+τ0)

√
τ − s + τ0

for (τ, x) ∈ [s, t] × [0, 1]. (4.11)
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We have

(a(x)Wx (τ, x))x + c(x)W (τ, x) − Wτ (τ, x)

= a(x)Wxx (τ, x) − Wτ (τ, x) + ax (x)Wx (τ, x) + c(x)W (τ, x)

= e
− (1−x+τ

1/2
0 )2

λ(τ−s+τ0)

√
τ − s + τ0

(
− 2a(x)

λ(τ − s + τ0)
+ 4a(x)(1 − x + τ

1/2
0 )2

λ2(τ − s + τ0)2
+ 1

2(τ − s + τ0)

− (1 − x + τ
1/2
0 )2

λ(τ − s + τ0)2
+ 2(1 − x + τ

1/2
0 )

λ(τ − s + τ0)
ax (x) + c(x)

)
.

By choosing λ > 0 small enough, the smallness of λ depends only on a and c, we
have

Wτ (τ, x) ≤ (
a(x)Wx (τ, x)

)
x + c(x)W (τ, x) in (s, t) × [0, 1]. (4.12)

In what follows, we fix such a constant λ. Set

W(τ, x) = Ĉ AW (τ, x) for (τ, x) ∈ (s, t) × (0, 1), (4.13)

where Ĉ is a positive constant defined later and

A = (t − s)1/2 + (t − s)1/2‖u0‖1/2L2 . (4.14)

We have, for τ ∈ (s, t),

W(τ, 1) = Ĉ A(τ − s + τ0)
−1/2e

− τ0
λ(τ−s+τ0) ≥ Ĉ A[2(t − s)]−1/2e−1/λ, (4.15)

which yields, by (4.14),

W(τ, 1) ≥ CλĈ(1 + ‖u0‖1/2L2 ). (4.16)

Here and in what follows Cλ denotes a positive constant depending only on λ.
Using the fact that, for m > 0,∫ ∞

m
e−y2 dy ≤

√
π

2
e−m2/2,

andmaking a change of variables y = (1−x+τ
1/2
0 )/

√
λ(τ − s + τ0)/2, we obtain

from (4.11) that

∫ 1

0
|W (τ, x)|2 dx =

∫ 1

0

e
− 2(1−x+τ

1/2
0 )2

λ(τ−s+τ0)

τ − s + τ0
dx ≤

√
λ/2√

τ − s + τ0

∫ ∞

1/
√

λ

e−y2 dy

≤ √
λ/(2τ0)e

−1/(2λ). (4.17)

It follows that
‖W(τ, ·)‖L2 ≤ Ĉ Aλ1/4[2(t − s)]−1/4e− 1

4λ , (4.18)
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which implies, by (4.14),

‖W(τ, ·)‖L2 ≤ CλĈ(t − s)1/4
(
1 + ‖u0‖1/2L2

)
. (4.19)

Taking Ĉ large enough, the largeness of Ĉ being independent of s, t , and u0, we
derive from (4.16) and (4.19) that

W(τ, 1) ≥ 2C
(
‖W(τ, ·)‖1/2

L2 + ‖u0‖1/2L2

)
≥ 2C

(
‖W(τ, ·)‖1/2

L2 + ‖v(τ, ·)‖1/2
L2

)
for τ ∈ (s, t). (4.20)

Let us check that, by the maximum principle (Proposition 2), this implies that

|w(t, x)| ≤ W(t, x) for almost every x ∈ (0, 1). (4.21)

Indeed, the maximum principle leads to (4.21) if

|w(τ, 1)| ≤ W(τ, 1) ∀τ ∈ [s, t]. (4.22)

Assume that (4.22) does not hold. Then, there exists t ′ ∈ (s, t) such that

|w(τ, 1)| ≤ W(τ, 1) ∀τ ∈ [s, t ′], (4.23)

|w(t ′, 1)| = W(t ′, 1). (4.24)

From (4.23) and the maximum principle, we get that

|w(t ′, x)| ≤ W(t ′, x) for almost every x ∈ (0, 1), (4.25)

which, together with the second line of (4.10) leads to

|w(t ′, 1)| ≤ C
(
‖W(t ′, ·)‖1/2

L2 + ‖v(t ′, ·)‖1/2
L2

)
. (4.26)

