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This chapter is the continuation of my Ph. D. [12], [5], [3]. It generalizes
the multilayered shell model to piezoelectric structures.
In a first time, it was natural to consider the related plate model; thanks to
satisfying results, we then considered the shell model.

1 Multilayered piezoelectric plates
We hereafter study the modelling of composite multilayered piezoelectric plates.
Our theory is based on an hybrid approach, where the mechanical and electrical
continuity conditions are satisfied, as well as the boundary conditions on the
top and bottom surfaces of the structure.
The accuracy of the proposed theory is assessed through investigation of sig-

nificant problems, for which an exact three-dimensional solution is known.

1.1 Introduction

The development of the so-called "smart-structures", e.g. made of piezoelectric
composites, require nowadays more and more precision in their design and
sizing. The importance of efficient models has, so far, led to numerous theories.
The first kind of approach is generally based on the assumption according to
which the multilayered piezoelectric structure behaves as a single-layered one.
Tiersten [47], Mindlin [33], Lee et al. [31], [32], have applied Kirchhoff-Love’s
theory to piezoelectricity. Yet, only thin structures are concerned.
First order theories can be found, for single-layered structures, for instance, in
Chandrashekhara et al. [15].
However, the electric field induced by mechanical efforts is, generally, not taken
into account.
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Vatal’yan et al [56] devoted themselves to bilayered ceramic plates.
Thanks to expansions into series of the thickness coordinate, Lee et al. [32]
obtained the two dimensional equations of motion, for plates made of piezo-
electric crystals.
Yang et al. [58], Yong et al. [59] have generalized these results to multilayered
plates.
The problem is that those models do not generally take into account the cou-
pling that occurs in the equations of motion.
Hybrid theories, with a " single-layered type " approach, and a modelling " per
layer " of the electrostatic potential, have been proposed: Mitchell et al. [34]
used a third-order theory for the displacement field, while taking into account
the variations of the electrostatic potential through the thickness of the plate;
Fernandes et al. [21], [22] developed a model that takes into account refine-
ments of the shear terms, as in Touratier [51].
Other " layerwise models " have been developed, in a first time by Pauley [42].
Pai et al. [39] have proposed an induced-strain model of multilayered piezo-
electric plate model.
Heyliger et al. [25], [26] developed an exact three-dimensional theory, for com-
posite multilayered plates.
Yet, those models do not simultaneously take into account the continuity con-
ditions for the mechanical and electrical quantities. One can of course find
asymptotic theories, which enable us to satisfy both kinds of conditions, but
they only apply to thin structures [17].
We propose in the following, a two-dimensional theory, more accurate, that

enables us to model thick multilayered piezoelectric structures.
This theory generalizes to piezoelectricity our composite multilayered model,
developed in [12], [3], [5], relating our displacement approach, to a " single-
layered " type approach, continuous at layer interfaces, to quadratic variations
through the thickness of the considered structure, of the electrostatic poten-
tial, which is also continuous. The transverse shear stresses, as well as the
electric displacement, under a constant strain, are continuous. Refinements of
the shear and membrane terms are taken into account, by means of trigono-
metric functions.
Eventually, the conditions on the frontier of the structure, or at layer inter-
faces, are satisfied.
The accuracy of the plate model thus obtained is assessed through investiga-
tion of significant problems, for which a three-dimensional solution is known
[25], [26].
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Consider a multilayered piezoelectric plate, made of an arrangement of N
layers.
Denote by a the length of the plate, by b its width, by h its thickness, and by
V the volume occupied by the plate (see figure 1).
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Figure 1: The multilayered piezoelectric plate

Notation. The frontier of the plate is made of the reunion of its bottom
surface S0, its top surface Sh, and its lateral surface A.
Denote by Si the interface between the ith and (i + 1)th layers, and by zi the
distance between S0 and Si.

The reference surface coïncides with the bottom surface S0.
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Assumptions 1.1. The transverse shear stresses are supposed equal to zero
on the top and bottom surfaces of the plate.

Notation. The Einsteinian summation convention applies to repeated indices,
where Latin indices range from 1 to 3 while Greek indices range from 1 to 2.
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Notation.

V Volume occupied by the plate
h Total thickness of the plate
S0 Bottom surface of the plate
Sh Top surface of the plate
Si Bottom surface of the ith layer
zi Distance between S0 et Si

zi0 Distance between S0 and the mid-surface of the ith layer
A Lateral surface of the plate
(xi) Cartesian coordinates
Li Lamé coefficients
sk, k = 1, . . . , 6 Strains
σk, k = 1, . . . , 6 Stresses
Cmnpq

(i), or CKL
(i) Components of the elastic strain tensor

under a constant electric field constant
′ Differentiation with respect to z

,i Differentiation with respect to xi
. Differentiation with respect to time t
δ Variational operator
ϕ Electrostatic potential o
ϕ1B Electrostatic potential on S0

ϕN+1,B Electrostatic potential on Sh

ϕiB Electrostatic potential on Si

ϕiM Electrostatic potential on the midsurface of the ith layer
ϕiT Electrostatic potential on Si+1

El, l = 1, . . . , 3 Components of the electrical field
−→
E

Dk, k = 1, . . . , 3 Components of the electric field
ekl

(i) piezoelectric constants, under a constant strain,
of the ith layer

εkl
(i) dielectric constants, under a constant strain,

of the ith layer (components of the dielectric tensor of
the ith layer)

ρ Mass density
ε0 Permittivity of vacuum 1
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1 ε0 = 8.85 10−12 F / m

1.2 Mechanical study

1.2.1 Kinematic assumptions

Assumptions 1.2. The displacement field
−→
U of any point M(xα, z) of the

structure is determined by its components (Uα, Uz) in the basis
(−→

i ,
−→
j ,
−→
k

)
,

which are approximated under the following form:
{

Uα = uα + z ηα + f(z) ψα + g(z) γ0
α +

∑N−1
m=1(z − zm) umα H(z − zm)

Uz = w
(1)

where
f(z) =

h

π
sin

(π z

h

)
, g(z) =

h

π
cos

(π z

h

)
(2)

and where H denotes the Heaviside step function.

Remark 1.1.

i. The Heaviside step function has been previously used, among others, by
Di Sciuva [18] and He [24].

ii. The use of the sine and cosine functions can be justified as in Touratier
[49], by a discrete layer theory from the three-dimensional modelling of
Cheng [16] for thick plates.

Definition 1.1. The uα are membrane displacements, the γ0
α are the com-

ponents of the transverse shear stress at z = 0, w is the deflection, the ψα

and umα are a priori unknown functions, which are to be determined using
the boundary conditions on the top and bottom surfaces, as well as at layer
interfaces.
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1.2.2 Voigt notation

The anisotropy of the piezoelectric materials requires using the two indices
Voigt notation; we thus use the correspondance:

( 1, 1 ) ≡ 1 , ( 2, 2 ) ≡ 2 , ( 3, 3 ) ≡ 3

( 2, 3 ) ≡ 4 , ( 3, 2 ) ≡ 4

( 1, 3 ) ≡ 5 , ( 3, 1 ) ≡ 5

( 1, 2 ) ≡ 6 , ( 2, 1 ) ≡ 6

Notation. In the following, capital letters denote a couple of latin indices.

1.2.3 Uncoupled constitutive equations

Denote by Cmnkl
(i) (or CKL

(i), Voigt notation) the components of the elastic
strain tensor, under a electric field, related to the ith layer, and by skl the
components of the strain tensor (or sI , Voigt notation).

Assumptions 1.3. We use, in the following, the assumption of small strains,
which yields:

skl =
Uk,l + Ul,k

2
(3)

Remark 1.2. The piezoelectric theory thus obtained is linear.

The uncoupled constitutive equations are:

σmn
(i) = Cmnkl

(i) skl (4)

or, Voigt notation:
σ

(i)
J

d
= CJK

(i) sK (5)




σ1

σ2

σ3

σ4

σ5

σ6




= C




s1

s2

s3

s4

s5

s6




(6)
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1.3 Boundary conditions

i. Conditions on the top and bottom surfaces of the plate:

The nullity of the uncoupled transverse shear stress on S0 and Sh yields:

{
σ6−α

(1)d = 0

σ6−α
(N)d = 0

(7)

The latter system yields:

{
C6−α

(1) {Uα,3(xα, 0; t) + w,α} = 0

C6−α
(N) {Uα,3(xα, h; t) + w,α} = 0

(8)

i. e.:

{
ηα = −w,α −

∑N−1
m=1 umα

ψα = 1
2

∑N−1
m=1 umα

(9)

ii. Layer interfaces conditions:

The continuity of the uncoupled shear stress at layer interface between
ith and (i + 1)th layers can be written as:

σ6−α
(i)d(xα, zi) = σ6−α

(i+1)d(xα, zi) (10)

i. e.:

C6−α,6−α
(i)

[
g′(zi) γ0

α+
1
2

i−1∑
m=1

(f ′(zi)−1)umα

]
= C6−α,6−α

(i+1)
[
g′(zi) γ0

α+
1
2

i∑
m=1

(f ′(zi)−1) umα

]

(11)

The linear system thus obtained enables us to express the umα , m =
1, . . . , N , as functions of the transverse shears γ0

α:

umα = λmα γ0
α (12)

where the λmα are real constants, given by the resolution of the above
system.
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1.4 Final form of the kinematic field

Proposition 1.4. The kinematic field
−→
U of a point M(xα, z) of the plate is

given by:
{

Uα = uα − z w,α + f(z) ψα +
∑N−1

m=1 umα hα(z)
Uz = w

(13)

where the hα are functions of the global thickness parameter z, given by:

hα(z) = g(z) +
N−1∑
m=1

{
1

2
(f(z)− z) + (z − zm) H(z − zm)

}
λmα (14)

This kinematic field has been developed in [12], [3], [5].

