Postes Enseignants-Chercheurs :
Cliquer sur : Operation POSTES sur le site de la SMAI
Cliquer sur : GALAXIE
Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017
Chiffres-clé
Chiffres clefs
217 personnes travaillent au LJLL
83 personnels permanents
47 enseignants chercheurs
13 chercheurs CNRS
9 chercheurs INRIA
2 chercheurs CEREMA
12 ingénieurs, techniciens et personnels administratifs
134 personnels non permanents
85 doctorants
16 post-doc et ATER
5 chaires et délégations
12 émérites et collaborateurs bénévoles
16 visiteurs
Chiffres janvier 2014
Séminaire du LJLL : P. Cannarsa
20 février 2015 — 14h00
Piermarco Cannarsa (Université de Rome 2 Tor Vergata)
Dynamique singulière pour les équations d’Hamilton-Jacobi
Abstract
In dynamic programming, the set of points at which the value function of an optimal control problem fails to be differentiable is usually regarded as a region to keep away from. Indeed, the uniqueness of optimal trajectories is generally lost on such a set and numerical schemes become less reliable. Such a viewpoint, however, could be partly reversed thinking of the huge quantity of data that can be compressed at a singular point. This talk will be focussed on singularities of solutions to Hamilton-Jacobi equations, in connection with optimal control problems, and the dynamics that describes their propagation. We will be particularly interested in the study of the invariance of the singular set under such dynamics for two examples of solutions to eikonal-type equations : the euclidean (and riemannian) distance function from the boundary of a bounded domain and the solution of a Cauchy problem given by the Hopf-Lax formula.