From (4.20), (4.24) and (4.26), we get a contradiction, which shows that (4.22) and
therefore also (4.21) hold. Finally (4.17) and (4.21) yield (4.9) for t − s ≤ 1. The
conclusion in the general case follows immediately from this. ��

Concerning the existence and uniqueness of the flow �, let us prove the fol-
lowing lemma:

Lemma 6. Assume that F satisfies Properties (P1), (P2), and (P3). Let 0 ≤ s < T .
There exists T0 = T0(s) > 0 such that, for every u0 ∈ L2(0, 1), there exists a unique
solution u ∈ C0

([s, s + T0); L2(0, 1)
)
of (1.31). Moreover,

‖u(t, ·)‖L2 ≤ C‖u0‖L2 for t ∈ (s, s + T0), (4.27)

for some positive constant C = C(s) independent of u0; moreover, the functions
T0 : [0, T ) → (0,+∞) and C : [0, T ) → [0,+∞) can be chosen such that, for
every δ ∈ (0, T ],
inf {T0(s); s ∈ [0, T − δ]} > 0 and sup {C(s); s ∈ [0, T − δ]} < +∞. (4.28)
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Proof. Let us first deal with the uniqueness. Let u1 and u2 be two solutions having
the same initial data at time s and defined at least on [s, s′] × (0, 1), with s < s′.
Let w : (s, s′)× (0, 1) → R be defined byw = u2 −u1. One has, for some C > 0,⎧⎪⎪⎨

⎪⎪⎩
wt (t, x) = (a(x)wx (t, x))x + c(x)w(t, x) in (s, s′) × (0, 1),

w(t, 0) = 0, |w(t, 1)| ≤ C‖w(t, ·)‖L2 for t ∈ (s, s′),

w(s, ·) = 0,

(4.29)

It suffices to prove that

w(t, ·) = 0 for t > s close enough to s. (4.30)

We proceed as in the proof of Lemma 5. Fix a positive constant λ small such that
(4.12) holds. We define W as in (4.11)–(4.13), with (4.14) now replaced by

A = 1. (4.31)

Set ρ =
(
2(2C)4λe3/λ

)−1
. Since

[2(t − s)]−1/2e−1/λ ≥ 2Cλ1/4[2(t − s)]−1/2e−1/(4λ) if (t − s)

≥
(
2(2C)4λe3/λ

)−1
,

it follows from (4.15) and (4.18) that, for t − s ≤ ρ and for every Ĉ > 0,

W(τ, 1) ≥ 2C‖W(τ, ·)‖L2 for τ ∈ (s, t). (4.32)

(Compare with (4.20).) Then, proceeding as in the proof of (4.21), we get, using
the maximum principle,

|w(t, x)| ≤ W(t, x) for almost every x ∈ (0, 1). (4.33)

Since Ĉ > 0 is arbitrary, it follows from (4.33) that w(t, ·) = 0 for t − s ≤ ρ. This
concludes the proof of the uniqueness.

Let us now establish the existence of u using a fixed point argument. For nota-
tional ease, we assume that s = 0. Set U0 = 0 and, for n ≥ 1, let Un be the unique
solution of⎧⎪⎪⎨

⎪⎪⎩
Un,t (t, x) = (

a(x)Un,x (t, x)
)
x + c(x)Un(t, x) in (0, T ) × (0, 1),

Un(t, 0) = 0, Un(t, 1) = F (t,Un−1(t, ·)) for t ∈ (0, T ),

Un(t = 0, ·) = u0 in L2(0, 1).

(4.34)

Define

Wn(t, x) = Un+1(t, x) −Un(t, x) in (0, T ) × (0, 1).
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Let 0 < T0 < T . Then, for some positive constant C independent of n and u0,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Wn,t (t, x) = (
a(x)Wn,x (t, x)

)
x + c(x)Wn(t, x) in (0, T ) × [0, 1],

Wn(t, 0) = 0 for t ∈ (0, T ),

|Wn(t, 1)| ≤ C‖Wn−1(t, ·)‖L2 for t ∈ (0, T0),

Wn(t = 0, ·) = 0 in L2(0, 1).