1.5 Electrical study

1.5.1 Electrical assumptions

Assumptions 1.5. The electrostatic potential is approximated under the form:

φ(xα, z; t) =
N−1∑
i=1

ϕi(xα, z; t) χi(z) (15)

where the ϕi denote the potentials per layer, and the χi the characteristic
functions per layer:

χi(z) =

{
1 si z ∈ [zi, zi+1[
0 else

(16)

Notation. Let us introduce, for each layer:

i. the thickness coordinate ξi, defined by:

ξi =
2 (zi − z0

i )

hi

(17)

(see figure 2).
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ii. the electrostatic potential on the bottom face, Si : ϕiB = ϕi(xα, zi; t);

iii. the electrostatic potential on the mid-surface: ϕiM = ϕi(xα, zi+1−zi

2
; t);

iv. the electrostatic potential on the top face, Si+1 : ϕiT = ϕi(xα, zi+1; t);

6
ξi

Oi

ϕ iB

ϕ iT

ϕ iM

6

?

hi

Si+1

Si

Figure 2: The ith layer

Assumptions 1.6. The " potentials per layer " are assumed of the following
form:

ϕi(xα, z; t) =
1

2
ξi (ξi−1) ϕiB(xα; t)+(1−ξi

2) ϕiM(xα; t)+
1

2
ξi (ξi+1) ϕiT (xα; t)

(18)

Remark 1.3. In so far as: ϕiB(xα, zi+1; t) = ϕiT (xα, zi; t), the continuity of the
electrostatic potential at layer interfaces of the potential is thus automatically
satisfied.

For this reason, we choose to keep, as unknowns quantities, the ϕiB and ϕiM .

For future applications, we shall suppose that p values of the ϕiB are known.
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1.5.2 Uncoupled piezoelectric constitutive law

The uncoupled piezoelectric constitutive law takes the form:

D3 = −ε33 ϕ,3 + e3j sj (19)

1.5.3 Electric boundary conditions

Proposition 1.7. The electrostatic potential can be written as:

ϕ(xα, z; t) =
∑
ik∈I

Qik(z; t) ϕikB
+

∑
jl∈J

Qjl
(z; t) ϕjl

M (20)

where the Qik , Qjl
are polynomial functions of the global thickness coordinate

z.

Proof. The continuity of D3
d on the top and bottom surfaces, and at the p

layer interfaces where the value of electrostatic potential is known, lead to a
linear system of N + p− 1 equations, which enable us to eliminate some of the
ϕiB and ϕiM .

Notation. Denote by ϕikB, ik ∈ I, ϕjl
M , jl ∈ J , I and J being finite subsets

IN, the remaining unknowns quantities.

1.6 How to take the coupling into account
The need of some correction factors

The resolution of the boundary problem enables us to obtain the values of the
generalized mechanical and electrical unknowns.
The sole quantity that cannot be obtained without an a posteriori treatment
is the coupled electric displacement.

We recall the coupled constitutive piezoelectric law:

D3 = −ε33 ϕ,3 + e3j sj (21)

The dielectric constants ε33 ϕ,3 are very small compared to the mechanical
ones e3j sj.
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So, if the final value of the electric displacement is not corrected a posteriori,
mechanical quantities e3j sj are going to be predominant.
Those terms are not continued at layer interfaces (see former section).

Proposition 1.8. The final electrical displacement is obtained, after correc-
tion, as:

D3
final(xα, z; t) = −ε33 ϕ,3+e3j sj−

N∑

k=1

[e3j
(k) sj

(k)(zk)χk(z)−e3j
(k+1) sj

(k+1)(zk)χk+1(z)]

(22)

1.7 The linear piezoelectric constitutive law

1.7.1 Tiersten equations

Notation. We recall that s denotes the strain tensor,
−→
E the electrical field,

C the elastic strain tensor, under a constant electrical field, e the tensor of
piezoelectric coefficients, under constant strain, and ε the tensor of dielectric
constants, under a constant strain.
i, j vary from 1 to 6, k, l from 1 to 3.

Properties. Tensors C, e, ε satisfy the following symmetry properties:

Cijkl = Cklij = Cjikl = Cijlk (23)

eijk = eikj (24)

εij = εji (25)

Proposition 1.9. The linear piezoelectric constitutive law is given by:
{

σij = Cijkl skl − ekij Ek

Dk = εij Ej + eijk sjk
(26)

or, under double indexation:
{

σI = CIJ sJ − ekI Ek

Dk = εkl El + ekI sI
(27)
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Remark 1.4. For orthotropic piezoelectric materials, as PVDF polymers, part
of the piezoelectric coefficients vanish; the tensors e and ε can thus be written
as:

e =




0 0 e31

0 0 e32

0 0 e33

0 e24 0
e15 0 0
0 0 0




(28)

ε =




ε11 0 0
0 ε22 0
0 0 ε33


 (29)

Remark 1.5. Lots of piezoelectric materials, as PZT ceramics, or ZnO crystals,
..., are transversally isotropic.
By choosing the orthotropy axis parallel to the vertical axis, the resulting
simplifications occur:

e31 = e32 , e24 = e15 , ε11 = ε22 (30)

1.7.2 Two-dimensional coefficients

Assumptions 1.10. In the following, the normal stress is assumed to be equal
to zero.

Proposition 1.11. Under the assumption of nullity of the normal stress, the
linear piezoelectric constitutive law is given by:

{
σI = CIJ

2D sJ − ekI
2D Ek

Dk = εkl
2D el + ekI

2D sI
(31)

where:




CIJ
2D = CIJ − CI3

C3J

C33

ekI
2D = ekI − CI3

ek3

C33

εkl
2D = εkl + el3

ek3

C33

(32)
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Proof 1.12. The assumption of nullity of the normal stress:

σ3 = 0 (33)

can be written as:
C3J sJ − ek3 Ek = 0 (34)

which enables us to eliminate the normal strain s3:

s3 =
ek3

C33

Ek − C3α

C33

sα − C3,6−α

C33

s6−α − C36

C33

s6 (35)

Substituting this expressions into (27), we obtain:

σI = CIJ sJ − ekI Ek

= CIα sα + CI,6−α s6−α + CI,6 s6 + CI3 s3 − ekI Ek

= CIα sα + CI3

{
ek3

C33

Ek − C3,6−α

C33

s6−α − C36

C33

s6

}
− ekI Ek

=

{
CIα − CI3

C3α

C33

}
sα +

{
CI,6−α − CI3

C3,6−α

C33

}
s6−α

+

{
CI,6 − CI3

C3,6

C33

}
s6 −

{
ekI − CI3

ek3

C33

}
Ek

(36)

1.8 The two-dimensional boundary problem

1.8.1 Variational formulation

Hamilton’s Principle yields:

∫ t

0

{∫

V

{σi δsi + Di δϕi}dV +
∫

V

{−→fv · δ
−→
U + W δϕ} dV +

∫

A

−→
fs · δ

−→
U dA +

∫

S0

(p0 − ph) dS

}
dt = 0

(37)

where δ denotes a variational operator,
−→
fv the density of external volumic

forces,
−→
fs density of external lateral forces, p0 and ph the pressures respectively

acting on the top and bottom surfaces of the structure, W the density of
external surface electrical forces.
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Notation. Let us introduce:

i. the generalized forces:





N1
α = − ∫ h

0
{Cαj sj − e3α E3} dz

N2
αβ = − ∫ h

0
C66 s6 (1− δαβ) dz

N3
α = − ∫ h

0
{Cαj sj − e3α E3}hα(z) dz

N4
αβ = − ∫ h

0
C66 s6(1− δαβ) hα(z) dz

N5
α = − ∫ h

0
1
2
{C6−α,6−α s6−α − e2,6−α E2}dz

(38)

{
N iB = − ∫ h

0
E3 ε33 QiB

′
(z)dz , i ∈ I

N jM = − ∫ h

0
E3 ε33 QjM

′
(z) dz , j ∈ J

(39)

ii. the generalized momentums:

{
M1

α = − ∫ h

0
{Cαj sj − e3α E3} z dz

M2
αβ = − ∫ h

0
C66 s6(1− δαβ) zdz

(40)

{
MiBα

= − ∫ h

0
{Eα εαα + ekα sα}QiB(z) dz , i ∈ I

MjM α
= − ∫ h

0
{Eα εαα + ekα sα}QiM(z) dz , j ∈ J

(41)

iii. the generalized mechanical forces:





Fν
1
α = − ∫ h

0
fνα dz

Fν
2
α = − ∫ h

0
fνα z dz

Fν
3
α = − ∫ h

0
fνα hα(z) dz

Fν
3 = − ∫ h

0
fνα dz

P = p0 − ph

(42)

iv. the generalized electrical forces:

{
W iB = − ∫ h

0
W QiB(z) dz , i ∈ I

W jM = − ∫ h

0
W QiB(z) dz , j ∈ J

(43)
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iv. the inertia terms:





I1 = − ∫ h

0
ρ dz

I2 = − ∫ h

0
ρ z dz

I3 = − ∫ h

0
ρ hα(z) dz

I4 = − ∫ h

0
ρ z2 dz

I5 = − ∫ h

0
ρ z hα(z) dz

I6 = − ∫ h

0
ρ z hα

2(z) dz

(44)

Proposition 1.13. The movement equations are given by:





N1
α

,α + N2
αβ

,β = I1
α üα − I2 ẅ,α + I3

α γ̈0
α

M1
α

,αα + M2
αβ

,αβ = I2
α üα,α − I4 ẅ,αα + I5

α γ̈0
α,α + I1 ẅ

N3
α

,α + N4
αβ

,β + N5
α = I3

α üα − I5 ẅ,α + I6
α γ̈0

α

N iB +MiBα
,α = 0 , i ∈ I

N jM +Mjmα
,α = 0 , j ∈ J

(45)

Proof 1.14. The movement equations are deduced from Hamilton’s Principle,
in conjunction with the kinematic (13), and the constitutive equations (27), by
integration through the thickness of the plate.

