Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Partenariats

CNRS

UPMC

UdP
Print this page |
5 postes ATER en mathématiques à Sorbonne Université
date limite le 5 avril à 16h
Détails ici

Chiffres-clé

Chiffres clefs

189 personnes travaillent au LJLL

90 permanents

82 chercheurs et enseignants-chercheurs permanents

8 ingénieurs, techniciens et personnels administratifs

99 personnels non permanents

73 doctorants

14 post-doc et ATER

12 émérites et collaborateurs bénévoles

 

Chiffres mars 2019

 

Séminaire du LJLL : R. DeVore

22 mai 2015 — 14h00
Ron DeVore (Université A&M du Texas)
Data assimilation in solving parametric PDEs
Abstract
 This talk is concerned with the following problem. We wish to recover the solution u(a*) to a known parametric family of PDEs at a certain parameter value a* that is unknown to us. However, we have information about the state u(a*) through some set of physical measurements which can be viewed as the application of linear functionals to u(a*). How should we merge these two pieces of information, the parametric model and the measurements, to effectively recover u(a*) ?
 The parametric model is complex and the solution manifold is usually known only through a sequence of known finite dimensional spaces V_0, … ,V_n with dim(V_k) = k that are known to approximate the solution manifold to a known accuracy epsilon_k. We formulate this as an optimal recovery problem and determine the optimal solution. Our results clarify and extend the fundamental work of Maday, Patera, Penn and Yano.