(4.35)

By the maximum principle (Proposition 2) applied to the function

(t, x) �→ ReRt sup
τ∈(0,T0)

‖Wn−1(τ, ·)‖L2 ± Wn(t, x)

with R > 0 large enough, we have

|Wn(t, x)| ≤ M sup
τ∈(0,T0)

‖Wn−1(τ, ·)‖L2 for (t, x) ∈ (0, T0) × (0, 1), (4.36)

for some M > 0 independent of n and u0. For 0 < r < 1, let ϕ ∈ C1(R) be such
that ϕ(x) = 1 for x ≤ 1 − r , ϕ(x) = 0 for x ≥ 1 − (r/2) and |ϕ′(x)| ≤ 4/r for
x ∈ [0, 1]. Multiplying the equation of Wn by Wn(t, x)ϕ2(x) and integrating by
parts, we obtain∫ 1

0
|Wn(t, x)ϕ(x)|2 dx +

∫ t

0

∫ 1

0

∣∣(Wn(t, x)ϕ(x))x
∣∣2

≤ C
∫ t

0

∫ 1

0
|Wn(t, x)|2|ϕx (x)|2 dx dt.

It then follows from (4.36) that, for 0 < r < 1,∫ 1−r

0
|Wn(t, x)|2 dx +

∫ t

0

∫ 1−r

0
|Wn,x (t, x)|2

≤ Cr−2T0M
2 sup

τ∈(0,T0)
‖Wn−1(τ, ·)‖2L2 for t ∈ (0, T0). (4.37)

A combination of (4.36) and (4.37) yields the existence of C̄ independent of r ∈
(0, 1), of n, and of u0, such that

sup
τ∈(0,T0)

‖Wn(τ, ·)‖L2 ≤ C̄M
(
r−1T 1/2

0 + r1/2
)

sup
τ∈(0,T0)

‖Wn−1(τ, ·)‖L2 .

Let us fix r ∈ (0, 1) small enough so that C̄Mr1/2 ≤ 1/4. Then, by choosing T0
small enough, we obtain

sup
τ∈(0,T0)

‖Wn(τ, ·)‖L2 ≤ 1

2
sup

τ∈(0,T0)
‖Wn−1(τ, ·)‖L2 . (4.38)

Hence (Un)n∈N is a Cauchy sequence inC0
([0, T0]; L2(0, 1)

)
. Let u ∈ C0

([0, T0];
L2(0, 1)

)
be its limit. One can easily verify that u is a solution of (1.31) on (0, T0).

Moreover, by (4.38),∫ 1

0
|u(t, x)|2 dx ≤ C‖u0‖2L2 for t ∈ (0, T0). (4.39)

Finally, it follows from our proof that (4.28) can also be imposed. ��
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As a consequence of Lemma 6 we have the following corollary.

Corollary 3. Assume that F satisfies Properties (P1), (P2) and (P3). Let 0 ≤
s′ < T . Then there exists C > 0 such that, for every s ∈ [0, s′) and for every
u0 ∈ L2(0, 1), there exists a unique solution u ∈ C0

([s, s′]; L2(0, 1)
)
of (1.31)

and this solution satisfies

‖u(t, ·)‖L2 ≤ C‖u0‖L2 for every t ∈ [s, s′]. (4.40)

We now assume that F satisfies Properties (P1), (P2) and (P3) and that (1.33)
holds. It follows from Corollary 3 that the flow � is well defined on {(t, s, u0) ∈
[0, T ) × [0, T ) × L2(0, 1); t ≥ s}. In order to prove that

� is well defined on
{
(t, s, u0) ∈ R × R × L2(0, 1); t ≥ s

}
, (4.41)

it only remains to check that, for every u0 ∈ L2(0, 1) and for every s ∈ [0, T ),

�(t, s, u0) is converging in L2(0, 1) as t → T−. (4.42)

Let u0 ∈ L2(0, 1) and let s ∈ [0, T ). Define, for t ∈ [s, T ), u(t) = �(t, s, u0). It
follows from Lemma 5 and Corollary 3 that t ∈ [s, T ) �→ ‖u(t)‖L2 is bounded.
Fix ε > 0 (arbitrary). By Lemma 5, there exists δ > 0 such that

‖u(t) − S(t − T + δ)u(T − δ)‖L2 ≤ ε ∀t ∈ [T − δ, T ). (4.43)

Let δ′ ∈ (0, δ) be such that

‖S(t−T+δ)u(T−δ)−S(t ′−T+δ)u(T−δ)‖L2 ≤ ε ∀ t, t ′ ∈ [T−δ′, T ]. (4.44)

From (4.43) and (4.44), one gets

‖u(t) − u(t ′)‖L2 ≤ 3ε ∀ t, t ′ ∈ [T − δ′, T ). (4.45)

This shows that, for every sequence (tn)n∈N of real numbers in (0, T ) converging
to T as n → +∞, the sequence

(
u(tn)

)
n∈N is a Cauchy sequence in L2(0, 1). This

concludes the proof of (4.42) and therefore of (4.41).

