Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Partenariats

CNRS

UPMC

UdP
Print this page |
5 postes ATER en mathématiques à Sorbonne Université
date limite le 5 avril à 16h
Détails ici

Chiffres-clé

Chiffres clefs

189 personnes travaillent au LJLL

90 permanents

82 chercheurs et enseignants-chercheurs permanents

8 ingénieurs, techniciens et personnels administratifs

99 personnels non permanents

73 doctorants

14 post-doc et ATER

12 émérites et collaborateurs bénévoles

 

Chiffres mars 2019

 

Séminaire du LJLL : S. Armstrong

30 janvier 2015 — 14h00
Scott Armstrong (Université Paris Dauphine)
Higher regularity and quantitative results in stochastic homogenization
Abstract
 I will review some recent results in the quantitative theory of stochastic homogenization of (linear and nonlinear) elliptic equations in divergence form and explain how the central issue is developing a "higher" regularity theory, that is, showing that equations with random coefficients admit essentially Lipschitz estimates, which is much better than general equations with measurable coefficients. In other words, we show that coefficients for which the De Giorgi-Nash-Moser and Meyers estimates are sharp are not generic. The proof of this result relies on variational methods and a quantitative H-convergence argument.