Proposition 1.15. The boundary conditions leading to a regular problem are
given by:





N1
α nα + N2

αβ nαβ = Fν
1
α ou δuα = 0

M1
α

,α + M2
αβ

,β = Fν
2
α ou δw = 0

N4
αβ nβ = Fν

3
α ou δγ0

α = 0
M1

α nα + M2
αβ nβ = Fν3 ou δw,α = 0

N iBα
nα = W iB ou δϕiB = 0 , i ∈ I

MjM α
nα = W jM ou δϕjM = 0 , j ∈ J

(46)
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1.9 Numerical validation of the piezoelectric plate model

1.9.1 Free vibrations of a single-layered plate

Consider, in the following, a single-layered plate (N = 1), made of PZT4
ceramic, simply supported, in closed circuit (which means that the electrostatic
potential on its top and bottom surfaces is equal to zero: ϕ1B

= ϕ1T
= 0) (see

figure 3).

6
z

O
m

6

?
h 0 VPZT 4

Figure 3: Single-layered piezoelectric plate, in closed circuit

Data 1.16. Material constants of the ceramic PZT4 can be found in tables 1,
2.

C11 C22 C33 C12 C13 C23 C44 C55 C66

PZT 4 139 139 115 77.8 74.3 74.3 25.6 25.6 30.6

Table 1: Independent elastic constants of the PZT4 ceramic (in GPa)
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e31 e32 e33 e15 ε11 ε22 ε33

PZT 4 −5.2 −5.2 15.1 12.7 13.06 13.06 11.51

Table 2: Independent piezoelectric and dielectric constants of the PZT4 ceramic
(eij in C/m2, εii in nF/m)

Proposition 1.17. The simply supported boundary conditions yield:

w(xα = 0, z; t) = w(xα = a, z; t) = 0 (47)

Proposition 1.18. The electrostatic potential (20) is approximated as (18)

ϕ1(xα, z; t) = (1− ξ1
2) ϕ1M

(xα; t) (48)

The generalized mechanical unknowns are the membrane displacements uα,
the deflection w, and the transverse shear stresses γα

0.
The generalized electrical unknown is ϕ1M .

Assumptions 1.19. The solution is searched under the following form, which
characterizes the propagation of two-dimensional plane waves:





u1 = A1 e j ω t cos(π x1

a
) sin(π x2

b
)

u2 = A2 e j ω t sin(π x1

a
) cos(π x2

b
)

w = B ej ω t sin(π x1

a
) sin(π x2

b
)

γ1
0 = C1 e j ω t cos(π x1

a
) sin(π x2

a
)

γ2
0 = C2 e j ω t sin(π x1

a
) cos(π x2

a
)

, ϕ1M
= Φ1 e j ω t sin(

π x1

a
) sin(

π x2

b
)

(49)
and which enables us to satisfy the simply supported boundary conditions (47).

By substituting these expressions into the equations of motion given by equa-
tions (13), in conjunction with the boundary conditions (45), the constitutive
law (31) and the displacement field (13), we obtain a linear system in Aα, B,
Cα, Φ1, under the form:

[K1 − ω2 M1]




A1

A2

B
C1

C2

Φ1




= 0 (50)
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The detail of coefficients of the matrices K1, M1 is given in [7].

The system admits a non trivial solution if its determinant vanishes:

det[K1 − ω2 M1] = 0 (51)

A symbolic calculus tool (Mathematica or Maple) enables us to calculate the
free pulsations of the considered plate, and to compare them to Heyliger’s
analytical solution (see Table 3).

Model Exact solu-
tion

a
h

= 4 194297.102 194255.102

335054.102 327663.102

a
h

= 10 7771870 7770210
134022.102 133695.102

a
h

= 50 15 54370 1554040
2680440 26828.102

Table 3: Free pulsations of the single-layered piezoelectric plate (in rad.s−1)

Figures 4, 5 display the variations, as functions of the global thickness coordi-
nate, of the normalized electrostatic potential:

ϕ(z; t) =
ϕ(xα, z; t)

ϕ(xα = a
2
, z = h

2
; t)

(52)

for significative values of the plate’s thickness: a = 4 h, and a = 10 h.

Results perfectly fit the exact solution.

1.9.2 Free vibrations of a 5-layered plate

Consider, in the following a 5-layered plate (N = 5), the external layers of
which are made of PZT 4 ceramic, with a core made of an arrangement 0 / 90 / 0
of epoxy resin, simply supported, in closed circuit (which means that the
electrostatic potential on its top and bottom surfaces is equal to zero: ϕ1B

=
ϕ3T

= 0) (see figure 6).

Data 1.20. The respective thicknesses of the external layers are h1 = h5 = h
10
,

those of each of the epoxy resin, h2 = h3 = h4 = 1
3

8 h
10
.
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Figure 4: Electrostatic normalized potential, single-layered plate, a = 4h. In gray:
exact solution. In black: our model.
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Figure 5: Electrostatic normalized potential, single-layered plate, a = 10 h. In
black: our model.

Data 1.21. Material constants of the ceramic PZT4 and the epoxy resin are
given in tables 4, 5.

C11 C22 C33 C12 C13 C23 C44 C55 C66

PZT 4 139 139 115 77.8 74.3 74.3 25.6 25.6 30.6
Epoxy 134.6 14.352 14.352 5.1563 7.1329 3.606 5.654 5.654 5.654

Table 4: Independent elastic constants of PZT4 and epoxy resin (in GPa)

Proposition 1.22. The simply supported boundary conditions yield:

w(xα = 0, z; t) = w(xα = a, z; t) = 0 (53)
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Figure 6: 5-layered piezoelectric plate

e31 e32 e33 e15 ε11 ε22 ε33

PZT 4 −5.2 −5.2 15.1 12.7 13.06 13.06 11.51
Epoxy 0 0 0 12.7 0.031 0.0266 0.0266

Table 5: Independent piezoelectric and dielectric constants of PZT4 and epoxy resin
(eij in C/m2, εii in nF/m)

Lemma 1.23. Electrical and dielectric properties of the 3 layers of the core
of the plate being identical, they behave, under an electrical point of view, as
a single layer.

Lemma 1.24. We thus take into account, for the 5-layered plate, a 3-layered
type modelling, with an elastic core of epoxy resin.

Proposition 1.25. The electrostatic potential (20) is approximated as:

ϕ(xα, z; t) = Q2M(z) ϕ2M (54)
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where:

Q2M(z) =
[
(1− ξ1

2) λ1M,2M M
+ 1

2
ξ1 (ξ1 + 1) λ2B,2M

]
χ1(z)

+
[

1
2
ξ2 (ξ2 − 1) λ2B,2M + (1− ξ2

2) + 1
2
ξ2 (ξ2 + 1) λ2B,2M

]
χ2(z)

+
[

1
2
ξ3 (ξ3 − 1) λ2B,2M + (1− ξ3

2) λ1M,2M
]
χ3(z)

(55)

Proof 1.26. Symmetries of the problem yield:

ϕ2B
(xα; t) = ϕ3B

(xα; t) , ϕ1M
(xα; t) = ϕ3M

(xα; t) (56)

The approximation of the electrostatic potential (20), (18) becomes thus:

ϕ(xα, z; t) =
[
(1− ξ1

2)ϕ1M (xα; t) + 1
2 ξ1 (ξ1 + 1) ϕ1T (xα; t)

]
χ1(z)

+
[
1
2 ξ2 (ξ2 − 1) ϕ2B(xα; t) + (1− ξ2

2)ϕ2M (xα; t) + 1
2 ξ2 (ξ2 + 1) ϕ2B(xα; t)

]
χ2(z)

+
[
1
2 ξ3 (ξ3 − 1) ϕ2B(xα; t) + (1− ξ3

2)ϕ1M (xα; t)
]
χ3(z)

(57)
The continuity of the uncoupled electrical displacement at layer interfaces can
be written as:

{ −ε33,1
1 ϕ,3

1(xα, z1; t) = −ε33,1
2 ϕ,3

2(xα, z1; t)
−ε33,1

2 ϕ,3
1(xα, z2; t) = −ε33,1

1 ϕ,3
3(xα, z2; t)

(58)

We thus have a linear system, which enables us to express ϕ1M and ϕ2B as
functions of ϕ2M , under the following form:

{
ϕ1M

= λ1M,2M M
ϕ2M

ϕ2B
= λ2B,2M M

ϕ2M (59)

The generalized mechanical unknowns are membrane displacements uα, the
deflection w, and the transverse shear stresses γα

0.
The generalized electrical unknown is ϕ2M .

Assumptions 1.27. In the same way as for the single-layered plate, the so-
lution is searched under the form (167):
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



u1 = A1 e j ω t cos(π x1

a
) sin(π x2

b
)

u2 = A2 e j ω t sin(π x1

a
) cos(π x2

b
)

w = B ej ω t sin(π x1

a
) sin(π x2

b
)

γ1
0 = C1 e j ω t cos(π x1

a
) sin(π x2

a
)

γ2
0 = C2 e j ω t sin(π x1

a
) cos(π x2

a
)

, ϕ2M
= Φ2 e j ω t sin(

π x1

a
) sin(

π x2

b
)

(60)
which enables us to satisfy the simply supported boundary conditions (53).