5. Proof of Theorem 2

In this section we prove Theorem 2. Let us first point out that the uniform
stability property (1.36) follows from the other conditions. Indeed, we have, by
Lemma 5,

‖�(t, s, u0)‖L2 ≤ C1

(
‖u0‖L2 + (t − s)1/4(1 + ‖u0‖L2)1/2

)
∀ 0 ≤ T̄ ≤ s ≤ t < T, ∀ u0 ∈ L2(0, 1). (5.1)

and, by Corollary 3,

‖�(t, s, u0)‖L2 ≤ C1‖u0‖L2 ∀ 0 ≤ s ≤ t < (T + T̄ )/2, ∀ u0 ∈ L2(0, 1),
(5.2)
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for some positive constant C1 independent of u0. Given r ≥ 0, let B(r) denote the
closed ball of radius r in L2(0, 1). For ε > 0 (arbitrary), by (5.1) and (5.2) there
exists δ > 0 such that

‖�(t, t ′, u0)‖L2 ≤ ε ∀ 0 ≤ t ′ ≤ t ≤ T, ∀ u0 ∈ B(δ). (5.3)

Here we also use the fact that

�(t, t ′, u0) = �
(
t, τ,�(τ, t ′, u0)

) ∀ t ′ ≤ τ ≤ t, ∀ u0 ∈ L2(0, 1) (5.4)

and take T̄ close to T . Using (5.4) again, we derive from (5.3) the existence of
η > 0 such that

‖�(t, t ′, u0)‖L2 ≤ ε ∀ 0 ≤ t ′ ≤ t ≤ 3T, ∀ u0 ∈ B(η), (5.5)

which, together with (1.26) and (1.35), gives (1.36) provided that we decrease
η > 0 if necessary so that η ≤ 	. This implies the uniform stability (1.36).

We next construct F . For n ∈ N, let λn and tn be defined by

λn = (n + 1)8 for every n ∈ N, (5.6)

t0 = 0, tn = T

(
1 − 1

2n2

)
for every n ∈ N \ {0}. (5.7)

By Corollary 1, for some C1 large enough,

‖kn‖L2 ≤ eC1λ
1/2
n for every n ∈ N. (5.8)

We also know from Proposition 1 that there exists some C2 > 0 such that, for
tn ≤ t < tn+1,

‖u(t, ·)‖L2 ≤ C2e
−sn−1/4+C2(n−1)‖u0‖L2 , (5.9)

|U (t)| ≤ C2e
−sn−1/4+C2(n−1)+C2

√
λn‖u0‖L2 , (5.10)

where sn = ∑n−1
k=0 λk(tk+1 − tk) for n ≥ 1 and s0 = 1. It is clear that

λn(tn+1 − tn) ≥ Cn5, (5.11)

which implies that

lim
n→+∞

(tn+1 − tn)λn√
λn+1

= +∞ and lim
n→+∞

sn
n + √

λn+1
= +∞.

Fix α and β two real numbers such that

4 < α < β < 5. (5.12)

Let (μn)n∈N and (νn)n∈N be defined by

μn := e−nα

and νn := e−nβ ∀ n ∈ N. (5.13)
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For n ∈ N, we choose a function ϕn ∈ C1(R) such that 0 ≤ ϕn ≤ 1, ϕn(s) = 1 for
s ≤ μn and ϕn(s) = 0 if s ≥ 2μn . Fix N a large (see below) positive integer. We
define F in the following way for tn ≤ t < tn+1,

F(t, v) : =
∫ 1

0
kn(1, y)v(y) dy ∀ t ∈ [tn, tn+1) with 0 ≤ n ≤ N − 1, (5.14)

