Chiffres-clé
Chiffres clefs
189 personnes travaillent au LJLL
86 permanents
80 chercheurs et enseignants-chercheurs permanents
6 ingénieurs, techniciens et personnels administratifs
103 personnels non permanents
74 doctorants
15 post-doc et ATER
14 émérites et collaborateurs bénévoles
Chiffres janvier 2022
Laurent Pfeiffer
Lundi 8 Avril 2019
Laurent Pfeiffer (University of Graz)
Un résultat d’existence pour une classe de jeux à champ moyen de contrôle.
Résumé : La théorie des jeux à champ moyen vise à décrire un équilibre de Nash entre un très grand nombre d’agents, résolvant chacun un problème de contrôle optimal. Je présenterai un résultat d’existence pour un modèle dans lequel la fonction coût de chaque agent fait intervenir une variable de prix, dépendant du contrôle moyen (par rapport à tous les agents). Cette situation apparaît dans des modèles où un grand nombre de consommateurs achètent de l’électricité sur un marché où le prix de l’électricité dépend de la demande totale. Un aspect important de notre preuve est l’existence d’une formulation potentielle, c’est-à-dire que le système couplé étudié est équivalent aux conditions d’optimalité d’un problème de contrôle optimal de l’équation de Fokker-Planck.
Ceci est un travail en collaboration avec Saeed Hadikhanloo et J. Frédéric Bonnans (Inria-Saclay).