By substituting these expressions into the equations of motion given by equa-
tions (13), in conjunction with the boundary conditions (45), the constitutive
law (31) and the displacement field (13), we obtain a linear system in Aα, B,
Cα, Φ1:

[K5 − ω2 M5]




A1

B
C1

Φ2


 = 0 (61)

Detail of coefficients of matrices K5 and M5 is given in [7].

The system admits a non trivial solution if its determinant vanishes:

det[K5 − ω2 M5] = 0 (62)

A symbolic calculus tool (Mathematica or Maple) enables then us to calcu-
late the free pulsations of the considered plate, and to compare them with
Heyliger’s analytical solution [25] (see 6).

Model Exact solu-
tion

a
h

= 4 194903.102 191301.102

251763.102 250769.102

a
h

= 10 1559230 1568100
209479.102 209704

Table 6: Free pulsations of the 5-layered piezoelectric (in rad.s−1)
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Figure 7 displays the variations, as a function of the global thickness coordinate
z, of the normalized electrostatic potential:

ϕ(z; t) =
ϕ(xα, z; t)

ϕ(xα = a
2
, z = h

2
; t)

(63)
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Figure 7: Normalized electrostatic potential, 5-layered plate, a = 4 h
In gray: the exact solution. In black: our model.

Figure 8 displays the variations, as a function of the global thickness coordinate
z, of the normalized electric displacement:

D3(z; t) =
D3(xα, z; t)

D3(x1 = 0, x2 = a
2
, z = h; t)

(64)
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Figure 8: Normalized electric displacement, 5-layered plate, a = 4h. In gray: the
exact solution. In black: our model.

Figure 9 displays the variations, as a function of the global thickness coordinate
z, of the normalized transverse shear stress:
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σ13(z; t) =
σ13(xα, z; t)

σ13(x1 = 0, x2 = a
2
, z = h

2
; t)

(65)
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Figure 9: Normalized transverse shear stress, 5-layered plate, a = 4 h. In gray: the
exact solution. In black: our model.

Figure 10 displays the variations, as a function of the global thickness coordi-
nate z, of the normalized longitudinal shear stress:

σ11(z; t) =
σ11(xα, z; t)

σ11(xα = a
2
, z = 0; t)

(66)
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Figure 10: Normalized longitudinal shear stress, 5-layered plate, a = 4h. In gray:
the exact solution. In black: our model.
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1.10 Applications of the piezoelectric plate model

In the following, we present applications of the piezoelectric plate model; more
results can be found in [7].

1.10.1 Bimorph plate under mechanical loading

Consider a rectangular plate, of width a, bimorph 1, supposed of infinite length,
made of PZT4 ceramic, under cylindrical bending, simply supported, sub-
mitted to a force density p on its top face, in closed circuit (which means
that the electrostatic potential on the top and bottom surfaces is equal zero):
ϕ1B

= ϕ3T
= 0) (see figure 11).

6

0 V

z

O m

6

?

h

??? ? ?? ?

p

Figure 11: Bimorph plate under mechanical loading

Proposition 1.28. The plate being supposed of infinite length, mechanical and
electrical quantities (stresses, strains, displacements, electric field, electrostatic
potential) do not depend on x2.
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Assumptions 1.29. Since the component U2 of the displacement field does
not play any part, we shall take:

U2 = 0

Data 1.30. Material constants of PZT4 ceramic are given in tables 1, 2.

Proposition 1.31. The simply supported boundary conditions can be written
as:

w(x1 = 0, z; t) = w(x1 = a, z; t) = 0 (67)

1 A bimorph plate is a structure made of two identical materials, but with opposed
polarization axes: e3α

2 = −e3α
1, e15

2 = −e15
1, e24

2 = −e24
1

Assumptions 1.32. The force density p is assumed to be simply sinusoidal:

p (xα, z; t) = p0 e j ω t sin(
π x1

a
) (68)

where p0 = 0.05MPa.

Proposition 1.33. The electrostatic potential (20) can be written as:

ϕ(xα, z; t) = Q1M(z) ϕ1M (69)

where:

Q1M(z) = (1− ξ1
2) χ1(z)− (1− ξ2

2) χ2(z) (70)

Proof 1.34. The antisymmetry of the problem yields:

ϕ2M
= −ϕ1M (71)

Remark 1.6. The piezoelectric coefficients of both layers being identical, no
continuity conditions are required for the electrical displacement.
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The generalized mechanical unknowns are the membrane displacements uα,
the deflection w, and the transverse shear stresses γα

0.
The generalized electrostatic unknown is ϕ1M .

Assumptions 1.35. In the same way as for the single layered plate, the so-
lution is searched as (167):





u1 = A1 e j ω t cos(π x1

a
) sin(π x2

b
)

w = B ej ω t sin(π x1

a
) sin(π x2

b
)

γ1
0 = C1 e j ω t cos(π x1

a
) sin(π x2

a
)

, ϕ1M
= Φ1 e j ω t sin(

π x1

a
) sin(

π x2

b
)

(72)
which enables us to satisfy the simply supported boundary conditions (53).

By substituting these expressions into the equations of motion given by equa-
tions (13), in conjunction with the boundary conditions (45), the constitutive
law (31) and the displacement field (13), we obtain a linear system in A1, B,
C1, Φ1, of the form:

K2




A1

B
C1

Φ1


 = B2 (73)

Detail of the coefficients of the matrices K2 and of the vector B2 is given in
[7].

Figure 12 displays the variations, as a function of the global thickness para-
meter z, of the normalized electrostatic potential:

ϕ(z; t) =
ϕ(xα, z; t)

ϕ(xα = a
2
, z = h

2
; t)

(74)

Figure 13 displays the variations, as a function of the global thickness para-
meter z, of the normalized transverse shear stress:

σ13(z; t) =
σ13(xα, z; t)

σ13(x1 = 0, x2 = a
2
, z = h

2
; t)

(75)

28



0.10.20.30.40.50.60.70.80.9 1 z � h

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
j
�

Figure 12: Normalized electrostatic potential, bimorph plate under mechanical load-
ing, a = 5h. In gray: exact solutio. In black: our model.
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Figure 13: Normalized transverse shear stress, bimorph plate under mechanical
loading, a = 5 h.

Figure 14 displays the variations, as a function of the global thickness para-
meter z, of the normalized longitudinal stress:

σ11(z; t) =
σ11(xα, z; t)

σ11(xα = a
2
, z = 0; t)

(76)

Figure 15 displays the variations, as a function of the global thickness para-
meter z, of the normalized longitudinal displacement:

U1(z; t) =
U1(xα, z; t)

U1(xα = a
2
, z = 0; t)

(77)

1.10.2 Bimorph plate with imposed potentials

Consider a rectangular plate, of width a, bimorph, supposed of infinite length,
made of PZT4 ceramic, under cylindrical bending, simply supported, submit-
ted, on its top face, to an electrostatic potential +V , and, on its bottom face,
to an electrostatic potential −V (see figure 16).
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Figure 14: Normalized longitudinal stress, bimorph plate under mechanical loading,
a = 5h. In gray: exact solution. In black: our model.
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Figure 15: Normalized longitudinal displacement, bimorph plate under mechanical
loading, a = 5 h. In gray: exact solution. In black: our model.

Proposition 1.36. The plate being supposed of infinite length, the mechanical
and electrical quantities (stresses, strains, displacements, electric field, electro-
static potential), do not depend on x2.

Assumptions 1.37. Since the component U2 of the kinematic field does not
play any part, we shall take:

U2 = 0

Data 1.38. Material constants of the PZT4 ceramic are given in tables 1, 2.

Proposition 1.39. The simply supported boundary conditions yield:

w(x1 = 0, z; t) = w(x1 = a, z; t) = 0 (78)

Assumptions 1.40. The potential V is assumed to be simply sinusoidal:

V (xα, z; t) = V0 e j ω t sin
(π x1

a

)
(79)
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Figure 16: Bimorph plate, with imposed potentials

Proposition 1.41. The electrostatic potential (20) can be written as:

ϕ(xα, z; t) =
[−1

2
ξ1 (ξ1−1)V +(1−ξ1

2) ϕ1M
(xα; t)+

]
χ1(z)

[ 1
2

ξ2 (ξ2+1) V−(1−ξ2
2)ϕ1M

(xα; t)
]
χ2(z)

(80)

Proof 1.42. The antisymmetry of the problem yields:

ϕ2M
= −ϕ1M (81)

Remark 1.7. The dielectric coefficients of both layers being identical, no con-
tinuity conditions are required for the electrical displacement.

The generalized mechanical unknowns are membrane displacements uα, w, and
the transverse shears γα

0.
The generalized electrical unknown is ϕ1M .
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Assumptions 1.43. As well as for the single-layered plate, the solution is
searched as (167):





u1 = A1 e j ω t cos(π x1

a
) sin(π x2

b
)

w = B ej ω t sin(π x1

a
) sin(π x2

b
)

γ0
1 = C1 e j ω t cos(π x1

a
) sin(π x2

a
)

, ϕ1M
= Φ1 e j ω t sin(

π x1

a
) sin(

π x2

b
)

(82)
which enables us to satisfy the simply supported boundary conditions (??).