F(t, v) : = ϕn
(‖v‖L2

) ∫ 1

0
kn(1, y)v(y) dy ∀ t ∈ [tn, tn+1) with n ≥ N . (5.15)

We derive from (5.8) that, if N is large enough, which is always assumed from now
on,

‖kn‖L2 ≤ eC1λ
1/2
n ≤ (1/(2μn))

1/2 ∀ n ≥ N . (5.16)

It follows that, for tn < t < tn+1 with n ≥ N ,

|F(t, v)| ≤ 2‖v‖1/2
L2 ,

which gives (1.33). As in (3.7) in the proof of Proposition 1, we get that

�(T, t, u0) = 0 ∀ u0 ∈ B (νn) , ∀ t ∈ [tN−1, tN ], (5.17)

�(T, t, u0) = 0 ∀ t ∈ [tn, tn+1) with n ≤ N − 2, ∀ u0 ∈ B (1/νn) . (5.18)

To reach (5.18), we used (5.11). It follows from (5.18) that

�(T, t, u0) = 0 ∀ t ∈ [tn, tn+1) with n ≤ N − 2, ∀ u0 ∈ B (	) . (5.19)

(Let us recall that we always assume N large enough and how large N is depends
now on 	.) By taking tn = t and tn+1 = tn in (3.4) in the proof of Proposition 1
and using (5.11), we have, for n ≥ N ,

‖�(tn, t, u0)‖L2 ≤ 1

μn
∀ u0 ∈ B (	) , ∀ t ∈ [tn−1, tn]. (5.20)

From (1.26), (5.1), and (5.18), we get that

�(2T, t, u0) = �(2T, T,�(T, t, u0)) = 0 ∀ t ∈ [tN , T ], ∀ u0 ∈ B(1/μn),

(5.21)
which, together with (5.19) and (5.20), concludes the proof of Theorem 2.

Remark 7. Feedback laws are important in practice since they are usually much
more robustwith respect to perturbations (measurement uncertainties,model errors,
etc.) than open-loop controls. It would be interesting to study in details this robust-
ness in the case of our feedback law F defined in (5.14)–(5.15). Let us just mention
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that our feedback law F satisfies the following robustness property with respect to
model errors. For every ν ∈ R, 0 ∈ L2(0, 1) remains locally finite-time stable for⎧⎨
⎩
ut (t, x) = (a(x)ux (t, x))x + c(x)u(t, x) + νu(t, x) for (t, x) ∈ (s, τ ) × [0, 1],
u(t, 0) = 0, u(t, 1) = F (t, u(t, ·)) for t ∈ (s, τ ).

(5.22)
More precisely, if � is now the flow associated to (5.22) instead of (1.31), then
(1.36) still holds and there exists	 > 0 (which depends on ν) such that (1.35) holds.
Let us point out that, in the context of asymptotic stability instead of finite-time
stability, such robustness property does not hold with stationary linear feedback
laws if, for example, a = 1 and c = 0. More precisely, for every K ∈ L2(0, 1)∗,
then 0 ∈ L2(0, 1) is exponentially unstable for{

ut (t, x) = uxx (t, x) + νu(t, x) in (0,+∞) × [0, 1],
u(t, 0) = 0, u(t, 1) = Ku(t, ·) for t ∈ (0,+∞),

(5.23)

provided that ν ∈ R+ is large enough. Indeed, there exists θ ∈ L2(0, 1) such that

Kv =
∫ 1

0
θ(x)v(x) dx for v ∈ L2(0, 1).

Set, for μ ∈ R,

uμ(t, x) = e−μ2t+νt sin(μx).

Note that

lim
μ→+∞

∫ 1

0
θ(x) sin(μx) dx = 0.

Since ν ∈ R+ is large enough, it follows that there exists μ ∈ R \ {0} such that

μ2 ≤ ν − 2 and sinμ =
∫ 1

0
θ(x) sin(μx) dx .

One can easily check that uμ is a solution of the system

⎧⎪⎨
⎪⎩

ut − uxx = νu for (t, x) ∈ (0,+∞) × (0, 1),

u(t, 0) = 0, u(t, 1) =
∫ 1

0
θ(x)u(t, x) dx for t ∈ (0,+∞),

and

lim
t→+∞ e−t‖u(t, ·)‖L2(0,1) = +∞,

which shows the exponential instability.
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