Chiffres-clé
Chiffres clefs
189 personnes travaillent au LJLL
86 permanents
80 chercheurs et enseignants-chercheurs permanents
6 ingénieurs, techniciens et personnels administratifs
103 personnels non permanents
74 doctorants
15 post-doc et ATER
14 émérites et collaborateurs bénévoles
Chiffres janvier 2022
Rémy Rodiac
Lundi 14 janvier 2019
Rémy Rodiac (Université Catholique de Louvain-la-Neuve)
Description des vorticités limites des équations de Ginzburg-Landau.
Résumé :
Les équations de Ginzburg-Landau (GL) décrivent le comportement d’un échantillon supraconducteur. Pour analyser le nombre et la répartition des vortex dans un échantillon supraconducteur on peut utiliser une quantité appelée vorticité. C’est l’analogue du tourbillon en mécanique des fluides. Lorsque le paramètre de Ginzburg-Landau ε tend vers zéro, Sandier-Serfaty ont montré que la limite d’une vorticité associée à une solution de GL est une mesure μ et doit satisfaire des conditions d’équilibre : il existe $h$ dans $H^1$ tel que $-\Delta h+h=\mu$ et $h$ est un point stationnaire pour la norme de Sobolev sur H1. Nous montrerons que de telles conditions permettent de décrire le support de μ. En particulier les vortex ne peuvent s’accumuler que sur des lignes ou sur des ensembles de mesure de Lebesgue pleine.