By substituting these expressions into the equations of motion given by equa-
tions (13), in conjunction with the boundary conditions (45), the constitutive
law (31) and the displacement field (13), we obtain a linear system in A1, B,
C1, Φ1:

K2




A1

B
C1

Φ1


 = B2 (83)

The detail of coefficients of the matrices K2 and of the vector B2 is given in
[7].

Figure 17 displays the variations, as a function of the global thickness para-
meter z, of the normalized electrostatic potential:

ϕ(z; t) =
ϕ(xα, z; t)

ϕ(xα = a
2
, z = h

2
; t)

(84)
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Figure 17: Normalized electrostatic potential, bimorph plate with imposed poten-
tials, a = 4 h. In gray: exact solution. In black: our model.
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Figure 18 displays the variations, as a function of the global thickness para-
meter z, of the normalized transverse shear stress:

σ13(z; t) =
σ13(xα, z; t)

σ13(x1 = 0, x2 = a
2
, z = h

2
; t)

(85)
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Figure 18: Normalized transverse shear stress, bimorph plate with imposed poten-
tials, a = 5 h.

Figure 19 displays the variations, as a function of the global thickness para-
meter z, of the normalized longitudinal stress:

σ11(z; t) =
σ11(xα, z; t)

σ11(xα = a
2
, z = 0; t)

(86)
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Figure 19: Normalized longitudinal stress, bimorph plate with imposed potentials,
a = 5h.
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2 Multilayered piezoelectric shells modelling
We hereafter study the modelling of multilayered piezoelectric shells. Our
theory is based on the same hybrid approach as previously: the electrical and
mechanical continuity conditions at layer interfaces are satisfied, as well as the
boundary conditions on the top and bottom surfaces of the shell.
The accuracy of our theory is assessed through investigation of significant prob-

lems, for which an exact three-dimensional solution is known.

2.1 Introduction

The modeling of piezoelectric shells mostly concerns cases attached to specific
geometries (cylindrical, spherical).
Toupin [48] studied the static response of a radially polarized spherical
piezoelectric shell.
Adelman et al.[13], [14] examined cases involving hollow piezoelectric cylin-
ders.
Sun et al. [45], Karlash [27] studied wave propagation in layered piezoelectric
cylinders.
Paul et al. [40], [41] examined free vibration problems.
Siao et al. [44] ] proposed a semi-analytic model for layered piezoelectric
cylinders taking into account a layerwise behavior of the composite.
Analytic solutions for laminated piezoelectric cylinders were proposed by
Mitchell et al. [35], Xu et al. [57], Heyliger [26], Dumir et al. [20], Drumheller
et al. [19]. For this purpose, Drumheller [19] used classical shell theory for
free vibrations of shells of revolution.
Haskins et al. [23] proposed the development of electrical and mechanical
quantities as expansions of the thickness variable.
Tzou et al. [52] proposed the development of electrical and mechanical
quantities as expansions of the thickness variable.
It was done by Tzou et al. [53], this time with a shear-deformation theory.
Other piezoelectric shell models and finite element approximations, based on
single-layer models were also developped by Tzou et al. [54].
A Reissner-Mindlin shear-deformation shell finite element with surface bonded
piezoelectric layers was developped by Lammering [29].
Koconis et al. [28] used a Ritz method for three-layered shells with embedded
piezoelectric actuators. Tzou et al. [54] proposed a coupled theory where the
piezoelectric shells are considered as a layerwise assembly of curvilinear solid
piezoelectric triangular elements.
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Heyliger et al. [26] developed a finite-element for laminated piezoelectric
shells.
Saravanos [43] used a coupled mixed theory for curvilinear composite piezo-
electric laminates with the first-order shear deformation theory hypothesis
and a layerwise approximation of the electrostatic potential, along with the
corresponding finite element for piezoelectric shells.

We presently extend our piezoelectric plate model to shells.
As previously, we associate our displacement type approach, which is a " single-
layered " one, continuous at layer interfaces, to quadratic variations through
the thickness of the electrostatic potential, also continuous. The transverse
shear stresses, under a constant electrical field, as well as the electrical dis-
placement, under a constant strain, are also continuous. Refinements of the
membrane and transverse shear stresses are taken into account by means of
trigonometric functions
Also, the conditions at layer interfaces, where values of the electrostatic po-
tential can be imposed, are satisfied.
Finally, the piezoelectric boundary value problem is constructed using the con-
sistant coupled constitutive law, in conjunction with the above displacements
and electrostatic potential fields. The proposed piezoelectric shell model is
evaluated for significant problems, for which the exact three-dimensional so-
lution is known [26].

2.2 Mechanical study

Consider an undeformed laminated shell of constant thickness h. The space
occupied by the shell will be denoted V. The boundary of the shell is the
reunion of the upper surface Sh , the lower surface S0 , and the edge faces A.
consisting of an arrangement of a finite number N of piezoelectric layers.
a denotes the length, b the width, h its thickness, and V the volume occupied
by the shell (see figure 2.2).

Notation. The frontier of the shell is constituted by the reunion of its
bottom surface S0, its top surface Sh, and its lateral surface A.
Si denotes the interface between the ith and (i + 1)th layers, and zi the
distance between S0 and Si.

The reference surface coïncides with the bottom surface S0.
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Figure 20: The multilayered piezoelectric shell.

Notation. The Einsteinian summation convention applies to repeated indices,
where Latin indices range from 1 to 3 while Greek indices range from 1 to 2.
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Notation.

V Volume occupied by the shell
h Total thickness of the shell
R Radiius of curvature of the shell
R1, R2 Main radii of curvature of the reference surface
S0 Bottom surface of the shell
Sh Top surface of the shell
Si Bottom surface of the ith layer
zi Distance between S0 and Si

zi0 Distance between S0 and the mid surface of the ith layer
A Lateral surface of the shell
(−→ai ) Covariant basis
(−→gi ) Covariant basis
(
−→
ai ) Contravariant basis

(
−→
gi ) Contravariant basis

δα
β Kronecker symbol

bαβ Covariant components of the curvature tensor
bα

β Mix components of the curvature tensor
(xi) Curvilinear coordinatess
Li Lamé coefficients
sk, k = 1, . . . , 6 Strains
σk, k = 1, . . . , 6 Stresses
Cmnpq

(i), or CKL
(i) Components of the elastic stiffness tensor

under a constant electrical field
′ Differentiation with respect to z

|i Covariant derivation with respect to xi

. Differentiation with respect to time t
δ Variational operator
ϕ Electrostatic potential
ϕ1B Electrostatic potential on S0

ϕN+1B Electrostatic potential on Sh

ϕiB Electrostatic potential on Si

ϕiM Electrostatic potential on the midsurface of the ith layer
ϕiT Electrostatic potential sur Si+1

El, l = 1, . . . , 3 Components of the electric field
−→
E

Dk, k = 1, . . . , 3 Components of the electric displacement
ekl

(i) Piezoelectric constants, under a constant strain,
of the ith layer

εkl
(i) Dielectric constants, under a constant strain,

of the ith layer (or components of the tensor of permit-
tivities of the ith layer)

ρ Mass density
ε0 Permittivity of vacuum 1
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1 ε0 = 8.85 10−12 F / m

2.2.1 Geometric considerations for shells

A point M out of the reference surface being given, let us denote by P the
point of the reference surface closest to M .
Covariant base vectors (−→ai ) , (−→gi ), and contravariant base vectors (

−→
ai ) , (

−→
gi ),

are defined by:

−→aα = P,α , −→a3 =
−→a1 ∧ −→a2

‖−→a1 ∧ −→a2‖ ,
(−→a1 ∧ −→a2

) · −→a3 > 0 (87)

{ −→aα ·
−→
aβ = δα

β

−→
a3 = −→a3

(88)

−→gi = M,i ,
(−→g1 ∧ −→g2

) · −→g3 > 0 (89)

{ −→gα ·
−→
gβ = δα

β

−→
g3 = −→g3

(90)

Thus:

P = M + z−→a3 (91)

Notation. Let us introduce:

aαβ = −→aα · −→aβ , gαβ = −→gα · −→gβ (92)

Proposition 2.1.

−→aβ = aαβ

−→
aβ ,

−→
aβ = aαβ −→aβ (93)

−→gα = µβ
α
−→aβ = gαβ

−→
gβ ,

−→
gα = −µα

β
−1
−→
aβ = gαβ −→gβ ,

−→
g3 =

−→
a3 = −→a3 (94)

38



Definition 2.1. The mixed components of the shifter tensor are given by:

µα
β = δα

β − z bα
β (95)

The covariant components of the curvature tensor are given by:

bαβ = −→aα,β ·
−→
a3 (96)

The mixed components of the curvature tensor are given by:

bα
β = −−→a3 ,β ·

−→
aα (97)

Assumptions 2.2. In the following, the curvilinear coordinates (or shell
coordinates) are assumed to be orthogonal, and are such that the curves
x1 = constant, x2 = constant are lines of curvature on the reference sur-
face.
The curves z = constant are straight lines perpendicular to the surface S0.
R1, R2 denote the principal radii of curvature of the reference surface.

