Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017

 

» En savoir +

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

Séminaire du LJLL : E. Cancès

23 octobre 2015 — 14h00
Eric Cancès (Ecole des Ponts ParisTech)
Perturbations de problèmes aux valeurs propres non linéaires
Résumé
 La théorie des perturbations des opérateurs linéaires a été introduite par Rayleigh dans les années 1870, et a été utilisée pour la première fois en mécanique quantique dans un article publié par Schrödinger en 1926. L’étude mathématique des perturbations d’opérateurs auto-adjoints a été amorcée par Rellich en 1937, et a fait depuis lors l’objet de très nombreuses publications.
 La théorie des perturbations des problèmes aux valeurs propres non linéaires joue un rôle important en physique et chimie quantiques, où elle est utilisée en particulier pour calculer la réponse d’une molécule ou d’un matériau à un champ électro-magnétique extérieur (polarisabilité, hyperpolarisabilités, susceptibilité magnétique, rotation optique, résonance magnétique, …) dans le cadre de modèles de champ moyen.
 Dans cet exposé, je rappellerai les bases mathématiques de la théorie des perturbations des opérateurs linéaires, je présenterai quelques résultats théoriques récents relatifs aux perturbations des problèmes aux valeurs propres non linéaires [1], et je montrerai que cette approche peut être utilisée pour accélérer les simulations numériques [2,3].

[1] E. Cancès and N. Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity 27 (2014), 1999-2034.
[2] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 352 (2014), 941-946.
[3] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models, soumis.