Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Partenariats

CNRS

UPMC

UdP
Print this page | lire cette page en Français
Internships (10th and 11th grades high school students)
Job shadowing (Year 10, Year 11 students) See https://www.math.univ-paris-diderot.fr/diffusion/index

Key figures

Key figures

189 people work at LJLL

90 permanent staff

82 researchers and permanent lecturers

8 engineers, technicians and administrative staff

99 non-permanent staff

73 Phd students

14 Post-doc and ATER

12 emeritus scholars and external collaborators

 

Figures : March 2019

 

New translation : Séparation aveugle de sources


Description : Pour résumer brièvement la méthode employée, la séparation aveugle de sources consiste en l’extraction de signaux sources (inconnues !) à partir de la seule connaissance de leur image (aussi appelée mélange ou observation) par l’action d’un opérateur de mélange (lui aussi inconnu !), d’où le caractère aveugle de la séparation. Ce problème est bien entendu fortement mal posé. Il nécessite donc certaines hypothèses définissant le modèle (voir 1 pour plus détails sur cette méthode). Une fois ces hypothèses établies, ce modèle est résolu par une méthode d’optimisation stochastique. Cependant, certaines indéterminations deviennent très vite un problème lorsqu’il s’agit de séparer des sources. Dans un premier temps, j’ai proposé une méthode de pénalisation, en fait l’addition d’un critère de séparation à un critère de normalisation. La minimisation a été résolue par une méthode de gradient stochastique. À l’issu du calcul du gradient de ce critère, cette étude a conduit à l’élaboration d’un nouvel algorithme de séparation aveugle de sources (PMI-BSS) que l’on a comparé avec un algorithme existant et faisant référence (voir 2 pour plus de détails). Le code de calcul qui a découlé de ce travail a été écrit ex nihilo en langage C et en utilisant l’interface graphique du logiciel Matlab. Cette étude a été généralisée dans 3 couplant cette minimisation avec le principe de minimum de distorsion, défini dans 4.
M. El Rhabi

Références :

P. Comon, Independent Component Analysis, a new concept ?, Signal Processing, vol. 36, no. 3, pp. 287 - 314, 1994.
M. El Rhabi, G. Gelle, H. Fenniri and G. Delaunay, A penalized mutual information criterion for blind separation of convolutive mixtures, Elsevier Signal Processing 84, 1979-1984, 2004.
M. El Rhabi, H. Fenniri, G. Gelle and G. Delaunay, Blind Separation of rotating machines signals using PMI criterion and Minimal Distorsion Principle, MSSP Mechanical System and Signal Processing 19 (6), 1282-1292, 2005.
K. Matsuoka, Y. Ohba, Y. Toyota, and S. Nakashima, Blind Separation for Convolutive Mixture of Many Voices, International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sept. 2003, Kyoto, Japan.


  • Télécharger ce film