Proposition 2.3. The distance between two points P (x1, x2, 0) and P ′(x1 +
dx1, x2 + dx2, 0) of the reference surface is given by:

ds2 = α1
2 dx1

2 + α2
2 dx2

2 (98)

where α1 and α2 are the coefficients of metrics, given by:

αl
2 =

(∂P

∂xl

) (∂P

∂xl

)
l = 1, 2 (99)

Proposition 2.4. The distance between two points M(x1, x2, x3) and M ′(x1 +
dx1, x2 + dx2, x3 + dx3), out of the reference surface, is given by:

ds2 = L1
2 dx1

2 + L2
2 dx2

2 + L3
2 dx3

2 (100)

where L1, L2 and L3 denote the Lamé coefficients, given by:

L1 = αl

(
1 +

z

R1

)
, L2 = αl

(
1 +

z

R2

)
, L3 = 1 (101)
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2.3 Kinematic assumptions

Assumptions 2.5. The displacement field
−→
U of a point M(xα, z) of the shell,

is defined by its components (Uα, Uz) in the covariant basis
(−→
gα,

−→
g3

)
, approxi-

mated under the form:
{

Uα = uα + z ηα + f(z) ψα + g(z) γ0
α +

∑N−1
m=1(z − zm) umα H(z − zm)

Uz = w
(102)

where:
f(z) =

h

π
sin

(π z

h

)
, g(z) =

h

π
cos

(π z

h

)
(103)

where H denotes the Heaviside step function.

As in the previous part, the use of the sine and cosine functions can be justified
as in Touratier [49], by a discrete-layer approach, from the three-dimensional
modelling of Cheng [16] for thick plates.

The uα are membrane displacements, the γ0
α the components of the transverse

shear stress at z = 0, w the deflection, ψα and umα a priori unknown functions,
which will be determined thanks to the conditions at layer interfaces as well
as on the top and bottom surfaces.

2.4 Uncoupled constitutive law

Let us denote by Cmnkl
(i) (or CKL

(i), double indexation) the components of
the elastic stiffness tensor, under a constant electric field, of the ith layer, and
by skl the components of the stress tensor (or sI , double indexation).

Assumptions 2.6. We use, in the following, the hypothesis of small pertu-
bations,which yields:

skl =
Vk‖l + Vl‖k

2
(104)

where:




Vα‖β = µν
α [ Uν|β − bνβ w ]

Vα‖3 = µν
α Uν,3

V3‖3 = U3,3

(105)
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Remark 2.1. Equations (105) yield:





Vα‖β = µν
α [ uν|β + z ην|β + f(z)ψν|β + g(z) γ0

ν|β +
∑N−1

m=1(z − zm) umν|β H(z − zm)− bνβ w ]
Vα‖3 = µν

α [ην + f ′(z)ψν + g′(z) γ0
αν +

∑N−1
m=1 umν|H(z − zm) ]

V3‖α = w|α + bν
α [uν + z ην + f(z) ψν + g(z) γ0

ν +
∑N−1

m=1(z − zm)umν H(z − zm)]
V3‖3 = w,3

(106)
Especially:

sα3 = 1
2
[ Vα‖3 + V3‖α ]

= 1
2

{
µν

α [ην + f ′(z) ψν + g′(z) γ0
αν +

∑N−1
m=1 umν H(z − zm) ]

+ w|α + bν
α [uν + z ην + f(z) ψν + g(z) γ0

ν +
∑N−1

m=1(z − zm) umν H(z − zm)]
}

(107)

The uncoupled constitutive law yields:

σmn
(i) = Cmnkl

(i) skl (108)

i.e., under double indexation:

σ
(i)
J

d
= CJK

(i) sK (109)




σ1

σ2

σ3

σ4

σ5

σ6




= C




s1

s2

s3

s4

s5

s6




(110)

2.5 Boundary conditions

i. Conditions on the top and bottom surfaces:

Proposition 2.7. The zero value of the transverse shear stress on S0

and Sh, under a constant electric field, yields:

ηα = −ψα − w|α − bν
α [uν +

h

π
γ0

ν ] (111)

and:
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ψα = dβ
α γ0

β +
N−1∑
m=1

fm
β

α umβ (112)

where:

{
[ dβ

α ] = [ h bβ
α − 2 δβ

α ]
−1

[ 2 h
π

bβ
α ][

fm
β

α

]
= [h bβ

α − 2 δβ
α]
−1

[δβ
α − bβ

α zm]
(113)

Proof. The nullity of the transverse shear stress on S0 and Sh, under a
constant electric field, can be written as:

{
σ6−α

(1)d = 0

σ6−α
(N)d = 0

(114)

which yields:

{
sα3(z = 0) = 0
sα3(z = h) = 0

(115)

i.e., according to (107):

sα3(z = 0) =
1
2

[−δν
α [ην +

h

π
ψν ] + w|α + bν

α [uν +
h

π
γ0

ν ]
]

(116)

and:

sα3(z = h) =
1
2

[
µν

α [ην−ψν+
N−1∑
m=1

umν ]+w|α+bν
α [uν+h ην−h

π
γ0

ν+
N−1∑
m=1

(h−zm) umν ]
]

(117)

since:

f(0) = g′(0) = f(h) = g′(h) = 0 , f ′(0) = −f ′(h) = 1 , g(0) = −g(h) =
h

π
(118)

µν
α = δν

α − z bν
α (119)
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we thus have:

sα3(z = 0) =
1

2

[
ηα + ψα + w|α + bν

α [uν +
h

π
γ0

ν ]
]

(120)

and:

sα3(z = h) =
1
2

[
µν

α [ην−ψν+
N−1∑
m=1

umν ]+w|α+bν
α [uν+h ην−h

π
γ0

ν+
N−1∑
m=1

(h−zm) umν ]
]

(121)

sα3 = 1
2 [Vα‖3 + V3‖α ]

= 1
2

{
µν

α [ην + f ′(z)ψν + g′(z) γ0
ν +

∑N−1
m=1 umν H(z − zm) ]

+ w|α + bν
α [uν + z ην + f(z)ψν + g(z) γ0

ν +
∑N−1

m=1(z − zm)umν H(z − zm)]
}

(122)

Hence:

ηα = −ψα − w|α − bν
α [uν +

h

π
γ0

ν ] (123)

and:

−2 ψα + bν
α ψνn− 2

h

π
γ0

ν +
N−1∑
m=1

(δν
α − bν

α zm) umν = 0 (124)

which can be written as:

ψα = dβ
α γ0

β +
N−1∑
m=1

fm
β

α umβ (125)

where:

{
[ dβ

α ] = [ h bβ
α − 2 δβ

α ]
−1

[ 2 h
π

bβ
α ][

fm
β

α

]
= [h bβ

α − 2 δβ
α]
−1

[δβ
α − bβ

α zm]
(126)

By substituting these expressions in (123), we deduce:

ηα = −dβ
α γ0

β −
N−1∑
m=1

fm
β

α umβ − w|α − bν
α [uν +

h

π
γ0

ν ] (127)
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We then have, thanks to (122):

sα3 = 1
2

{
[ µν

α + z bν
α ] ην + [ µν

α f ′(z) + bν
α f(z) ] ψν

+ [µν
α g′(z)bν

α g(z) ] γ0
αν

+
∑N−1

m=1 [µν
α + bν

α (z − zm) ] umν H(z − zm)
+ w|α + bν

α uν

}
(128)

i.e.:

sα3 = 1
2

{
[ µν

α + z bν
α ] {−dβ

ν γ0
β −

∑N−1
m=1 fm

β
ν umβ − w|ν − bλ

ν [uλ + h
π

γ0
λ]}

+ [ µν
α f ′(z) + bν

α f(z) ] { dλ
ν γ0

λ +
∑N−1

m=1 fm
λ

ν umβ }
+ [µν

α g′(z)bν
α g(z) ] γ0

ν

+
∑N−1

m=1 [µν
α + bν

α (z − zm) ] umν H(z − zm)
+ w|α + bν

α uν

}
(129)

ii. Conditions at layer interfaces:

The continuity of the uncoupled transverse shear stress between the ith

and (i + 1)th layer can be written as:

σ6−α
(i)d(xα, zi) = σ6−α

(i+1)d(xα, zi) (130)

Thanks to (129), we then obtain a linear system of N − 1 equations,
which enables us to express the umα, m = 1, . . . , N − 1 as functions of
the transverse shears γ0

α:

umα = λmα γ0
α (131)

where the λmα are real constants, given by the resolution of the latter
system.

2.6 Final form of the displacement field

Proposition 2.8. The displacement field
−→
U of any point M(xα, z) of the

structure is given by:
{

Uα = µβ
α uβ − z w|α + hβ

α γ0
β

Uz = w
(132)
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where the hβ
α are functions of the global thickness variable z, given by:

hβ
α(z) = g(z) δβ

α−z
h

π
bβ

α +[f(z)−z] dβ
α +

N−1∑
m=1

{
f(m)

β
α

+ (z − zm) H(z − zm) δβ
α

}
λmβ

(133)

This displacement field has been developed in [12], [5], [3].

2.7 Electrical study; the linear piezoelectric constitutive
law

This section refers to the same results as in the case of the plate (see above)

2.8 The two-dimensional boundary-value problem

2.8.1 Variational formulation

Hamilton’s Principle yields:

∫ t

0

{∫

V

{σi δsi + Di δϕi}dV +
∫

V

{−→fv · δ
−→
U + W δϕ} dV +

∫

A

−→
fs · δ

−→
U dA +

∫

S0

(p0 − ph) dS

}
dt = 0

(134)

δ being a variational operator,
−→
fv the volumic density of body forces,

−→
fs the

surface density of body forces on the lateral surface of the shell, p0 and ph the
prescribed components of traction on the top and bottom surfaces, and W the
density of electric forces.

