Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017

 

 » En savoir +

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

jonas-hirsch

Lundi 6 novembre 2017

Jonas Hirsch (SISSA Trieste)

Non-existence of a Wente’s L estimate for the Neumann problem

Résumé
Wente’s L-estimate is a fundamental example of a ’gain’ of regularity due to the
special structure of Jacobian determinants. It concerns the following Dirichlet
problem : let V ∈ H 1 (D, R 2 )

−∆u = det(∇V ) in D
u =0 on ∂D.

Wente’s theorem states that the solution u ∈ W0 1,1 (D, R) to the above Dirichlet
problem is in the space L(D) ∩ H 0 1 (D). This estimate found many applications in
geometric analysis, for instance in the existence of immersed surfaces with constant
mean curvature.
It is natural to ask whether a similar estimate holds true for the Neumann problem
The aim of this talk will be to present a counterexample. We will present at first a
possible motivation for studying the Neumann problem. Thereafter we will try to
sketch the ideas of the proof.