Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : le poste ouvert au Laboratoire Jacques-Louis Lions en 2019

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

Marc Pégon

Lundi 5 novembre 2018

Marc Pégon (Université Paris Diderot)

Partial Regularity of Stationary $s$-harmonic maps into spheres.

Résumé :
In a paper dating back to 1991, L.C. Evans produced a partial regularity result for stationary harmonic maps from \R^N into spheres. His proof relies on properties of so-called div-curl quantities, i.e. products of divergence-free and curl-free vector fields. Recently, A. Schikorra and C. Mazowiecka introduced fractional div-curl quantities which allows them to derive a new proof of the regularity of 1/2-harmonic maps from \R into a general target manifold. Using their new fractional div-curl estimate it is now possible, following Evans’s original proof in the local case, to establish partial regularity results for stationary $s$-harmonic maps from \R^N into spheres. In this talk I will introduce the fractional setting, present the ideas of the proof by Evans in the local case, and elaborate on the main adjustments to make it work in this setting.