Job shadowing (Year 10, Year 11 students) See https://www.math.univ-paris-diderot.fr/diffusion/index
Key figures
Key figures
189 people work at LJLL
86 permanent staff
80 researchers and permanent lecturers
6 engineers, technicians and administrative staff
103 non-permanent staff
74 Phd students
15 post-doc and ATER
14 emeritus scholars and external collaborators
January 2022
2018-GdT ITER - F. Casas
Mardi 4 Décembre 2018 à 11h : Fernando Casas (Universitat Jaume I)
On some Geometric Integration techniques for kinetic plasma models
During the last years there has been an increasing interest in the use of structure-preserving algorithms for the numerical time-integration of the differential equations arising in different plasma models and the dynamics of charged particles in electromagnetic fields. Examples comprise the applications of Hamiltonian splitting and composition methods to Vlasov–Maxwell equations and kinetic equations with stiff relaxation, volume preserving algorithms for charged particle dynamics and the use of specially adapted schemes for the Vlasov–Poisson equation.
Splitting and composition methods are by now standard numerical procedures to integrate differential equations in the realm of Geometric Numerical Integration, where preserving whatever invariants the systems has is of paramount importance. In this talk we will review some of their main features, with special emphasis in schemes adapted to problems separable into three of more exactly solvable parts and methods involving double commutators, and also analyze how these algorithms can be applied to plasma related models when high order schemes are required.