Job shadowing (Year 10, Year 11 students) See https://www.math.univ-paris-diderot.fr/diffusion/index
Key figures
Key figures
189 people work at LJLL
86 permanent staff
80 researchers and permanent lecturers
6 engineers, technicians and administrative staff
103 non-permanent staff
74 Phd students
15 post-doc and ATER
14 emeritus scholars and external collaborators
January 2022
Séminaire du LJLL : L. Desvillettes
26 février 2016 — 14h00
Laurent Desvillettes (Université Paris Diderot Paris 7)
Comportement en temps grand de l’équation de Landau des plasmas
Résumé
L’équation (intégrodifférentielle) de Landau permet de connaître l’effet des collisions entre particules chargées sur l’évolution d’un plasma chaud. On s’attend à ce que le plasma converge vers un équilibre statistique dans lequel les vitesses des particules suivent une loi Gaussienne. Dans un travail en commun avec Kleber Carrapatoso et Lingbing He, on donne une estimation quantitative de la vitesse de cette convergence lorsque le plasma est homogène. Les méthodes utilisées font intervenir des estimations liées à l’entropie relative des solutions de l’équation appelées "conjecture de Cercignani".