Notation. µ denotes the value of the determinant of shifter tensor [µβ
α] at

z = 0.
Let us ntroduce:

i. the generalized stresses:





N1
αβ = − ∫ h

0
{Cλj sj − e3α E3}µν

λ µα
ν µdz

N2
αβ = − ∫ h

0
C66 s6 (1− δλβ)µν

λ µα
ν µdz

N3 = − ∫ h

0

[{Cαj sj − e3α E3}µν
α bνα + C66 s6 (1− δαβ) µν

α bνβ

]
µ dz

N4
α = − ∫ h

0

[
C6−λ,6−λ s6−λ,6−λ − ek,6−λ Ek

] {µν
λ hα

ν,3 + bν
λ hα

ν }µdz

N5
α = − ∫ h

0
{Cλj sj − e3α E3}µν

λ hα
ν(z)µ dz

N6
α = − ∫ h

0
C66 s6(1− δλβ)µν

λ hα
ν(z)µdz

(135)
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{
N iB = − ∫ h

0
E3 ε33 QiB

′
(z) µ dz , i ∈ I

N jM = − ∫ h

0
E3 ε33 QjM

′
(z) µ dz , j ∈ J

(136)

ii. the generalized momentums:

{
M1

αβ = − ∫ h

0

[ {Cαj sj − e3α E3 }µν
α + C66 s6|νβ (1− δαβ) µν

α

]
z µ dz

M2
αβ = − ∫ h

0
C66 s6 (1− δαβ) z µ dz

(137)

{
MiBα

= − ∫ h

0
{Eα εαα + ekα sα}QiB(z) µ dz , i ∈ I

MjM α
= − ∫ h

0
{Eα εαα + ekα sα}QiM(z) µ dz , j ∈ J

(138)

iii. the generalized external mechanical forces :





Fν
1β

α = − ∫ h

0
fνα µβ

α µ dz

Fν
2
α = − ∫ h

0
fνα z µ dz

Fν
3β

α = − ∫ h

0
fνα hβ

α(z) µ dz

Fν
3 = − ∫ h

0
fνα µ dz

P = p0 − ph

(139)

iv. the generalized external electrostatic forces :

{
W iB = − ∫ h

0
W QiB(z) µ dz , i ∈ I

W jM = − ∫ h

0
W QiB(z) µ dz , j ∈ J

(140)

iv. the inertia terms:





I1 = − ∫ h

0
ρ µ dz

I2 = − ∫ h

0
ρ z µ dz

I3 = − ∫ h

0
ρ hα(z) µ dz

I4 = − ∫ h

0
ρ z2 µ dz

I5 = − ∫ h

0
ρ z hα(z) µ dz

I6 = − ∫ h

0
ρ z hα

2(z) µ dz

(141)
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Proposition 2.9. The equations of motion are given by:





N1
αβ
|β + N2

αβ
|β = I1

α üα − I2 ẅ|α + I3
α γ̈0

α

M1
αβ
|αβ + M2

αβ
|αβ = I2

α üα|α − I4 ẅ|αα + I5
α γ̈0

α|α + I1 ẅ

N5
α
|α + N6

αβ
|β + N4

α = I3
α üα − I5 ẅ|α + I6

α γ̈0
α

N iB +MiBα
|α = 0 , i ∈ I

N jM +Mjmα
|α = 0 , j ∈ J

(142)

Proof 2.10. The equations of motion are deduced from Hamilton’s Principle,
in conjunction with the kinematics (132), including the constitutive law given
by equations (27), by integration through the thickness of the shell.

Proposition 2.11. The boundary conditions leading to a " regular problem "
are:





N1
αβ nβ + N2

αβ nβ = Fν
1α

β ou δuα = 0
M1

αβ
|β + M2

αβ
|β = Fν

2
α ou δw = 0

N4
αβ nβ = Fν

3α
β or δγ0

α = 0
M1

αβ nβ + M2
αβ nβ = Fν3 ou δw|α = 0

N iBα
nα = W iB ou δϕiB = 0 , i ∈ I

MjM α
nα = W jM ou δϕjM = 0 , j ∈ J

(143)

Proof 2.12. The equations of motions can be derived from Principe de Hamil-
ton’s Principle, the kinematics (132), and the constitutive law (27), through
integration on the thickness of the shell.

2.9 Numerical validation of the piezoelectric shell model

2.9.1 Associated plate model

The plate being a degenerated shell, our shell model is, in a first time, validated
by the related plate model.

2.9.2 Free vibrations of an orthotropic cylindrical panel

Consider an orthotropic cylindrical panel, supposed of infinite length, made of
PZT4 ceramic, under cylindrical bending, simply supported, submitted to a
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surface force density p, in closed circuit (which means the electrostatic poten-
tial on the top and bottom surfaces is equal to zero: ϕ1B

= ϕ1T
= 0).

R denotes the radius of the cylinder, h its thickness, α its central angle, and
θ the angular coordinate (see figure 21).

Figure 21: The cylindrical panel.

Data 2.13. Material constants of PZT4 ceramic are given in tables 7, 8.

C11 C22 C33 C12 C13 C23 C44 C55 C66

PZT 4 139 139 115 77.8 74.3 74.3 25.6 25.6 30.6

Table 7: Independent elastic constants of PZT4 ceramic (in GPa)

e31 e32 e33 e15 ε11 ε22 ε33

PZT 4 −5.2 −5.2 15.1 12.7 13.06 13.06 11.51

Table 8: Independent piezoelectric and dielectric constants of PZT4 ceramic (eij in
C/m2, εii in nF/m)

Proposition 2.14. The simply supported boundary conditions yield:

w(θ = 0, z; t) = w(θ = α, z; t) = 0 (144)
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Proposition 2.15. The panel being supposed of infinite length, the mechanical
and electrical quantities (stresses, strains, displacements, electric field, electro-
static potential), do not depend on x2.

Assumptions 2.16. Since the component U2 of the displacement field does
not play any part, we shall take:

U2 = 0

Assumptions 2.17. The force density p is assumed to be simply sinusoidal,
of the form:

p (xα, z; t) = p0 e j ω t sin(
π x1

α
) (145)

where p0 = 10 N/m2.

Proposition 2.18. The electrostatic potential (20) is approximated as (18):

ϕ1(xα, z; t) = (1− ξ1
2) ϕ1M

(xα; t) (146)

The mechanical generalized displacements remaining unknowns the membrane
displacement u1, w, and the transverse shear γ1

0.
The electrical generalized unknown is ϕ1M .

Assumptions 2.19. The solution is searched under the following form,which
characterizes the propagation of harmonic plane-waves:





u1 = A1 e j ω t cos(π x1

α
)

w = B ej ω t sin(π x1

α
)

γ1
0 = C1 e j ω t cos(π x1

α
)

, ϕ1M
= Φ1 e j ω t sin(

π x1

α
) (147)

which enable us to satisfy the simply supported boundary conditions (159).
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By substituting these expressions in the equations of the equilibrium (142), in
conjunction with the boundary conditions (143), the constitutive law (31) and
the displacement field (132), we obtain a linear system in A1, B, C1, Φ1, of
the form:

K1




A1

B
C1

Φ1


 = B1 (148)

Detail of coefficients of the matrix K1 and of the vector B1 can be found in
[8].

Figure 22 displays the variations, as a function of the global thickness variable
z, of the normalized electrostatic potential:

ϕ(z; t) =
ϕ(θ = α

2
, z; t)

ϕ(θ = α
2
, z = h

2
; t)

(149)

for a significative value of R
h
.

Results (in black) are compared to the exact solution of Dumir [20] (in gray).
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Figure 22: Normalized electrostatic potential, single-layered panel, R = 4 h. In
black: our model. In gray: exact solution.

Results obtained by our model perfectly fit the exact solution.

Figures 23, 24, 25 display the variations, as functions of the global thickness
coordinate z, of the normalized transverse shear stress:

σ13(z; t) =
σ13(θ = α

2
, z; t)

σ13(θ = α
2
, z = h

2
; t)

(150)
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for significative values of R
h
.

Results (in black) are compared to the exact solution of Dumir [20] (in gray).
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Figure 23: Normalized transverse shear stress, single-layered panel, R = 4h. In
black: our model. In gray: exact solution.
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Figure 24: Normalized transverse shear stress, single-layered panel, R = 10h. In
black: our model. In gray: exact solution.

The model appears to be in good agreement with the exact solution.
As expected, as the shell grows thinner, the results of our model get closer to
those of the exact solution.

Figures 26, 27, 28 display the variations, as functions of the global thickness
coordinate z, of the normalized longitudinal stress:

σ11(z; t) =
σ11(θ = α

2
, z; t)

σ11(θ = α
2
, z = h

2
; t)

(151)
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Figure 25: Normalized transverse shear stress, single-layered panel, R = 100h. In
black: our model. In gray: exact solution.

for significative values of the quotient R
h
.
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Figure 26: Normalized longitudinal stress, single-layered circular cylindrical panel,
R = 4h. In black: our model. In gray: exact solution.

As for the transverse shear stress, the model appears to be in good agreement
with the exact solution.

2.10 Applications of the multilayered piezoelectric shell
model

We present, in the following, applications of our multilayered piezoelectric
shell model. For the considered problems, there is no exact three-dimensional
solution. Our results can be interpreted as generalizations, to the " shell case ",
of Fernandes’s [21], [22], in the case of piezoelectric plates.
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Figure 27: Normalized longitudinal stress, single-layered circular cylindrical panel,
R = 10h. In black: our model. In gray: exact solution.

0.10.20.30.40.50.60.70.80.9 1 z � h

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
Σ 11
������

Figure 28: Normalized longitudinal stress, single-layered circular cylindrical panel,
R = 100h. In black: our mode. In gray: exact solution.

2.10.1 Bimorph shell

Consider a bimorph circular cylindrical panel, supposed of infinite length,
made of PZT4 ceramic, under cylindrical bending, simply supported, submit-
ted, on its top face, to a potential +V , while, on its lower face, to a potential
−V (see figure 29).
As previously, R denotes the radius of the cylinder, h its thickness, α its central
angle, and θ the angular coordinate (see figure 21).

