Job shadowing (Year 10, Year 11 students) See https://www.math.univ-paris-diderot.fr/diffusion/index
Key figures
Key figures
189 people work at LJLL
86 permanent staff
80 researchers and permanent lecturers
6 engineers, technicians and administrative staff
103 non-permanent staff
74 Phd students
15 post-doc and ATER
14 emeritus scholars and external collaborators
January 2022
Séminaire du LJLL : M. Parisot
08 janvier 2016 — 14h00
Martin Parisot (Inria Paris Rocquencourt)
Un schéma bas-Mach pour les écoulements multi-fluides isentropiques
Résumé
Dans cet exposé, on propose une méthode de résolution numérique d’un système d’équations multi-fluides isentropiques couplées par des forces qui dérivent d’un potentiel. De nombreux systèmes physiques peuvent s’écrire sous cette forme : équations d’Euler multi-fluides, équations d’Euler-Poisson bipolaires, équations de Saint-Venant multi-couches, etc. Pour ces problèmes, les méthodes classiques (solveurs de Godunov approchés) sont difficiles à mettre en oeuvre car les valeurs propres du système sont difficilement estimables.
On s’intéressera en particulier au régime asymptotique lorsque la vitesse d’advection est négligeable devant les forces potentielles (régime bas-Mach et bas-Froude). Dans ce régime, les méthodes classiques sont connues pour être peu performantes (CFL restrictive et diffusion numérique importante).
Le schéma proposé est basé sur une discrétisation centrée des forces potentielles, nécessaire en régime bas-Mach. Cette discrétisation permet de plus de conserver les états d’équilibre au repos, mais elle entraîne une production d’entropie au niveau discret. La stabilité entropique est alors assurée par l’introduction d’une perturbation de la vitesse d’advection par le gradient du potentiel des forces.
On établira les principales propriétés du schéma et on analysera son comportement en régime asymptotique. Ces propriétés seront illustrées par des simulations numériques.