Job shadowing (Year 10, Year 11 students) See https://www.math.univ-paris-diderot.fr/diffusion/index
Key figures
Key figures
189 people work at LJLL
90 permanent staff
82 researchers and permanent lecturers
8 engineers, technicians and administrative staff
99 non-permanent staff
73 Phd students
14 Post-doc and ATER
12 emeritus scholars and external collaborators
Figures : March 2019
Séminaire du LJLL : L. Desvillettes
26 février 2016 — 14h00
Laurent Desvillettes (Université Paris Diderot Paris 7)
Comportement en temps grand de l’équation de Landau des plasmas
Résumé
L’équation (intégrodifférentielle) de Landau permet de connaître l’effet des collisions entre particules chargées sur l’évolution d’un plasma chaud. On s’attend à ce que le plasma converge vers un équilibre statistique dans lequel les vitesses des particules suivent une loi Gaussienne. Dans un travail en commun avec Kleber Carrapatoso et Lingbing He, on donne une estimation quantitative de la vitesse de cette convergence lorsque le plasma est homogène. Les méthodes utilisées font intervenir des estimations liées à l’entropie relative des solutions de l’équation appelées "conjecture de Cercignani".