Data 2.20. Material constants of PZT4 ceramic can be found in tables 1, 2.

Proposition 2.21. The simply supported boundary conditions yield:

w(θ = 0, z; t) = w(θ = α, z; t) = 0 (152)
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Figure 29: Bimorph shell, with imposed potentials.

Proposition 2.22. The panel being supposed of infinite length, the mechanical
and electrical quantities (stresses, strains, displacements, electric field, electro-
static potential), do not depend on x2.

Assumptions 2.23. Since the component U2 of the displacement field does
not paly any part, we shall take:

U2 = 0

Assumptions 2.24. The potential V is assumed to be simply sinusoidal:

V (xα, z; t) = V0 e j ω t sin(
π x1

a
) (153)

Proposition 2.25. The electrostatic potential (20) is approximated as (18):

ϕ(x1, z; t) =
[
(1− ξ1

2) ϕ1M
(x1; t)− 1

2
ξ1 (ξ1 − 1) V (x1; t)

]
χ1(z)

+
[
(1− ξ2

2) ϕ2M
(x1; t) + 1

2
ξ2 (ξ2 + 1) V (x1; t)

]
χ2(z)

(154)

Remark 2.2. The dielectric coefficients of the two layers that constitute the
bimorph being identical, no continuity conditions at layer interfaces are re-
quested for the electric displacement.
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The mechanical generalized displacements remaining unknowns are the
membrane displacement u1, w, and the transverse shear γ1

0.

The electrical generalized unknown is ϕ1M .

Assumptions 2.26. The solution is searched under the following form, which
characterizes the propagation of harmonic plane-waves:





u1 = A1 e j ω t cos(π x1

α
)

w = B ej ω t sin(π x1

α
)

γ1
0 = C1 e j ω t cos(π x1

α
)

, ϕ1M
= Φ1 e j ω t sin(

π x1

α
) (155)

which enable us to satisfy the simply supported boundary conditions(159).

By substituting these expressions in the equations of the equilibrium (142), in
conjunction with the boundary conditions (143), the constitutive law (31) and
the displacement field (132), we obtain a linear system in A1, B, C1, Φ1, of
the form:

K1




A1

B
C1

Φ1


 = B1 (156)

Detail of coefficients of the matrix K1 and of the vector B1 is given in [8].

Figure 30 displays the variations, as a function of the global thickness coordi-
nate z, of the normalized electrostatic potential:

ϕ(z; t) =
ϕ(θ = α

2
, z; t)

ϕ(θ = α
2
, z = h

2
; t)

(157)
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Figure 30: Normalized electrostatic potential, bimorph cylindrical panel, R = 4h.

Figure 31 displays the variations, as a function of the global thickness coordi-
nate z, of the normalized transverse shear stress:

σ13(z; t) =
σ13(θ = α

2
, z; t)

σ13(θ = α
2
, z = h

2
; t)

(158)
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Figure 31: Normalized transverse shear stress, bimorph cylindrical panel, R = 4 h.

2.10.2 Three-layered shell, submitted to a force density

Consider a symmetric 3-layered circular cylindrical panel, of infinite length, a
circular cylindrical panel, the external layers of which are made of ZnO oxyde,
with a silicium core, under cylindrical bending, simply supported, submitted
to a force density p on its top face, and in closed circuit (which means that
the electrostatic potential on its top and bottom surfaces is equal to zero:
ϕ1B

= ϕ1T
= 0) (see figure 32).

As previously, R denotes the radius of the cylinder, h its thickness, α its central
angle, and θ the angular coordinate (see figure 21).
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Figure 32: Three-layered shell.

Data 2.27. Material constants of ZnO oxyde and silicium Si can be found in
tables 9, 10.

C11 C22 C33 C12 C13 C23 C44 C55 C66

ZnO 209.7 209.7 210.9 121.1 105.1 42.5 42.5 25.6 30.6
Si 166 166 166 63.9 63.9 79.6 5.654 5.654 5.654

Table 9: Independent mechanical constants of ZnO and silicium Si (in GPa)

e31 e32 e33 e15 ε11 ε22 ε33

ZnO −0.61 −0.61 1.14 −0.59 13.06 13.06 11.51
Si 0 0 0 12.7 0.01045 0.01045 0.01045

Table 10: Independent piezoelectric and dielectric constants of ZnO and silicium
Si (eij in C/m2, εii in nF/m)

Proposition 2.28. The simply supported boundary conditions yield:

w(θ = 0, z; t) = w(θ = α, z; t) = 0 (159)
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Proposition 2.29. The panel being supposed of infinite length, the mechanical
and electrical quantities (stresses, strains, displacements, electric field, electro-
static potential), do not depend on x2.

Assumptions 2.30. Since the component U2 of the displacement field does
not play any part, we shall take:

U2 = 0

Assumptions 2.31. The force density p is supposed to be simply sinusoidal,
of the form:

p (xα, z; t) = p0 e j ω t sin(
π x1

α
) (160)

where p0 = 10N/m2.

Proposition 2.32. The electrostatic potential (20) is approximated as (18):

ϕ(xα, z; t) = Q2M(z) ϕ2M (161)

where:

Q2M(z) =
[
(1− ξ1

2) λ1M,2M M
+ 1

2
ξ1 (ξ1 + 1) λ2B,2M

]
χ1(z)

+
[

1
2
ξ2 (ξ2 − 1) λ2B,2M + (1− ξ2

2) + 1
2
ξ2 (ξ2 + 1) λ2B,2M

]
χ2(z)

+
[

1
2
ξ3 (ξ3 − 1) λ2B,2M + (1− ξ3

2) λ1M,2M
]
χ3(z)

(162)
where λiM , λiB (i = 1, 2) are real constants, determined by means of the
interface continuity conditions.

Proof. Symmetries of the problem lead to:

ϕ2B
(xα; t) = ϕ3B

(xα; t) , ϕ1M
(xα; t) = ϕ3M

(xα; t) (163)

which enable us to simplify the electrostatic potential:

58



ϕ(xα, z; t) =
[
(1− ξ1

2) ϕ1M
(xα; t) + 1

2
ξ1 (ξ1 + 1) ϕ1T

(xα; t)
]
χ1(z)

+
[

1
2
ξ2 (ξ2 − 1) ϕ2B

(xα; t) + (1− ξ2
2) ϕ2M

(xα; t) + 1
2
ξ2 (ξ2 + 1) ϕ2T

(xα; t)
]
χ2(z)

+
[

1
2
ξ3 (ξ3 − 1) ϕ2B

(xα; t) + (1− ξ3
2) ϕ1M

(xα; t)
]
χ3(z)

(164)
The continuity of the uncoupled electric displacement at layer interfaces yields:

{ −ε33,1
1 ϕ,3

1(xα, z1; t) = −ε33,1
2 ϕ,3

2(xα, z1; t)
−ε33,1

2 ϕ,3
1(xα, z2; t) = −ε33,1

1 ϕ,3
3(xα, z2; t)

(165)

We thus obtain a linear system, which enables us to express ϕ1M and ϕ2B as
functions of ϕ2M , under the form:

{
ϕ1M

= λ1M,2M M
ϕ2M

ϕ2B
= λ2B,2M M

ϕ2M (166)

The generalized mechanical unknowns are the membrane displacements u1,
the deflection w, and the transverse shear stresses γ1

0.
The generalized electrical unknown is ϕ2M .

Assumptions 2.33. The solution is searched under the following form, which
characterizes the propagation of harmonic plane waves:





u1 = A1 e j ω t cos(π x1

α
)

w = B ej ω t sin(π x1

α
)

γ0
1 = C1 e j ω t cos(π x1

α
)

, ϕ2M
= Φ2 e j ω t sin(

π x1

α
) (167)

which enables us to satisfy the simply supported boundary conditions (159).

By substituting these expressions in the equations of the equilibrium (142), in
conjunction with the boundary conditions (143), the constitutive law (31) and
the displacement field (132), we obtain a linear system in A1, B, C1, Φ1, of
the form:

K2




A1

B
C1

Φ2


 = B2 (168)
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detail of the coefficients of the matrix K2 and of the vector B2 is given in [8].

Figure 33 displays the variations, as a function of the global thickness para-
meter z, of the normalized electrostatic potential:

ϕ(z; t) =
ϕ(θ = α

2
, z; t)

ϕ(θ = α
2
, z = h

2
; t)

(169)
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Figure 33: Normalized electrostatic potential, three-layered cylindrical panel, R =
4h.

Figure 34 displays the variations, as a function of the global thickness para-
meter z, of the normalized transverse shear stress:

σ13(z; t) =
σ13(θ = α

2
, z; t)

σ13(θ = α
2
, z = h

2
; t)

(170)
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Figure 34: Normalized transverse shear stress, three-layered cylindrical panel, R =
4h.

Figure 35 displays the variations, as a function of the global thickness para-
meter z, of the normalized longitudinal stress:
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σ11(z; t) =
σ11(θ = α

2
, z; t)

σ11(θ = α
2
, z = h

2
; t)

(171)
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Figure 35: Normalized longitudinal stress, three-layered cylindrical panel, R = 4 h.

2.11 Conclusion

The latter results constitute, as expected, a generalization of similar ones
obtained in the case of plates by Fernandes [21], [22].
The general aspect of the curves is the same, with, of course, an influence of
the curvature.
The fitting between those results, and the fact that the considered problems
correspond to thick shells (R = 4 h), show that our model can efficiently
represent piezoelectric structures, submitted to different kinds of loadings,
electric or mechanic.
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